首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In plant cells, phosphatidylcholine (PC) is a major glycerolipid of most membranes but practically lacking from the plastid internal membranes. In chloroplasts, PC is absent from the thylakoids and the inner envelope membrane. It is however the main component of the outer envelope membrane, where it exclusively distributes in the outer monolayer. This unique distribution is likely related with operational compartmentalization of plant lipid metabolism. In this review, we summarize the different mechanisms involved in homeostasis of PC in plant cells. The specific origin of chloroplast PC is examined and the involvement of the P4-ATPase family of phospholipid flippases (ALA) is considered with a special attention to the recently reported effect of the endoplasmic reticulum-localized ALA10 on modification of chloroplast PC desaturation. The different possible roles of chloroplast PC are then discussed and analyzed in consideration of plant physiology.  相似文献   

2.
Lipid synthesis and metabolism in the plastid envelope   总被引:7,自引:0,他引:7  
Plastid envelope membranes play a major role in the biosynthesis of glycerolipids. In addition, plastids are characterized by the occurrence of plastid-specific membrane glycolipids (galactolipids, a sulfolipid). Plant lipid metabolism therefore has unique features, when compared to that of other eukaryotic organisms, such as animals and yeast. However, the glycerolipid biosynthetic pathway in chloroplasts is almost identical to that found in cyanobacteria, and reflects the prokaryotic origin of the chloroplast. Fatty acids generated in the plastid stroma are substrates for a whole set of enzymes involved in the synthesis of polar lipids of plastid membranes such as galactolipids, the sulfolipid, the phosphatidylglycerol. In addition, fatty acids are exported outside the plastid where they are used for extraplastidial polar lipid synthesis (phosphatidylcholine, phosphatidylethanolamine, etc.). Various desaturation steps leading to the formation of polyunsaturated fatty acids occur in various cell compartments, especially in chloroplasts, using fatty acids esterified to polar lipids as substrates. Furthermore, plant glycerolipids can be metabolized by a series of very active envelope enzymes, such as the galactolipid:galactolipid galactosyltransferase and the acyl-galactolipid forming enzyme. The physiological significance of these enzymes is however largely unknown. One of the most active pathways involved in lipid metabolism and present in envelope membranes is the oxylipin pathway: polyunsaturated fatty acids that are released from polar lipids under various conditions (injury, pathogen attack) are converted to oxylipin. Thus, the plastid envelope membranes are also involved in the formation of signalling molecules.  相似文献   

3.
Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL) translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6 ± 1 min. We also show that: (a) intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b) envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c) Biogenic membrane ATP independent PC flipping activity is protein mediated and (d) the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents.  相似文献   

4.
Neutral lipids are stored in the cytosol in so-called lipid droplets. These are dynamic organelles with neutral lipids as the core surrounded by a monolayer of amphipathic lipids (phospholipids and cholesterol) and specific proteins (PAT proteins and proteins involved in the turnover of lipids and in the formation and trafficking of the droplets). Lipid droplets are formed at microsomal membranes as primordial droplets with a diameter of 0.1-0.4 microm and increase in size by fusion. In this article, we review the assembly and fusion of lipid droplets, and the processes involved in the secretion of triglycerides. Triglycerides are secreted from cells by two principally different processes. In the mammary gland, lipid droplets interact with specific regions of the plasma membrane and bud off with an envelope consisting of the membrane, to form milk globules. In the liver and intestine, very low-density lipoproteins (VLDL) and chylomicrons are secreted by using the secretory pathway of the cell. Finally, we briefly review the importance of lipid droplets in the development of insulin resistance and atherosclerosis.  相似文献   

5.
VPS13 proteins are proposed to function at contact sites between organelles as bridges for lipids to move directionally and in bulk between organellar membranes. VPS13s are anchored between membranes via interactions with receptors, including both peripheral and integral membrane proteins. Here we present the crystal structure of VPS13s adaptor binding domain (VAB) complexed with a Pro-X-Pro peptide recognition motif present in one such receptor, the integral membrane protein Mcp1p, and show biochemically that other Pro-X-Pro motifs bind the VAB in the same site. We further demonstrate that Mcp1p and another integral membrane protein that interacts directly with human VPS13A, XK, are scramblases. This finding supports an emerging paradigm of a partnership between bulk lipid transport proteins and scramblases. Scramblases can re-equilibrate lipids between membrane leaflets as lipids are removed from or inserted into the cytosolic leaflet of donor and acceptor organelles, respectively, in the course of protein-mediated transport.  相似文献   

6.
Lipid distribution and transport across cellular membranes   总被引:1,自引:0,他引:1  
In eukaryotic cells, the membranes of different intracellular organelles have different lipid composition, and various biomembranes show an asymmetric distribution of lipid types across the membrane bilayer. Membrane lipid organization reflects a dynamic equilibrium of lipids moving across the bilayer in both directions. In this review, we summarize data supporting the role of specific membrane proteins in catalyzing transbilayer lipid movement, thereby controlling and regulating the distribution of lipids over the leaflets of biomembranes.  相似文献   

7.
Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the major lipid components of photosynthetic membranes, and hence the most abundant lipids in the biosphere. They are essential for assembly and function of the photosynthetic apparatus. In Arabidopsis, the first step of galactolipid synthesis is catalyzed by MGDG synthase 1 (MGD1), which transfers a galactosyl residue from UDP‐galactose to diacylglycerol (DAG). MGD1 is a monotopic protein that is embedded in the inner envelope membrane of chloroplasts. Once produced, MGDG is transferred to the outer envelope membrane, where DGDG synthesis occurs, and to thylakoids. Here we present two crystal structures of MGD1: one unliganded and one complexed with UDP. MGD1 has a long and flexible region (approximately 50 amino acids) that is required for DAG binding. The structures reveal critical features of the MGD1 catalytic mechanism and its membrane binding mode, tested on biomimetic Langmuir monolayers, giving insights into chloroplast membrane biogenesis. The structural plasticity of MGD1, ensuring very rapid capture and utilization of DAG, and its interaction with anionic lipids, possibly driving the construction of lipoproteic clusters, are consistent with the role of this enzyme, not only in expansion of the inner envelope membrane, but also in supplying MGDG to the outer envelope and nascent thylakoid membranes.  相似文献   

8.
Lipid remodeling, defined herein as post-synthetic structural modifications of membrane lipids, play crucial roles in regulating the physicochemical properties of cellular membranes and hence their many functions. Processes affected by lipid remodeling include lipid metabolism, membrane repair, cellular homeostasis, fatty acid trafficking, cellular signaling and stress tolerance. Glycerolipids are the major structural components of cellular membranes and their composition can be adjusted by modifying their head groups, their acyl chain lengths and the number and position of double bonds. This review summarizes recent advances in our understanding of mechanisms of membrane lipid remodeling with emphasis on the lipases and acyltransferases involved in the modification of phosphatidylcholine and monogalactosyldiacylglycerol, the major membrane lipids of extraplastidic and photosynthetic membranes, respectively. We also discuss the role of triacylglycerol metabolism in membrane acyl chain remodeling. Finally, we discuss emerging data concerning the functional roles of glycerolipid remodeling in plant stress responses. Illustrating the molecular basis of lipid remodeling may lead to novel strategies for crop improvement and other biotechnological applications such as bioenergy production.  相似文献   

9.
Plant chloroplasts contain an intricate photosynthetic membrane system, the thylakoids, and are surrounded by two envelope membranes at which thylakoid lipids are assembled. The glycoglycerolipids mono- and digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol as well as phosphatidylglycerol, are present in thylakoid membranes, giving them a unique composition. Fatty acids are synthesized in the chloroplast and are either directly assembled into thylakoid lipids at the envelope membranes or exported to the ER (endoplasmic reticulum) for extraplastidic lipid assembly. A fraction of lipid precursors is reimported into the chloroplast for the synthesis of thylakoid lipids. Thus polar lipid assembly in plants requires tight co-ordination between the chloroplast and the ER and necessitates inter-organelle lipid trafficking. In the present paper, we discuss the current knowledge of the export of fatty acids from the chloroplast and the import of chloroplast lipid precursors assembled at the ER. Direct membrane contact sites between the ER and the chloroplast outer envelopes are discussed as possible conduits for lipid transfer.  相似文献   

10.
Miquel M  Dubacq JP 《Plant physiology》1992,100(1):472-481
When incubated with [1-14C]acetate and cofactors (ATP, Coenzyme A, sn-glycerol-3-phosphate, UDPgalactose, and NADH), intact chloroplasts synthesized fatty acids that were subsequently incorporated into most of the lipid classes. To study lipid synthesis at the chloroplast envelope membrane level, 14C-labeled pea (Pisum sativum) chloroplasts were subfractionated using a single flotation gradient. The different envelope membrane fractions were characterized by their density, lipid and polypeptide composition, and the localization of enzymic activities (UDPgalactose-1,2 diacylglycerol galactosyltransferase, Mg2+-dependent ATPase). They were identified as very pure outer membranes (light fraction) and strongly enriched inner membranes (heavy fraction). A fraction of intermediate density, which probably contained double membranes, was also isolated. Labeled glycerolipids recovered in the inner envelope membrane were phosphatidic acid, phosphatidyl-glycerol, 1,2 diacylglycerol, and monogalactosyldiacylglycerol. Their 14C-fatty acid composition indicated that a biosynthetic pathway similar to the prokaryotic pathway present in cyanobacteria occurred in the inner membrane. In the outer membrane, phosphatidylcholine was the most labeled glycerolipid. Phosphatidic acid, phosphatidylglycerol, 1,2 diacylglycerol, and monogalactosyldiacylglycerol were also labeled. The 14C-fatty acid composition of these lipids showed a higher proportion of oleate than palmitate. This labeling, different from that of the inner membrane, could result either from transacylation activities or from a biosynthetic pathway not yet described in pea and occurring partly in the outer chloroplast envelope membrane. This metabolism would work on an oleate-rich pool of fatty acids, possibly due to the export of oleate from chloroplast toward the extrachloroplastic medium. The respective roles of each membrane for chloroplast lipid synthesis are emphasized.  相似文献   

11.
Because the synthesis of monogalactosyldiacylglycerol (MGDG) is unique to plants, identified as an important marker of the plastid envelope, involved in a key step of plastid biogenesis and is the most abundant lipid on earth, MGDG synthase activity was extensively analysed at the biochemical and physiological levels. In the present paper, we present our current knowledge on the MGDG synthase's function, structure and topology in envelope membranes, and discuss possible roles in plant cell glycerolipid metabolism. The recent discovery of a multigenic family of MGDG synthases raised the possibility that multiple isoenzymes might carry out MGDG synthesis in various tissues and developmental stages.  相似文献   

12.
Cellular membranes differ in protein and lipid composition as well as in the protein–lipid ratio. Thus, progression of membranous organelles along traffic routes requires mechanisms to control bilayer lipid chemistry and their abundance relative to proteins. The recent structural and functional characterization of VPS13-family proteins has suggested a mechanism through which lipids can be transferred in bulk from one membrane to another at membrane contact sites, and thus independently of vesicular traffic. Here, we show that SHIP164 (UHRF1BP1L) shares structural and lipid transfer properties with these proteins and is localized on a subpopulation of vesicle clusters in the early endocytic pathway whose membrane cargo includes the cation-independent mannose-6-phosphate receptor (MPR). Loss of SHIP164 disrupts retrograde traffic of these organelles to the Golgi complex. Our findings raise the possibility that bulk transfer of lipids to endocytic membranes may play a role in their traffic.  相似文献   

13.
Biological membranes have unique and highly diverse compositions of their lipid constituents. At present, we have only partial understanding of how membrane lipids and lipid domains regulate the structural integrity and functionality of cellular organelles, maintain the unique molecular composition of each organellar membrane by orchestrating the intracellular trafficking of membrane-bound proteins and lipids, and control the steady-state levels of numerous signaling molecules generated in biological membranes. Similar to other organellar membranes, a single lipid bilayer enclosing the peroxisome, an organelle known for its essential role in lipid metabolism, has a unique lipid composition and organizes some of its lipid and protein components into distinctive assemblies. This review highlights recent advances in our knowledge of how lipids and lipid domains of the peroxisomal membrane regulate the processes of peroxisome assembly and maintenance in the yeast Yarrowia lipolytica. We critically evaluate the molecular mechanisms through which lipid constituents of the peroxisomal membrane control these multistep processes and outline directions for future research in this field.  相似文献   

14.
In the previous paper (Block, M. A., Dorne, A.-J., Joyard, J., and Douce, R. (1983) J. Biol. Chem. 258, 13273-13280), we have described a method for the separation of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. The two envelope membranes have a different weight ratio of acyl lipid to protein (2.5-3 for the outer envelope membrane and 0.8-1 for the inner envelope membrane). The two membranes also differ in their polar lipid composition. However, in order to prevent the functioning of the galactolipid:galactolipid galactosyltransferase during the course of envelope membrane separation, we have analyzed the polar lipid composition of each envelope membrane after thermolysin treatment of the intact chloroplasts. The outer envelope membrane is characterized by the presence of high amounts of phosphatidylcholine and digalactosyldiacylglycerol whereas the inner envelope membrane has a polar lipid composition almost identical with that of the thykaloids. No phosphatidylethanolamine or cardiolipin could be detected in either envelope membranes, thus demonstrating that the envelope membranes, and especially the outer membrane, do not resemble extrachloroplastic membranes. No striking differences were found in the fatty acid composition of the polar lipids from either the outer or the inner envelope membrane. The two envelope membranes also differ in their carotenoid composition. Among the different enzymatic activities associated with the chloroplast envelope, we have shown that the Mg2+-dependent ATPase, the UDP-Gal:diacylglycerol galactosyltransferase, the phosphatidic acid phosphatase, and the acyl-CoA thioesterase are associated with the inner envelope from spinach chloroplasts whereas the acyl-CoA synthetase is located on the outer envelope membrane.  相似文献   

15.
Lipid compositions vary greatly among organelles, and specific sorting mechanisms are required to establish and maintain these distinct compositions. In this review, we discuss how the biophysical properties of the membrane bilayer and the chemistry of individual lipid molecules play a role in the intracellular trafficking of the lipids themselves, as well as influencing the trafficking of transmembrane proteins. The large diversity of lipid head groups and acyl chains lead to a variety of weak interactions, such as ionic and hydrogen bonding at the lipid/water interfacial region, hydrophobic interactions, and van-der-Waals interactions based on packing density. In simple model bilayers, these weak interactions can lead to large-scale phase separations, but in more complex mixtures, which mimic cell membranes, such phase separations are not observed. Nevertheless, there is growing evidence that domains (i.e., localized regions with non-random lipid compositions) exist in biological membranes, and it is likely that the formation of these domains are based on interactions similar to those that lead to phase separations in model systems. Sorting of lipids appears to be based in part on the inclusion or exclusion of certain types of lipids in vesicles or tubules as they bud from membrane organelles.  相似文献   

16.
The synthesis of galactoglycerolipids, which are prevalent in photosynthetic membranes, involves enzymes at the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Genetic analysis of trigalactosyldiacylglycerol (TGD) proteins in Arabidopsis has demonstrated their role in polar lipid transfer from the ER to the chloroplast. The TGD1, 2, and 3 proteins resemble components of a bacterial-type ATP-binding cassette (ABC) transporter, with TGD1 representing the permease, TGD2 the substrate binding protein, and TGD3 the ATPase. However, the function of the TGD4 protein in this process is less clear and its location in plant cells remains to be firmly determined. The predicted C-terminal β-barrel structure of TGD4 is weakly similar to proteins of the outer cell membrane of Gram-negative bacteria. Here, we show that, like TGD2, the TGD4 protein when fused to DsRED specifically binds phosphatidic acid (PtdOH). As previously shown for tgd1 mutants, tgd4 mutants have elevated PtdOH content, probably in extraplastidic membranes. Using highly purified and specific antibodies to probe different cell fractions, we demonstrated that the TGD4 protein was present in the outer envelope membrane of chloroplasts, where it appeared to be deeply buried within the membrane except for the N-terminus, which was found to be exposed to the cytosol. It is proposed that TGD4 is either directly involved in the transfer of polar lipids, possibly PtdOH, from the ER to the outer chloroplast envelope membrane or in the transfer of PtdOH through the outer envelope membrane.  相似文献   

17.
Lipid rafts are microdomains present in the membrane of eukaryotic organisms and bacterial pathogens. They are characterized by having tightly packed lipids and a subset of specific proteins. Lipid rafts are associated with a variety of important biological processes including signaling and lateral sorting of proteins. To determine whether lipid rafts exist in the inner membrane of Borrelia burgdorferi, we separated the inner and outer membranes and analyzed the lipid constituents present in each membrane fraction. We found that both the inner and outer membranes have cholesterol and cholesterol glycolipids. Fluorescence anisotropy and FRET showed that lipids from both membranes can form rafts but have different abilities to do so. The analysis of the biochemically defined proteome of lipid rafts from the inner membrane revealed a diverse set of proteins, different from those associated with the outer membrane, with functions in protein trafficking, chemotaxis and signaling.  相似文献   

18.
Intracellular organelles, including endosomes, show differences not only in protein but also in lipid composition. It is becoming clear from the work of many laboratories that the mechanisms necessary to achieve such lipid segregation can operate at very different levels, including the membrane biophysical properties, the interactions with other lipids and proteins, and the turnover rates or distribution of metabolic enzymes. In turn, lipids can directly influence the organelle membrane properties by changing biophysical parameters and by recruiting partner effector proteins involved in protein sorting and membrane dynamics. In this review, we will discuss how lipids are sorted in endosomal membranes and how they impact on endosome functions.It is now well established that membranes along the endocytic and secretory pathway show differences not only in protein but also in lipid composition. For example, lipid gradients exist along the biosynthetic pathway with increasing density of cholesterol and sphingolipids from the endoplasmic reticulum (ER) to the plasma membrane (Maxfield and van Meer 2010). Also, phosphoinositides show distributions restricted to relatively well-characterized membrane territories (Di Paolo and De Camilli 2006). Given the facts that lipids are small and contain little structural information when compared with proteins, that they can diffuse rapidly within membranes, and that membranes are connected by membrane flow during transport, it is not always obvious how different lipids are segregated from each other.In this article, we will evoke different mechanisms that may contribute to the heterogeneous lipid composition of endocytic membranes, including physicochemical properties of the membrane, interactions with other proteins or lipids, and synthesis or degradation. In addition, it has also become apparent that peripheral membrane proteins often interact with membranes via diverse lipid-binding motifs, and thus that lipids directly contribute to the distribution of many peripheral membrane proteins. For example, phosphatidylinositol 3-phosphate (PI(3)P) is detected predominantly on early endosomes, where most characterized PI(3)P-binding proteins encoded by the human genome are found as well (Raiborg et al. 2013). We will also discuss how some lipids may regulate protein sorting and membrane transport within the endosomal system.  相似文献   

19.
We have analyzed the fate of several integral membrane proteins of the nuclear envelope during mitosis in cultured mammalian cells to determine whether nuclear membrane proteins are present in a vesicle population distinct from bulk ER membranes after mitotic nuclear envelope disassembly or are dispersed throughout the ER. Using immunofluorescence staining and confocal microscopy, we compared the localization of two inner nuclear membrane proteins (laminaassociated polypeptides 1 and 2 [LAP1 and LAP2]) and a nuclear pore membrane protein (gp210) to the distribution of bulk ER membranes, which was determined with lipid dyes (DiOC6 and R6) and polyclonal antibodies. We found that at the resolution of this technique, the three nuclear envelope markers become completely dispersed throughout ER membranes during mitosis. In agreement with these results, we detected LAP1 in most membranes containing ER markers by immunogold electron microscopy of metaphase cells. Together, these findings indicate that nuclear membranes lose their identity as a subcompartment of the ER during mitosis. We found that nuclear lamins begin to reassemble around chromosomes at the end of mitosis at the same time as LAP1 and LAP2 and propose that reassembly of the nuclear envelope at the end of mitosis involves sorting of integral membrane proteins to chromosome surfaces by binding interactions with lamins and chromatin.  相似文献   

20.
Phospholipid flippases, are proteins able to translocate phospholipids from one side of a membrane to the other even against a gradient of concentration and thereby able to establish, or annihilate, a transmembrane asymmetrical lipid distribution. This lipid shuttling forms new membrane structures, in particular vesicles, which are associated with diverse physiological functions in eukaryotic cells such as lipid and protein traffic via vesicles between organelles or towards the plasma membrane, and the stimulation of fluid phase endocytosis. The transfer of lipids is also responsible for the triggering of membrane associated events such as blood coagulation, the recognition and elimination of apoptotic or aged cells, and the regulation of phosphatidylserine dependent enzymes. Exposure of new lipid-head groups on a membrane leaflet by rapid flip-flop can serve as a specific signal and, upon recognition, can be the cause of physiological modifications. Membrane bending is one of the mechanisms by which such activities can be triggered. We show that the lateral membrane tension is an important physical factor for the regulation of the size of the membrane invaginations. Finally, we suggest in this review that this diversity of functions benefits from the diversity of the lipids existing in a cell and the ability of proteins to recognize specific messenger molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号