首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of benzylamine, benzyl alcohol, and their derivatives (constituting a new group of synthetic analogues of natural auxins) on rooting of leaf and stem cuttings, rhizogenesis and growth of barley plantlets and tomato seedlings, and tomato plant productivity. These compounds promoted rooting of leaf and stem bean cuttings, increased rhizogenic activity, and stimulated the development of root systems in barley and tomato seeds. The activity of the compounds studied was similar to that of standard substances (3-indoleacetic acid potassium salt and 2-naphthylacetic acid). The benzyl group attached to the oxygen or nitrogen atom was shown to be the smallest molecular structure which provided auxin activity of the compounds. Derivatives of benzyl alcohol containing the quaternary ammonium fragment possessed auxin and anti-gibberellin (retardant) properties. They were selected by chemical synthesis of low-molecular-weight bioregulators with desired properties (a combination of chemical fragments with complementary physiological activity in the molecule). Auxin and anti-gibberellin (retardant) activities produced a synergistic effect. Germination of seeds treated with these compounds was accompanied by a more significant increase in the weight and length of roots (compared to standard auxins). The rate of seedling establishment reached 100%. The development of fruits and accumulation of reserve nutrient substances were synchronized and accelerated after spraying vegetating plants with solutions of studied compounds. The synergistic effect underlay a significant increase in the amount and quality of the crop (e.g., tomatoes).  相似文献   

2.
Quantitative trait loci (QTL) detection was carried out for adventitious rooting and associated propagation traits in a second-generation outbred Corymbia torelliana × Corymbia citriodora subspecies variegata hybrid family (n = 186). The parental species of this cross are divergent in their capacity to develop roots adventitiously on stem cuttings and their propensity to form lignotubers. For the ten traits studied, there was one or two QTL detected, with some QTL explaining large amounts of phenotypic variation (e.g. 66% for one QTL for percentage rooting), suggesting that major effects influence rooting in this cross. Collocation of QTL for many strongly genetically correlated rooting traits to a single region on linkage group 12 suggested pleiotropy. A three locus model was most parsimonious for linkage group 12, however, as differences in QTL position and lower genetic correlations suggested separate loci for each of the traits of shoot production and root initiation. Species differences were thought to be the major source of phenotypic variation for some rooting rate and root quality traits because of the major QTL effects and up to 59-fold larger homospecific deviations (attributed to species differences) relative to heterospecific deviations (attributed to standing variation within species) evident at some QTL for these traits. A large homospecific/heterospecific ratio at major QTL suggested that the gene action evident in one cross may be indicative of gene action more broadly in hybrids between these species for some traits.  相似文献   

3.
Using seedlings derived from the shoot apex of annatto (Bixa orellana L. cv. Bico-de-Pato) we observed the rooting frequency of B. orellana, the number and length of roots and the rate of ethylene production during 30 d in culture. The rhizogenesis response was affected by auxins (NAA or IBA) and by both the ethylene biosynthesis precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and the inhibitor 2-aminoethoxyvinylglycine (AVG). Auxin supplementation to the medium resulted in root induction, ethylene production, and an undesirable callusing in the epidermal and cortical tissues. Irrespective of the presence of auxins, supplementing the medium with ACC promoted ethylene biosynthesis and callusing, which resulted in increased cell proliferation mainly in the cortical and vascular tissues, while the epidermis was mostly unaltered. In both ACC and auxin-supplemented medium, increased ethylene production and callusing occurred, suggesting a synergistic effect between these two responses. ACC was capable of inducing adventitious root formation, but the roots produced had a wrinkled appearance when compared to normal roots. Conversely, AVG reduced ethylene production and callusing, while the epidermis, cortex, and inner tissues remained unaltered, regardless of the presence of auxins. AVG was beneficial in these aspects, although its application led to a reduction in the number of roots and in the average root length. In conclusion, it was not possible to establish a direct relation between ethylene and rooting, but we hypothesize that, under the experimental conditions described, ethylene may enhance tissue sensitivity to auxin. However, ethylene did not seem essential to the rhizogenesis process in annatto.  相似文献   

4.
In order to improve vegetative propagation of a difficult to root Cotinus coggygria the stock plants were subjected to: etiolation, shading and spraying with IBA, combined with the application of two commercially available rooting powders. The IBA treatment was more suitable for rooting of C. coggygria cuttings than the NAA application and it enhanced rhizogenesis regardless of the form of auxin application (foliar application to a stock plant or a rooting powder used directly on cuttings) and the amount of light provided to stock plants. Etiolation did not improve rhizogenesis in stem cuttings, however, reduction of light intensity by 50% and 96% of the ambient prior to harvest of cuttings affected rooting positively. Positive effects of shading can be ascribed to changes in shoot anatomy, i.e. a weaker sclerenchyma development. Synergistic effect of shading and foliar auxin application can result from the increase in leaf blade area and/or thinner lower epiderm. Enhanced rooting in cuttings from shoots grown out under reduced light intensity was accompanied by decrease in the contents of total soluble sugars, soluble proteins and free ABA and by increase in total chlorophyll, free amino acids, polyphenolic acids and free IAA contents.  相似文献   

5.
Tamarix aphylla (L.) Karst., a drought resistant halophyte tree, is an agroforestry species which can be used for reclamation of waterlogged saline and marginal lands. Due to very low seed viability and unsuitable conditions for seed germination, the tree is becoming rare in Indian Thar desert. Present study concerns the evaluation of aeroponics technique for vegetative propagation of T. aphylla. Effect of various exogenous auxins (indole-3-acetic acid, indole-3-butyric acid, naphthalene acetic acid) at different concentrations (0.0, 1.0, 2.0, 3.0, 5.0, 10.0 mg l?1) was examined for induction of adventitious rooting and other morphological features. Among all three auxins tested individually, maximum rooting response (79%) was observed with IBA 2.0 mg l?1. However, stem cuttings treated with a combination of auxins (2.0 mg l?1 IBA and 1.0 mg l?1 IAA) for 15 min resulted in 87% of rooting response. Among three types of stem cuttings (apical shoot, newly sprouted cuttings, mature stem cuttings), maximum rooting (~ 90%) was observed on mature stem cuttings. Number of roots and root length were significantly higher in aeroponically rooted stem cuttings as compared to stem cuttings rooted in soil conditions. Successfully rooted and sprouted plants were transferred to polybags with 95% survival rate. This is the first report on aeroponic culture of Tamarix aphylla which can be utilized in agroforestry practices, marginal land reclamation and physiological studies.  相似文献   

6.
It is well established that auxins play a central role in the determination of rooting capacity, which is essential for vegetative propagation. Recent studies with apple trees have pointed to significant effects of auxin stability, wound related phenolics and ethylene production in the control of adventitious rooting. In the present study, a comparative analysis of the adventitious rooting of microcuttings of Eucalyptus saligna (easy-to-root species) and Eucalyptus globulus (difficult-to-root species) was carried out with different types of auxins, light intensities, presence or absence of apical meristem, different concentrations of phenolic compounds and presence or absence of an ethylene action inhibitor. Parameters evaluated were the percent rooting, number of roots per rooted cutting, length of longest root and mean rooting time. Results showed that auxins of intermediate stability are more favorable to rooting (particularly for the recalcitrant species), higher light intensities in the presence of exogenous auxins promote the rooting response, the absence of meristematic apex or externally supplied phenolics are not limiting for the rooting induced by exogenous auxins, and ethylene appears to play a minor role in the development of adventitious roots in microcuttings of Eucalyptus, indicating that the rhizogenic response results from direct effect of auxins.  相似文献   

7.
Arabidopsis is a species that naturally displays the rosette form. Therefore, elucidation of the factors, which control basal leaf development, is of particular interest. Most evidence points that auxins and gibberellins are important in the control of rosette leaf development. In this paper, we report on a regimen that disrupts the normal rosette growth in Arabidopsis and induces internodal growth, which we have termed unbasal. The growth conditions are: (1) seed germination in the presence of 2,3,5-triiodobenzoic acid (TIBA); (2) transfer of the seedlings to a medium containing exogenous auxin (NAA) and GA3; (3) transfer of the seedlings to a GA3-only medium for all subsequent growth. Under these conditions, auxin and GA interact to induce internode elongation. Polar auxin transport appears to have a temporal effect on this synergistic interaction. In this regimen, GA increases auxin activity in the basal portions of the stem. Cross sectional morphology of the elongated internodes between two rosette leaves in an un-basal plant was similar to that seen for the pin1 Arabidopsis mutation.  相似文献   

8.
Efficient propagation of uniform starting material is a critical requirement for mass production of most ornamental plants, including carnation. For some elite cultivars, the production of young plantlets is limited by poor adventitious root formation from stem cuttings. We previously characterized the molecular signature during adventitious rooting in two carnation cultivars, 2101-02 MFR and 2003 R 8, which were selected because of their contrasting rooting performance. To determine additional factors that contribute to the differences observed in adventitious rooting during the commercial scaling-up of this species, we characterized rooting performance and endogenous hormone levels in stem cuttings of these two cultivars during one production season. We found that stem cutting production declined during the harvest season in a cultivar-dependent manner. In addition, the initiation of adventitious roots in the stem cutting base depended on its endogenous auxin and cytokinin levels at harvest time, while their subsequent growth and development was mainly influenced by the physiological status of the mother plant at harvest time and of the stem cutting during the rooting process.  相似文献   

9.
Recent results showed that after 16 months in the field, micropropagated eucalyptus plants have an inferior root system to cuttings. Such differences may be due to the plant growth regulators supplied during the culture stages of standard protocols, which are targeted at optimising plantlet yields and not root quality. This study investigated such a proposal, focusing on auxins in an easy-to-root clone. Initial results showed that the auxin provided in the standard protocol (NAA for multiplication and IBA for elongation) enabled 100% rooting in auxin-free medium, where rooting was faster than on IBA-rooting media. When auxin supply was omitted from multiplication and restricted to NAA or IAA during elongation, rooting in an auxin-free medium was reduced to 68 and 31%, respectively, reflecting the stabilities of these auxins in plant tissues. Additionally, 15% of shoots from the NAA-medium and 65% from the IAA-medium produced roots with altered graviperception. GC–MS analysis of these shoots revealed a relationship between free IAA-availability and altered graviperception. This was further tested by adding the IAA-specific transport inhibitor 2,3,5-triiodobenzoic acid to rooting media with IBA, IAA or NAA, which resulted in 100, 70.9 and 20.6% rooting, respectively. At least 40% of the sampled root tips had atypical starch grain deposition and abnormal graviperception. It is proposed that, at least in this clone, while IBA and NAA can be used for in vitro root induction, IAA is necessary for development of graviresponse.  相似文献   

10.
Callus cultures derived from leaf segments of chrysanthemum cultivar ‘Snow Ball’ which was susceptible to Septoria obesa were successfully used for in vitro selection for resistance to this pathogenic fungus. Resistant cell lines were selected by culturing callus on growth medium containing various concentrations of S. obesa filtrate. Resistant calluses obtained after two cycles (30 d each cycle) of selection were used for plant regeneration. About 30% of the plants regenerated from the resistant calluses and 70–80% of the plants raised from cuttings had acquired considerable resistance against the pathogen in the field. No phenotypic variation was observed in the selected regenerates.  相似文献   

11.
Rhodiola rosea is an endangered medicinal plant used for cancer, cardiovascular, and nervous system diseases therapy. Due to its limited distribution and sustainability alternative methods for production of its valuable substances are under investigation. Using in vitro techniques apical and rhizome buds, leaf nodes, stem and radix segments from wild plants and in vitro seedlings were plated on 24 modified Murashige and Skoog (1962) media. Decontamination of plant material was successful only in 21% of the schemes. The best shoot induction was obtained from seedling explants on media containing 2 mg/l zeatin or N6-benzylaminopurine, each. Their reduction stimulated shoot formation in the next passages (multiplication rate up to 5). Efficient rooting was induced on half-strength MS with 2 mg/l Indole-3-butyric acid and stimulated by adding 0.2 mg/l Indolyl-3-acetic acid. Regenerants rooted in perlite, peat, and soil (1:1:2), adapted in greenhouse, and transplanted in the mountains survived (70%) and developed like the wild plants. Salidroside content of these plants after one or two years was high (0.64 and 0.61% in rhizomes and 0.62 and 0.53% in roots, respectively). This is the first established efficient scheme for micropropagation of Bulgarian R. rosea allowing habitats restoration, germplasm conservation, and potential application of biotechnology for production of valuable substances.  相似文献   

12.
An efficient propagation and regeneration system via direct shoot organogenesis for an endangered species, Metabriggsia ovalifolia, was established. High activity cytokinins [6-benzyladeneine (BA) and thidiazuron (TDZ)] and low activity auxins [α-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA)] could directly induce adventitious shoots from leaf or petiole explants within 5 weeks. Cytokinins (TDZ or BA) combined with auxin (NAA) in the induction media induced more adventitious shoots than when auxins or cytokinins were used alone. Adventitious shoots could be induced and also mass-propagated on media containing 2.5–5.0 μM TDZ (or BA) and 0.25–0.5 μM NAA. Adventitious roots differentiated at the proximal end of shoots on rooting media containing half-strength MS salts and 0.5 μM IBA, 0.5 μM NAA, 0.1% activated charcoal or no plant growth regulators. Over 90% of plantlets survived following acclimatization and transfer to a potting mixture (1:1, sand:vermiculite) in basins.  相似文献   

13.
We study apical dominance in Alstroemeria, a plant with an architecture very different from the model species used in research on apical dominance. The standard explant was a rhizome with a tip and two vertically growing shoots from which the larger part had been excised leaving ca. 1 cm stem. The axillary buds that resumed growth were located at this 1-cm stem just above the rhizome. They were released by removal of the rhizome tip and the shoot tips. Replacement of excised tips by lanolin with indole-3-butyric acid (IBA) restored apical dominance. The auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and N-1-napthylphthalamic acid (NPA) reduced apical dominance. 6-Benzylaminopurine (BAP) enhanced axillary bud outgrowth but the highest concentrations (> 9 μM) caused fasciation. Thidiazuron (TDZ) did not show improvement relative to BAP. Even though the architecture of Alstroemeria and the model species are very different, their hormonal mechanisms in apical dominance are for the greater part very similar.  相似文献   

14.
Rooting of cuttings depends not only on the rooting treatment and the genotype, but also on the condition of the cuttings at the time of excision. The physiological and developmental conditions of the donor plant may be decisive. We have examined in Arabidopsis the effect of two donor plant pre-treatments, etiolation and flooding, on the capability of flower stem and hypocotyl segments to root. For etiolation, plantlets were kept in the dark, hypocotyls up to 12 days and plantlets for 12 weeks. Flooding was applied as a layer of liquid medium on top of the semi-solid medium. This procedure is also referred to as “double layer”. Both pre-treatments strongly promoted rooting and we examined possible mechanisms. Expression of strigolactone biosynthesis and signaling related genes indicated that promotion by etiolation may be related to enhanced polar auxin transport. Increased rooting after flooding may have been brought about by accumulation of ethylene in the cutting (ethylene has been reported to increase sensitivity to auxin) and by massive formation of secondary phloem (the tissue close to which adventitious roots are induced). Both pre-treatments also strongly lowered the endogenous sucrose level. As low sucrose favors the juvenile state and juvenile tissues have a higher capability to root, the low sucrose levels may also play a role.  相似文献   

15.
The leaves of Quillaja brasiliensis, a native tree species of southern Brazil, accumulate saponins which have adjuvant activity in vaccines. An efficient micropropagation system for Q. brasiliensis was developed. Plants were obtained from aseptically germinated seeds. High rates of germination were observed on filter paper and aseptic medium substrate (sucrose and light exposure did not affect the germination response). Stem nodal segments were inoculated into Murashige and Skoog (MS) medium supplemented with 6-benzylaminopurine. Each explant produced multiple shoots, which elongated satisfactorily on the same medium. Elongated shoots were rooted in a modified MS medium with or without auxins. Best rooting responses were observed in medium containing 10 mg l−1 indole-3-acetic acid under continuous exposure. The rooted explants were acclimatized and successfully transferred to soil, yielding approximately 95% survival after 10 mo. Leaf content of immunoadjuvant saponins in micropropagated plants was not affected by auxin type used for rooting and was comparable to that of field-grown trees. The results indicate that Q. brasiliensis represents an alternative and readily renewable source of biomass for the production of bioactive saponins.  相似文献   

16.
The saprophytic bacterium Burkholderia cepacia has been shown to play an active role as plant growth promoting bacteria (PGPB). In this study, the ability of cell-free culture medium (CFCM) of B. cepacia to improve early developmental stages of plants has been assessed on two agronomically important crops, maize (Zea mays) and rice (Oryza sativa). Treating maize and rice seeds for 45 min before germination significantly improved seed germination and consequent seedling growth. The effect of CFCM was confirmed by the increased biomass of the shoot and, mainly, the root systems of treated seedlings. Chromatographic characterization of the CFCM revealed that the spent culture medium of B. cepacia is a complex mix of different classes of metabolites including, among others, salicylic acid, indole-3-acetic acid (IAA) and several unidentified phenolic compounds. Fractionation of the CFCM components revealed that the impressive development of the root system of CFCM-treated seedlings is due to the synergistic action of several groups of components rather than IAA alone. The data presented here suggest that a CFCM of B. cepacia can be used to improve crop germination.  相似文献   

17.
Abstract   The rooting capacity of microshoots derived from two mature Eucalyptus urophylla X Eucalyptus grandis half-sib clones kept for 3 y under intensive micropropagation was assessed in different in vitro conditions. A first set of experiments established that clone 147 microshoots rooted earlier and in greater proportions, while producing more adventitious roots overall than their homologs from clone 149. Modifying the composition of the basal 1/2-MS-derived rooting medium by 1/4-MS or Knop macronutrients, or reducing sucrose concentration to 10 g l−1 did not enhance the rooting rates. However, together with the growth regulators added, they had a significant effect on the number of adventitious roots formed. With rooting rates reaching 81%, the higher rootability of clone 147 over clone 149 was further confirmed by the second set of experiments with significant effects of the various auxins tested and strong clone × auxin interactions on the proportions of rooted microshoots and on the number of adventitious roots. The best rooting scores were given by 5 μM indole-3-butyric acid (IBA) and 12.5 μM 1-naphthaleneacetic acid (NAA), whereas the microshoots exposed to 5 or 12.5 μM indole-3-acetic acid (IAA) were less responsive. Lower light intensities did not improve significantly root capacities, although differences might exist according to the genotype. Overall, root and shoot elongation was stimulated by light. At the end of the experiment, the rooted microshoots were markedly taller than the non-rooted ones, with significant influences of auxins and light intensity, and to a lesser extent, of the genotypes.  相似文献   

18.
An in vitro method for propagation of Holarrhena antidysenterica Wall. has been developed using nodal explants from mature trees growing in the field. Irrespective of concentrations and combinations of growth regulators used, the axillary and terminal buds sprouted and elongated when inoculated on Murashige and Skoog (MS) medium. The highest numbers of shoots were formed when sprouted shoots were subcultured from MS basal medium onto MS medium containing 2 mg dm−3 N6-benzyladenine (BA) and 0.5 mg dm−3 α-naphthalene acetic acid (NAA). The shoot number further increased upon subculture on MS medium containing 0.5 mg dm−3 BA. By repeated sub-culturing of shoots derived from nodal axillary buds, a high frequency multiplication rate was established. The elongated shoots were excised and rooted in auxin free MS basal medium. Ex vitro rooting of in vitro formed shoots was achieved upon dipping the microshoots for 2 min in 2 mg dm−3 of indole-3-butyric acid solution. Successful field establishment and high (80–90 %) survival of plants was observed.  相似文献   

19.
Results of research into ethanol metabolism in yeast organisms with highly pronounced aerobic metabolism are reviewed. The low activity of NAD-dependent alcohol dehydrogenase (EC 1.1.1.1), observed under conditions of aerobic yeast growth on ethanol, demonstrates that alternative enzyme systems—alcohol oxidase (EC 1.1.3.13), microsomal ethanol-oxidizing system (including cytochrome P-450), and catalase (EC 1.11.1.6)—may be involved in the alcohol oxidation. The role of these systems in alcohol oxidation and the conditions favoring their operation in this processes are analyzed. It is concluded that iron ions are important regulators of ethanol metabolism for the microorganisms of this group.  相似文献   

20.
Segregation analysis was performed in the progenies obtained in analyzing crosses of hybrids of spring and winter accessions of rye Secale cereale L. and wild S. montanum subsp. anatolicum (Grossh.) Tzvel. (syn. S. strictum (J. Presl) J. Presl). The test genes controlled the brittle stem (bs), the allelic variants of aromatic alcohol dehydrogenase (Aadh1) and shikimate dehydrogenase (Skdh), and the growth habit (Vrn1). A linkage was observed in the inheritance of the brittle stem and the aromatic alcohol dehydrogenase and shikimate dehydrogenase alloenzymes. The order of genes was established to be bs-Skdh-Aadh1, and the genetic distances were estimated to be bs-(9.0%)-Skdh, bs-(10.8%)-Aadh1, and Skdh-(5.3%)-Aadh1. The recombination coefficient between the Skdh and Aadh1 genes varied from 2.2 to 18.2%, averaging 5.3%. The growth habit was inherited independently of the bs-Skdh-Aadh1 linkage group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号