首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Little is known about how mammalian cells respond to the expression of innexins (Inxs), which are known to mediate cell‐to‐cell communication that causes apoptosis in the cells of the insect Spodoptera litura. The mammalian expression system, p3xFLAG tag protein, containing the CMV promoter, allowed us to construct two C‐terminally elongated innexins (Cte‐Inxs), SpliInx2 (Inx2‐FLAG), and SpliInx3 (Inx3‐FLAG), which were predicted to have the same secondary topological structures as the native SpliInx2 and SpliInx3. Here, we found that only the mRNAs of the two Cte‐Inxs were expressed under the control of the CMV promoter in HeLa cells. Unexpectedly, mRNA expression of the two Cte‐Inxs enhanced apoptosis of HeLa cells. The two Cte‐Inx mRNAs were associated with a significant decrease in Akt phosphorylation in HeLa cells undergoing apoptosis. Furthermore, Inx3‐FLAG mRNA expression in nonapoptotic HCT116 cells was also associated with a significant decrease in the levels of phosphorylated Akt. Intriguingly, expression of the mRNAs of the two Cte‐Inxs did not activate caspase 3, but it markedly reduced Bid levels in HeLa cells undergoing apoptosis. These results suggest that mRNA expression of the two Cte‐Inxs may activate a Bid‐dependent apoptotic pathway in HeLa cells. Our study demonstrates that invertebrate gap junction mRNAs can function in vertebrate cancer cells as tumor suppressors.  相似文献   

2.
The cross-talk between cells is very critical for moving forward fracture healing in an orderly manner. Connexin (Cx) 43-formed gap junctions and hemichannels mediate the communication between adjacent cells and cells and extracellular environment. Loss of Cx43 in osteoblasts/osteocytes results in delayed fracture healing. For investigating the role of two channels in osteocytes in bone repair, two transgenic mouse models with Cx43 dominant negative mutants driven by a 10 kb-DMP1 promoter were generated: R76W (gap junctions are blocked, whereas hemichannels are promoted) and Δ130–136 (both gap junctions and hemichannels are blocked). R76W mice (promotion of hemichannels) showed a significant increase of new bone formation, whereas delayed osteoclastogenesis and healing was observed in Δ130–136 (impairment of gap junctions), but not in R76W mice (hemichannel promotion may recover the delay). These results suggest that gap junctions and hemichannels play some similar and cooperative roles in bone repair.  相似文献   

3.
Beahm DL  Hall JE 《Biophysical journal》2002,82(4):2016-2031
Lens fiber connexins, cx50 and cx46 (alpha3 and alpha8), belong to a small subset of connexins that can form functional hemichannels in nonjunctional membranes. Knockout of either cx50 or cx46 results in a cataract, so the properties of both connexins are likely essential for proper physiological functioning of the lens. Although portions of the sequences of these two connexins are nearly identical, their hemichannel properties are quite different. Cx50 hemichannels are much more sensitive to extracellular acidification than cx46 hemichannels and differ from cx46 hemichannels both in steady-state and kinetic properties. Comparison of the two branches of the cx50 hemichannel G-V curve with the junctional G-V curve suggests that cx50 gap junctions gate with positive relative polarity. The histidine-modifying reagent, diethyl pyrocarbonate, reversibly blocks cx50 hemichannel currents but not cx46 hemichannel currents. Because cx46 and cx50 have very similar amino acid sequences, one might expect that replacing the two histidines unique to the third transmembrane region of cx50 with the corresponding cx46 residues would produce mutants more closely resembling cx46. In fact this does not happen. Instead the mutant cx50H161N does not form detectable hemichannels but forms gap junctions indistinguishable from wild type. Cx50H176Q is oocyte lethal, and the double mutant, cx50H61N/H176Q, neither forms hemichannels nor kills oocytes.  相似文献   

4.
We studied gap junction formation in pairs of Xenopus laevis oocytes expressing connexins that form functional hemichannels and found no correlation between junctional conductance (G(j)) and whole-cell hemichannel conductances (G(hemi)) within the first few hours of pairing. However, opening hemichannels to a threshold current stimulated a rapid G(j) increase. Moreover, cx46 hemichannel current stimulated cx40 G(j) even though cx40 and cx46 do not form heteromeric or heterotypic gap junctions. Initial growth rate and final steady-state level of stimulated G(j) were proportional to the product of hemichannel conductances. External calcium affected the growth rate of stimulated G(j) but not the final steady-state value. Time constants of formation were short in low [Ca(2+)](out) (3 min in 200 micro M Ca(2+)) and long in high [Ca(2+)](out) (15 min in 1 mM Ca(2+)), but in oocyte pairs pretreated with lectins to reduce steric hindrance imposed by large membrane glycoproteins the time constant was short and Ca(2+)-independent. We suggest that hemichannel activity stimulates G(j) by collapsing the extracellular volume between membranes to allow the end-to-end binding between hemichannels. These studies suggest the possibility that functional hemichannels could trigger or enhance junctional formation in vivo in response to appropriate stimuli.  相似文献   

5.
Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S.  相似文献   

6.
The gap junction channel is formed by proper docking of two hemichannels. Depending on the connexin(s) in the hemichannels, homotypic and heterotypic gap junction channels can be formed. Previous studies suggest that the extracellular loop 2 (E2) is an important molecular domain for heterotypic compatibility. Based on the crystal structure of the Cx26 gap junction channel and homology models of heterotypic channels, we analyzed docking selectivity for several hemichannel pairs and found that the hydrogen bonds between E2 domains are conserved in a group of heterotypically compatible hemichannels, including Cx26 and Cx32 hemichannels. According to our model analysis, Cx32N175Y mutant destroys three hydrogen bonds in the E2-E2 interactions due to steric hindrance at the heterotypic docking interface, which makes it unlikely to dock with the Cx26 hemichannel properly. Our experimental data showed that Cx26-red fluorescent protein (RFP) and Cx32-GFP were able to traffic to cell-cell interfaces forming gap junction plaques and functional channels in transfected HeLa/N2A cells. However, Cx32N175Y-GFP exhibited mostly intracellular distribution and was occasionally observed in cell-cell junctions. Double patch clamp analysis demonstrated that Cx32N175Y did not form functional homotypic channels, and dye uptake assay indicated that Cx32N175Y could form hemichannels on the cell surface similar to wild-type Cx32. When Cx32N175Y-GFP- and Cx26-RFP-transfected cells were co-cultured, no colocalization was found at the cell-cell junctions between Cx32N175Y-GFP- and Cx26-RFP-expressing cells; also, no functional Cx32N175Y-GFP/Cx26-RFP heterotypic channels were identified. Both our modeling and experimental data suggest that Asn(175) of Cx32 is a critical residue for heterotypic docking and functional gap junction channel formation between the Cx32 and Cx26 hemichannels.  相似文献   

7.
The pannexin proteins represent a new gap junction family. However, the cellular functions of pannexins remain largely unknown. Here, we demonstrate that pannexin 3 (Panx3) promotes differentiation of osteoblasts and ex vivo growth of metatarsals. Panx3 expression was induced during osteogenic differentiation of C2C12 cells and primary calvarial cells, and suppression of this endogenous expression inhibited differentiation. Panx3 functioned as a unique Ca(2+) channel in the endoplasmic reticulum (ER), which was activated by purinergic receptor/phosphoinositide 3-kinase (PI3K)/Akt signaling, followed by activation of calmodulin signaling for differentiation. Panx3 also formed hemichannels that allowed release of ATP into the extracellular space and activation of purinergic receptors with the subsequent activation of PI3K-Akt signaling. Panx3 also formed gap junctions and propagated Ca(2+) waves between cells. Blocking the Panx3 Ca(2+) channel and gap junction activities inhibited osteoblast differentiation. Thus, Panx3 appears to be a new regulator that promotes osteoblast differentiation by functioning as an ER Ca(2+) channel and a hemichannel, and by forming gap junctions.  相似文献   

8.
Reduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC) disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations in the NPC1 gene. Therefore, we investigated whether the lack of NPC1 expression in murine astrocytes affects the functional state of gap junction channels and hemichannels. Cultured cortical astrocytes of NPC1 knock-out mice (Npc1−/−) showed reduced intercellular communication via gap junctions and increased hemichannel activity. Similarly, astrocytes of newborn Npc1−/− hippocampal slices presented high hemichannel activity, which was completely abrogated by connexin 43 hemichannel blockers and was resistant to inhibitors of pannexin 1 hemichannels. Npc1−/− astrocytes also showed more intracellular Ca2+ signal oscillations mediated by functional connexin 43 hemichannels and P2Y1 receptors. Therefore, Npc1−/− astrocytes present features of connexin based channels compatible with those of reactive astrocytes and hemichannels might be a novel therapeutic target to reduce neuroinflammation in NPC disease.  相似文献   

9.
Inositol 1,4,5-trisphosphate (IP(3)) is an important second messenger that can trigger a Ca(2+) wave prolongated between cells. This intercellular signaling was found defective in some gap junction connexin deafness mutants. In this study, the mechanism underlying IP(3) intercellular signaling in the cochlea was investigated. A gap junction channel is composed of two hemichannels. By using a fluorescence polarization technique to measure IP(3) concentration, the authors found that IP(3) could be released by gap junction hemichannels in the cochlea. The IP(3) release was increased about three- to fivefold by the reduction of extracellular Ca(2+) concentration or by mechanical stress. This incremental release could be blocked by gap junction blockers but not eliminated by a purinergic P2x receptor antagonist and verapamil, which is a selective P-glycoprotein inhibitor inhibiting the ATP-binding cassette transporters. The authors also found that IP(3) receptors were extensively expressed in the cochlear sensory epithelium, including on the cell surface. Extracellular application of IP(3) could trigger cellular Ca(2+) elevation. This Ca(2+) elevation was eliminated by the gap junction hemichannel blocker. These data reveal that IP(3) can pass through hemichannels acting as an extracellular mediator to participate in intercellular signaling. This hemichannel-mediated extracellular pathway may play an important role in long-distance intercellular communication in the cochlea, given that IP(3) only has a short lifetime in the cytoplasm.  相似文献   

10.
Mechanical loads are required for optimal bone mass. One mechanism whereby mechanical loads are transduced into localized cellular signals is strain-induced fluid flow through lacunae and canaliculi of bone. Gap junctions (GJs) between osteocytes and osteoblasts provides a mechanism whereby flow-induced signals are detected by osteocytes and transduced to osteoblasts. We have demonstrated the importance of GJ and gap junctional intercellular communication (GJIC) in intracellular calcium and prostaglandin E(2) (PGE(2)) increases in response to flow. Unapposed connexons, or hemichannels, are themselves functional and may constitute a novel mechanotransduction mechanism. Using MC3T3-E1 osteoblasts and MLO-Y4 osteocytes, we examined the time course and mechanism of hemichannel activation in response to fluid flow, the composition of the hemichannels, and the role of hemichannels in flow-induced ATP release. We demonstrate that fluid flow activates hemichannels in MLO-Y4, but not MC3T3-E1, through a mechanism involving protein kinase C, which induces ATP and PGE(2) release.  相似文献   

11.
A detailed understanding of the mechanisms regulating cell-to-cell communication in the lens necessitates information about the distribution and density of Cx46 and Cx50 in their native cellular environment. These isoforms constitute the extensive pathway between the lens surface and the interior, helping to maintain its striking optical properties. To identify Cx50 channels and hemichannels in the plasma membrane and to differentiate between them, immuno-freeze-fracture-labeling (FRIL) with immuno-gold particles in used. In equatorial lens fibers, the Cx50-gold complexes label gap junctions at high densities and non-junctional plasma membranes at lower densities. Small depressions in the non-junctional plasma membrane labeled by the gold-complexes most likely represent points of hemichannel insertion. Measurement of the width of the extra-cellular space separating adjacent plasma membranes indicates that the gold complexes in the gap junctions represent Cx50 channels and those in the non-junctional plasma membrane, Cx50 hemichannels. Estimates of their densities indicate that the channels are at least one order of magnitude more numerous than the hemichannels. Therefore, in lens fibers, Cx50 hemichannels are inserted via exocytosis and are rapidly assembled into channels assembled in gap junction plaques.  相似文献   

12.
《The Journal of cell biology》1996,134(4):1019-1030
During the assembly of gap junctions, a hemichannel in the plasma membrane of one cell is thought to align and dock with another in an apposed membrane to form a cell-to-cell channel. We report here on the existence and properties of nonjunctional, plasma membrane connexin43 (Cx43) hemichannels. The opening of the hemichannels was demonstrated by the cellular uptake of 5(6)-carboxyfluorescein from the culture medium when extracellular calcium levels were reduced. Dye uptake exhibited properties similar to those of gap junction channels. For example, using different dyes, the levels of uptake were correlated with molecular size: 5(6)-carboxyfluorescein (approximately 32%), 7- hydroxycoumarin-3-carboxylic acid (approximately 24%), fura-2 (approximately 11%), and fluorescein-dextran (approximately 0.4%). Octanol and heptanol also reduced dye uptake by approximately 50%. Detailed analysis of one clone of Novikoff cells transfected with a Cx43 antisense expression vector revealed a reduction in dye uptake levels according to uptake assays and a corresponding decrease in intercellular dye transfer rates in microinjection experiments. In addition, a more limited decrease in membrane resistance upon reduction of extracellular calcium was detected in electrophysiological studies of antisense transfectants, in contrast to control cells. Studies of dye uptake in HeLa cells also demonstrated a large increase following transfection with Cx43. Together these observations indicate that Cx43 is responsible for the hemichannel function in these cultured cells. Similar dye uptake results were obtained with normal rat kidney (NRK) cells, which express Cx43. Dye uptake can be dramatically inhibited by 12-O-tetradeconylphorbol-13-acetate-activated protein kinase C in these cell systems and by a temperature-sensitive tyrosine protein kinase, pp60v-src in LA25-NRK cells. We conclude that Cx43 hemichannels are found in the plasma membrane, where they are regulated by multiple signaling pathways, and likely represent an important stage in gap junction assembly.  相似文献   

13.
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP3 elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.  相似文献   

14.
A detailed understanding of the mechanisms regulating cell-to-cell communication in the lens necessitates information about the distribution and density of Cx46 and Cx50 in their native cellular environment. These isoforms constitute the extensive pathway between the lens surface and the interior, helping to maintain its striking optical properties. To identify Cx50 channels and hemichannels in the plasma membrane and to differentiate between them, immuno-freeze-fracture-labeling (FRIL) with immuno-gold particles in used. In equatorial lens fibers, the Cx50-gold complexes label gap junctions at high densities and non-junctional plasma membranes at lower densities. Small depressions in the non-junctional plasma membrane labeled by the gold-complexes most likely represent points of hemichannel insertion. Measurement of the width of the extra-cellular space separating adjacent plasma membranes indicates that the gold complexes in the gap junctions represent Cx50 channels and those in the non-junctional plasma membrane, Cx50 hemichannels. Estimates of their densities indicate that the channels are at least one order of magnitude more numerous than the hemichannels. Therefore, in lens fibers, Cx50 hemichannels are inserted via exocytosis and are rapidly assembled into channels assembled in gap junction plaques.  相似文献   

15.
A detailed understanding of the mechanisms regulating cell-to-cell communication in the lens necessitates information about the distribution and density of Cx46 and Cx50 in their native cellular environment. These isoforms constitute the extensive pathway between the lens surface and the interior, helping to maintain its striking optical properties. To identify Cx50 channels and hemichannels in the plasma membrane and to differentiate between them, immuno-freeze-fracture-labeling (FRIL) with immuno-gold particles in used. In equatorial lens fibers, the Cx50-gold complexes label gap junctions at high densities and non-junctional plasma membranes at lower densities. Small depressions in the non-junctional plasma membrane labeled by the gold-complexes most likely represent points of hemichannel insertion. Measurement of the width of the extra-cellular space separating adjacent plasma membranes indicates that the gold complexes in the gap junctions represent Cx50 channels and those in the non-junctional plasma membrane, Cx50 hemichannels. Estimates of their densities indicate that the channels are at least one order of magnitude more numerous than the hemichannels. Therefore, in lens fibers, Cx50 hemichannels are inserted via exocytosis and are rapidly assembled into channels assembled in gap junction plaques.  相似文献   

16.
Molecular organization of gap junction membrane channels   总被引:7,自引:0,他引:7  
Gap junctions regulate a variety of cell functions by creating a conduit between two apposing tissue cells. Gap junctions are unique among membrane channels. Not only do the constituent membrane channels span two cell membranes, but the intercellular channels pack into discrete cell-cell contact areas formingin vivo closely packed arrays. Gap junction membrane channels can be isolated either as two-dimensional crystals, individual intercellular channels, or individual hemichannels. The family of gap junction proteins, the connexins, create a family of gap junctions channels and structures. Each channel has distinct physiological properties but a similar overall structure. This review focuses on three aspects of gap junction structure: (1) the molecular structure of the gap junction membrane channel and hemichannel, (2) the packing of the intercellular channels into arrays, and (3) the ways that different connexins can combine into gap junction channel structures with distinct physiological properties. The physiological implications of the different structural forms are discussed.  相似文献   

17.
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP3elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.  相似文献   

18.
Unapposed connexin hemichannels exhibit robust closure in response to membrane hyperpolarization and extracellular calcium. This form of gating, termed “loop gating,” is largely responsible for regulating hemichannel opening, thereby preventing cell damage through excessive flux of ions and metabolites. The molecular components and structural rearrangements underlying loop gating remain unknown. Here, using cysteine mutagenesis in Cx50, we demonstrate that residues at the TM1/E1 border undergo movement during loop gating. Replacement of Phe43 in Cx50 with a cysteine resulted in small or no appreciable membrane currents. Bath application of dithiothreitol or TPEN (N,N,N′,N′-tetrakis(2-pyridylmethyl) ethylenediamine), reagents that exhibit strong transition metal chelating activity, led to robust currents indicating that the F43C substitution impaired hemichannel function, producing “lock-up” in a closed or poorly functional state due to formation of metal bridges. In support, Cd2+ at submicromolar concentrations (50–100 nm) enhanced lock-up of F43C hemichannels. Moreover, lock-up occurred under conditions that favored closure, indicating that the sulfhydryl groups come close enough to each other or to other residues to coordinate metal ions with high affinity. In addition to F43C, metal binding was also found for G46C, and to a lesser extent, D51C substitutions, positions found to be pore-lining in the open state using the substituted-cysteine accessibility method, but not for A40C and A41C substitutions, which were not found to reside in the open pore. These results indicate that metal ions access the cysteine side chains through the open pore and that closure of the loop gate involves movement of the TM1/E1 region that results in local narrowing of the large aqueous connexin pore.Connexins are a large family of homologous integral membrane proteins that form gap junction (intercellular) channels that provide a direct communication pathway between neighboring cells. Gap junctions are formed by the docking of two hemichannels, which themselves can function in an undocked or unapposed configuration as ion channels that signal across the plasma membrane. Each hemichannel is composed of a hexamer of connexin subunits. The accepted membrane topology of a connexin subunit has four transmembrane domains (TM1–TM4)3 and two extracellular loops (E1 and E2) with amino and carboxyl termini located intracellularly (reviewed in Ref. 1).Connexin cell-cell channels and hemichannels are voltage dependent and two distinct voltage-sensitive gating mechanisms appear to be built into each hemichannel (2). One gating mechanism proposed to be located at the cytoplasmic end of the hemichannel is termed Vj gating, a name derived from studies of gap junction (cell-cell) channels describing sensitivity to transjunctional voltage, Vj, the voltage difference between coupled cells. The other gating mechanism is putatively ascribed to the extracellular end of the hemichannel and has been provisionally termed loop gating, because of the resemblance of gating transitions to those associated with initial opening of newly formed cell-cell channels (3, 4), a process that conceivably involves the extracellular loop domains.Loop gating is a robust gating mechanism that together with extracellular divalent cations, principally Ca2+, is largely responsible for keeping unapposed hemichannels closed at resting membrane potentials (5). Reports have suggested that extracellular divalent cations act as gating particles that enter and block the pore upon hyperpolarization (6, 7). An alternative model was recently proposed whereby extracellular divalent cations act as modulators of loop gating, an intrinsically voltage-sensitive mechanism, by stabilizing the closed conformation and shifting activation such that opening occurs at more positive potentials (8).Although loop gating plausibly involves conformational changes associated with the extracellular loops, molecular components underlying loop gating as well as the location of the putative gate remain unknown. A recent study using chick homologues to the mammalian connexins, Cx46 and Cx50, reported that two charged residues were important determinants of the different gating characteristics exhibited by these two connexin hemichannels (9). The implicated residues are at position 9 located in the NH2-terminal domain and position 43 in the E1 domain. In Cx46 hemichannels, Glu43 and other flanking residues at the TM1/E1 border (Ala39, Gly46, and Asp51) were shown to reside in the aqueous pore in the open state (10). Because it is likely that domains involved in permeation and gating of connexin channels are closely linked (reviewed in Ref. 11), we examined whether these residues are involved in structural rearrangements associated with loop gating. In this study, we engineered cysteines at residues in the TM1/E1 border in Cx50 hemichannels and used the ability of sulfhydryl groups to form disulfide bonds and/or to complex with heavy metal ions to report conformational changes that occur during gating.  相似文献   

19.
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP(3) elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.  相似文献   

20.
Intercellular communication (IC) is mediated by gap junctions (GJs) and hemichannels, which consist of proteins. This has been particularly well documented for the connexin (Cx) family. Initially, Cxs were thought to be the only proteins capable of GJ formation in vertebrates. About 10 years ago, however, a new GJ‐forming protein family related to invertebrate innexins (Inxs) was discovered in vertebrates, and named the pannexin (Panx) family. Panxs, which are structurally similar to Cxs, but evolutionarily distinct, have been shown to be co‐expressed with Cxs in vertebrates. Both protein families show distinct properties and have their own particular function. Identification of the mechanisms that control Panx channel gating is a major challenge for future work. In this review, we focus on the specific properties and role of Panxs in normal and pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号