首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATPase complexes were reconstituted from homologous and heterologous combinations of alpha, beta, and gamma subunits of coupling factor ATPase TF1 of thermophilic bacterium PS3 and EF1 of Escherichia coli. TF1 and alpha beta gamma complex reconstituted from TF1 subunits were thermostable and activated by methanol, sodium dodecyl sulfate and anions and they were halophilic, whereas EF1 and its three-subunit complex did not show these properties. The hybrid ATPase alpha T beta T gamma E (complex of the alpha and beta subunits of TF1 and the gamma subunit of EF1) showed closely similar properties to TF1 except for thermostability, while alpha E beta E gamma T (alpha and beta from EF1 and gamma from TF1) had similar properties to EF1. These results suggest that alpha and/or beta is required for the properties of F1. The complex alpha E beta T gamma E showed similar properties to EF1 except for its optimum pH: this complex had a broad pH optimum at about pH 7, whereas EF1 had an optimum at pH 8.5. No hybrid complexes were thermostable, suggesting that all three subunits of TF1 are required for heat stability. These hybrids showed higher halophilicity than EF1, although they were less halophilic than TF1. The hybrid enzymes studied here are the first thermophilic-mesophilic hybrid enzymes obtained.  相似文献   

2.
The antigenic determinants of mAbs against subunit c of the Escherichia coli ATP synthase were mapped by ELISA using overlapping synthetic heptapeptides. All epitopes recognized are located in the hydrophilic loop region and are as follows: 31-LGGKFLE-37, 35-FLEGAAR-41, 36-LEGAAR-41 and 36-LEGAARQ-42. Binding studies with membrane vesicles of different orientation revealed that all mAbs bind to everted membrane vesicles independent of the presence or absence of the F1 part. Although the hydrophilic region of subunit c and particularly the highly conserved residues A40, R41, Q42 and P43 are known to interact with subunits gamma and epsilon of the F1 part, the mAb molecules have no effect on the function of F0. Furthermore, it could be demonstrated that the F1 part and the mAb molecule(s) are bound simultaneously to the F0 complex suggesting that not all c subunits are involved in F1 interaction. From the results obtained, it can be concluded that this interaction is fixed, which means that subunits gamma and epsilon do not switch between the c subunits during catalysis and furthermore, a complete rotation of the subunit c oligomer modified with mAb(s) along the stator of the F1F0 complex, proposed to be composed of at least subunits b and delta, seems to be unlikely.  相似文献   

3.
F1-type ATPase is the central enzyme for ATP synthesis in most organisms. Because of the extreme reconstitutability of thermophilic ATPase (TF1) and diversity of the minor subunits of F1 type ATPase, an operon coding for TF1 was isolated from DNA of thermophilic bacterium PS3, and its terminal region containing the epsilon subunit (TF1 epsilon) and terminator was sequenced. The primary structure of the epsilon subunit (Mr = 14 333) was deduced from the nucleotide sequence (396 base-pairs) and amino-acid sequence of its amino terminus. The conclusions drawn from the results are as follows. Homologies: TF1 epsilon shows only 6% homology with the epsilon subunits of eight species reported, but 50% homology with Escherichia coli epsilon and 41% with chloroplast. The residues having a tendency to form reverse turns (Gly, Pro and Tyr) and His are relatively well conserved. Unlike some F1 epsilon types TF1 epsilon has no ATPase inhibitor activity and is not homologous with ATPase inhibitor. TF1 epsilon is essential to connect F1 to F0, like the b subunit, and is weakly homologous with the b subunit of F0F1. The cause of 3 beta: 1 epsilon subunit stoichiometry: The ribosome binding sequence of TF1 epsilon is TAGGN7, which is incomplete compared with that of TF1 beta. The codon usage for TF1 epsilon is similar to that for TF1 epsilon. The cause of stability of TF1 epsilon and its gene: There are 18 ionic groups at the putative reverse turns and the N- and C-termini of TF1 epsilon, but only 10 ionic groups in the corresponding sites of E. coli epsilon subunit. These ionic groups enhance the external polarity of TF1 epsilon and may intensify subunit-subunit interaction. There is a terminator at the 3' end of the TF1 epsilon gene, which is stabilized by a long (13 base-pairs) stem.  相似文献   

4.
The epsilon subunit of F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) has been shown to bind ATP. The precise nature of the regulatory role of ATP binding to the epsilon subunit remains to be determined. To address this question, 11 mutants of the epsilon subunit were prepared, in which one of the basic or acidic residues was substituted with alanine. ATP binding to these mutants was tested by gel-filtration chromatography. Among them, four mutants that showed no ATP binding were selected and reconstituted with the alpha(3)beta(3)gamma complex of TF(1). The ATPase activity of the resulting alpha(3)beta(3)gammaepsilon complexes was measured, and the extent of inhibition by the mutant epsilon subunits was compared in each case. With one exception, weaker binding of ATP correlated with greater inhibition of ATPase activity. These results clearly indicate that ATP binding to the epsilon subunit plays a regulatory role and that ATP binding may stabilize the ATPase-active form of TF(1) by fixing the epsilon subunit into the folded conformation.  相似文献   

5.
F1-ATPase, a soluble part of the F0F1-ATP synthase, has subunit structure alpha3beta3gammadeltaepsilon in which nucleotide-binding sites are located in the alpha and beta subunits and, as believed, in none of the other subunits. However, we report here that the isolated epsilon subunit of F1-ATPase from thermophilic Bacillus strain PS3 can bind ATP. The binding was directly demonstrated by isolating the epsilon subunit-ATP complex with gel filtration chromatography. The binding was not dependent on Mg2+ but was highly specific for ATP; however, ADP, GTP, UTP, and CTP failed to bind. The epsilon subunit lacking the C-terminal helical hairpin was unable to bind ATP. Although ATP binding to the isolated epsilon subunits from other organisms has not been detected under the same conditions, a possibility emerges that the epsilon subunit acts as a built in cellular ATP level sensor of F0F1-ATP synthase.  相似文献   

6.
The accessibility of the three F0 subunits a, b and c from the Escherichia coli K12 ATP synthase to various proteases was studied in F1-depleted inverted membrane vesicles. Subunit b was very sensitive to all applied proteases. Chymotrypsin produced a defined fragment of mol. wt. 15,000 which remained tightly bound to the membrane. The cleavage site was located at the C-terminal region of subunit b. Larger amounts of proteases were necessary to attack subunit a (mol. wt. 30,000). There was no detectable cleavage of subunit c. It is suggested that the major hydrophilic part of subunit b extends from the membrane into the cytoplasm and is in contact with the F1 sector. The F1 sector was found to afford some protection against proteolysis of the b subunit in vitro and in vivo. Protease digestion had no influence on the electro-impelled H+ conduction via F0 but ATP-dependent H+ translocation could not be reconstituted upon binding of F1. A possible role for subunit b as a linker between catalytic events on the F1 component and the proton pathway across the membrane is discussed.  相似文献   

7.
The subunit arrangement of the F0 sector of the Escherichia coli ATP synthase is examined using hydrophilic and hydrophobic (cleavable) cross-linking reagents and the water-soluble labeling reagent [35S] diazoniumbenzenesulfonate ( [35S]DABS). Cross-linking is performed on purified ATP synthase and inverted minicell membranes. ATP synthase incorporated into liposomes is labeled with [35S]DABS. Three cross-linked products involving the F0 subunits (a, b, and c) are observed with the purified ATP synthase in solution: a-b, b2, and c2 dimers. A cross-link between the F0 and F1 is detected and occurs between the a and beta subunits. A cross-linker independent association between the b and beta subunits is also evident, suggesting that the two subunits are close enough to form a disulfide bridge. A cross-linking reagent stable to reducing agents produces a b-beta dimer, as detected by immunoblotting with anti-beta serum. The c subunit does not cross-link with any F1 polypeptide. Minicell membranes containing ATP synthase polypeptides radioactively labeled in vivo similarly show b2 and c2 dimers after cross-linking. [35S]DABS labels the a and b, but not c, subunits, showing that the a and b, but not c, subunits possess hydrophilic domains. Thus, certain domains of subunits a and b extend from the membrane and are in close proximity to one another and the F1 catalytic subunit beta.  相似文献   

8.
In Escherichia coli, a parallel homodimer of identical b subunits constitutes the peripheral stalk of F(1)F(0) ATP synthase. Although the two b subunits have long been viewed as a single functional unit, the asymmetric nature of the enzyme complex suggested that the functional roles of each b subunit should not necessarily be considered equivalent. Previous mutagenesis studies of the peripheral stalk suffered from the fact that mutations in the uncF(b) gene affected both of the b subunits. We developed a system to express and study F(1)F(0) ATP synthase complexes containing two different b subunits. Two mutations already known to inactivate the F(1)F(0) ATP synthase complex have been studied using this experimental system. An evolutionarily conserved arginine, b(Arg-36), was known to be crucial for F(1)F(0) ATP synthase function, and the last four C-terminal amino acids had been shown to be important for enzyme assembly. Experiments expressing one of the mutants with a wild type b subunit demonstrated the presence of heterodimers in F(1)F(0) ATP synthase complexes. Activity assays suggested that the heterodimeric F(1)F(0) complexes were functional. When the two defective b subunits were expressed together and in the absence of any wild type b subunit, an active F(1)F(0) ATP synthase complex was assembled. This mutual complementation between fully defective b subunits indicated that each of the two b subunits makes a unique contribution to the functions of the peripheral stalk, such that one mutant b subunit is making up for what the other is lacking.  相似文献   

9.
Coupling of proton flow and rotation in the F(0) motor of ATP synthase was investigated using the thermophilic Bacillus PS3 enzyme expressed functionally in Escherichia coli cells. Cysteine residues introduced into the N-terminal regions of subunits b and c of ATP synthase (bL2C/cS2C) were readily oxidized by treating the expressing cells with CuCl(2) to form predominantly a b-c cross-link with b-b and c-c cross-links being minor products. The oxidized ATP synthases, either in the inverted membrane vesicles or in the reconstituted proteoliposomes, showed drastically decreased proton pumping and ATPase activities compared with the reduced ones. Also, the oxidized F(0), either in the F(1)-stripped inverted vesicles or in the reconstituted F(0)-proteoliposomes, hardly mediated passive proton translocation through F(0). Careful analysis using single mutants (bL2C or cS2C) as controls indicated that the b-c cross-link was responsible for these defects. Thus, rotation of the c-oligomer ring relative to subunit b is obligatory for proton translocation; if there is no rotation of the c-ring there is no proton flow through F(0).  相似文献   

10.
F(1)F(0) ATP synthases are known to synthesize ATP by rotary catalysis in the F(1) sector of the enzyme. Proton translocation through the F(0) membrane sector is now proposed to drive rotation of an oligomer of c subunits, which in turn drives rotation of subunit gamma in F(1). The primary emphasis of this review will be on recent work from our laboratory on the structural organization of F(0), which proves to be consistent with the concept of a c(12) oligomeric rotor. From the NMR structure of subunit c and cross-linking studies, we can now suggest a detailed model for the organization of the c(12) oligomer in F(0) and some of the transmembrane interactions with subunits a and b. The structural model indicates that the H(+)-carrying carboxyl of subunit c is located between subunits of the c(12) oligomer and that two c subunits pack in a front-to-back manner to form the proton (cation) binding site. The proton carrying Asp61 side chain is occluded between subunits and access to it, for protonation and deprotonation via alternate entrance and exit half-channels, requires a swiveled opening of the packed c subunits and stepwise association with different transmembrane helices of subunit a. We suggest how some of the structural information can be incorporated into models of rotary movement of the c(12) oligomer during coupled synthesis of ATP in the F(1) portion of the molecule.  相似文献   

11.
The a subunit, a membrane protein from the E. coli F1F0 ATP synthase has been examined by Fourier analysis of hydrophobicity and of amino-acid residue variation. The amino-acid sequences of homologous subunits from Vibrio alginolyticus, Saccharomyces cerevisiae, Neurospora crassa, Aspergillus nidulans, Schizosaccharomyces pombe and Candida parapsilosis were used in the variability analysis. By Fourier analysis of sequence variation, two transmembrane helices are predicted to have one face in contact with membrane lipids, while the other spans are predicted to be more shielded from the lipids by protein. By Fourier analysis of hydrophobicity, six amphipathic alpha-helical segments are predicted in extra-membrane regions, including the region from Glu-196 to Asn-214. Fourier analysis of sequence variation in the b- and the c-subunits of the Escherichia coli F1F0 ATP synthase indicates that the single transmembrane span of the b-subunit and the C-terminal span of the c subunit each have a face in contact with membrane lipids. On the basis of this analysis topographical models for the a- and c-subunits and for the F0 complex are proposed.  相似文献   

12.
ATP synthase consists of two portions, F(1) and F(o), connected by two stalks: a central rotor stalk containing gamma and epsilon subunits and a peripheral, second stalk formed by delta and two copies of F(o)b subunits. The second stalk is expected to keep the stator subunits from spinning along with the rotor. We isolated a TF(1)-b'(2) complex (alpha(3)beta(3)gammadeltaepsilonb'(2)) of a thermophilic Bacillus PS3, in which b' was a truncated cytoplasmic fragment of F(o)b subunit, and introduced a cysteine at its N terminus (bc'). Association of b'(2) or bc'(2) with TF(1) did not have significant effect on ATPase activity. A disulfide bond between the introduced cysteine of bc' and cysteine 109 of gamma subunit was readily formed, and this cross-link caused inactivation of ATPase. This implies that F(o)b subunit bound to stator subunits of F(1) with enough strength to resist rotation of gamma subunit and to prevent catalysis. Contrary to this apparent tight binding, some detergents such as lauryldodecylamine oxide tend to cause release of b'(2) from TF(1).  相似文献   

13.
F1-ATPase is the major enzyme for ATP synthesis in mitochondria, chloroplasts, and bacterial plasma membranes. F1-ATPase obtained from thermophilic bacterium PS3 (TF1) is the only ATPase which can be reconstituted from its primary structure. Its beta subunit constitutes the catalytic site, and is capable of forming hybrid F1's with E. coli alpha and gamma subunits. Since the stability of TF1 resides in its primary structure, we cloned a gene coding for TF1, and the primary structure of the beta subunit was deduced from the nucleotide sequence of the gene to compare the sequence with those of beta's of three major categories of F1's; prokaryotic membranes, chloroplasts, and mitochondria. The following results were obtained. Homology: The primary structure of the TF1 beta subunit (473 residues, Mr = 51,995.6) showed 89.3% homology with 270 residues which are identical in the beta subunits from human mitochondria, spinach chloroplasts, and E. coli. It contained regions homologous to several nucleotide-binding proteins. Secondary structure: The deduced alpha-helical (30.1%) and beta-sheet (22.3%) contents were consistent with those determined from the circular dichroism spectra. Residues forming reverse turns (Gly and Pro) were highly conserved among the F1 beta subunits. Substituted residues and stability of TF1: We compared the amino acid sequence of the TF1 beta subunit with those of the other F1 beta subunits mentioned above. The observed substitutions in the thermophilic subunit increased its propensities to form secondary structures, and its external polarity to form tertiary structure. Codon usage: The codon usage of the TF1 beta gene was found to be unique. The changes in codons that achieved these amino acid substitutions were much larger than those caused by minimal mutations, and the third letters of the optimal codons were either guanine or cytosine, except in codons for Gln, Lys, and Glu.  相似文献   

14.
Three F0 subunits and the F1 subunit beta of the ATP synthase from Neurospora crassa were labeled with the lipophilic photoactivatable reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). In the proteolipid subunit which was the most heavily labeled polypeptide labeling was confined to five residues at the NH2-terminus and five residues at the C-terminus of the protein. Labeling occurred at similar positions compared with the homologous protein (subunit c) in the ATP synthase from Escherichia coli, indicating a similar structure of the proteolipid subunits in their respective organisms. The inhibitors oligomycin and dicyclohexylcarbodiimide did not change the pattern of accessible surface residues in the proteolipid, suggesting that neither inhibitor induces gross conformational changes. However, in the presence of oligomycin, the extent of labeling in some residues was reduced. Apparently, these residues provide part of the binding site for the inhibitor. After reaction with dicyclohexylcarbodiimide an additional labeled amino acid was found at position 65 corresponding to the invariant carbodiimide-binding glutamic acid. These results and previous observations indicate that the carboxyl side chain of Glu-65 is located at the protein-lipid interphase. The idea is discussed that proton translocation occurs at the interphase between different types if F0 subunits. Dicyclohexylcarbodiimide or oligomycin might disturb this essential interaction between the F0 subunits.  相似文献   

15.
A convenient and reliable method to measure passive H+-translocating activity (H+ conductivity) was developed; vesicles reconstituted from the membrane moiety (F0) of H+-ATPase (F0 . F1) and soybean phospholipids were loaded with KCl by a freeze-thaw-sonication procedure and the rate of H+ uptake caused by the K+ diffusion potential upon addition of valinomycin was followed with a pH meter. Of the methods tested, a dialysis method using cholate plus deoxycholate gave the best results for reconstitution. Using this method, H+ conductivity of the membrane moiety of H+-ATPase from a thermophilic bacterium PS3 (TF0) was analyzed. Dependence of H+ conductivity of TF0 on H+ concentration fitted a Michaelis-Menten equation showing a Vmax of 31.3 microgram ion/min . mg of TF0 and a Km of 0.095 microgram ion/liter. Upon modification of a tyrosyl residue of TF0 with iodine, the Km value shifted to 0.71 microgram ion/liter, while the Vmax remained constant. These results were interpreted as indicating that a single tyrosyl residue in N,N'-dicyclohexylcarbodiimide-binding proteolipid of TF0 plays an important role as an H+ donor in the the rate-limiting step of H+ permeation through TF0. TF1, the catalytic moiety of H+-ATPase from the thermophilic bacterium PS3, blocked H+ conduction through TF0. A 1:1 stoichiometry of TF1 and TF0 was found in ATP-dependent membrane potential generation as well as H+ conduction.  相似文献   

16.
To understand the regulatory function of the gamma and epsilon subunits of chloroplast ATP synthase in the membrane integrated complex, we constructed a chimeric FoF1 complex of thermophilic bacteria. When a part of the chloroplast F1 gamma subunit was introduced into the bacterial FoF1 complex, the inverted membrane vesicles with this chimeric FoF1 did not exhibit the redox sensitive ATP hydrolysis activity, which is a common property of the chloroplast ATP synthase. However, when the whole part or the C-terminal alpha-helices region of the epsilon subunit was substituted with the corresponding region from CF1-epsilon together with the mutation of gamma, the redox regulation property emerged. In contrast, ATP synthesis activity did not become redox sensitive even if both the regulatory region of CF1-gamma and the entire epsilon subunit from CF1 were introduced. These results provide important features for the regulation of FoF1 by these subunits: (1) the interaction between gamma and epsilon is important for the redox regulation of FoF1 complex by the gamma subunit, and (2) a certain structural matching between these regulatory subunits and the catalytic core of the enzyme must be required to confer the complete redox regulation mechanism to the bacterial FoF1. In addition, a structural requirement for the redox regulation of ATP hydrolysis activity might be different from that for the ATP synthesis activity.  相似文献   

17.
For functional characterization, we isolated the F1FO-ATP synthase of the thermophilic cyanobacterium Thermosynechococcus elongatus. Because of the high content of phycobilisomes, a combination of dye-ligand chromatography and anion exchange chromatography was necessary to yield highly pure ATP synthase. All nine single F1FO subunits were identified by mass spectrometry. Western blotting revealed the SDS stable oligomer of subunits c in T. elongatus. In contrast to the mass archived in the database (10,141 Da), MALDI-TOF-MS revealed a mass of the subunit c monomer of only 8238 Da. A notable feature of the ATP synthase was its ability to synthesize ATP in a wide temperature range and its stability against chaotropic reagents. After reconstitution of F1FO into liposomes, ATP synthesis energized by an applied electrochemical proton gradient demonstrated functional integrity. The highest ATP synthesis rate was determined at the natural growth temperature of 55 degrees C, but even at 95 degrees C ATP production occurred. In contrast to other prokaryotic and eukaryotic ATP synthases which can be disassembled with Coomassie dye into the membrane integral and the hydrophilic part, the F1FO-ATP synthase possessed a particular stability. Also with the chaotropic reagents sodium bromide and guanidine thiocyanate, significantly harsher conditions were required for disassembly of the thermophilic ATP synthase.  相似文献   

18.
Stable membrane proteins and lipids are convenient to study biomembranes. Two stable proton translocating proteins were purified and reconstituted into vesicles capable of proton translocation. One was a thermostable ATPase (TF0-F1) of thermophilic bacterium PS3 and the other was rhodopsin of Halobacterium halobium. TF0-F1 was composed of a proton pump moiety (TF1) and a proton channel moiety (TF0). TF1 was the first membrane ATPase which was crystallized and reconstituted from its five polypeptides. Like TF0 and TF1, the rhodopsin in purple membrane was highly stable against dissociating agents, acids and alkali. Phospholipids of these biomembranes were also stable and contained no unsaturated fatty acyl groups. The molecular species of the phospholipids of PS3 were determined by mass chromatography. Measurements were made of the difference in electrochemical potential of protons (deltamicronH+) across the membrane of the reconstituted vesicles. The deltamicronH+ attained was 312 mV in TF0-F1 vesciles and was 230 mV in the rhodopsin vesicles. To conclude that electron transport components are not necessary for ATP synthesis in energy yielding biomembranes, two experiments were performed: The ATP synthesis was observed i) on acid-base treatment of TF0-F1 vesicles, and ii) on illumination of the rhodopsin-TF0-F1 vesicles.  相似文献   

19.
ATP synthase catalyses the formation of ATP from ADP and P(i) and is powered by the diffusion of protons throughout membranes down the proton electrochemical gradient. The protein consists of a water-soluble F(1) and a transmembrane F(0) proton transporter part. It was previously shown that the ring of membrane subunits rotates past a fixed subunit during catalytic cycle of the enzyme. However, many parameters of this movement are still unknown. In the present study the mutual protein movement in the membrane part of F(0)F(1)-ATP syntase has been analysed within the framework of rigid body mechanics. On the base of available experimental data it was shown that electrostatic interaction of two charged amino acids residues is able to supply quite enough energy for the rotation. The initial torque, which caused the rotation, was estimated as 3.7 pN nm and for this pattern the angular movement of c subunits complex could not physically have a period less than 10(-9)s. If membrane viscosity and elastic resistance were taken into account then the time of a whole turnover could rise up to 6.3 x 10(-3)s. It is remarkable that rotation will take place only under condition when the elasticity (Young's) module of the central stalk (gamma subunit and other minor subunits) is less than 5.0 x 10(7)N/m(2). Thus, for generally accepted structural parameters of ATP synthase, two-charge electrostatic interaction model does not permit rotation of the rotor if elastic properties of the central stalk are tougher than mentioned above. In order to explain the rotation under that condition one should either suppose a shorter distance between subunit a and c subunits complex or assume interaction of more than two charged amino acids residues.  相似文献   

20.
Subunit h, a 92-residue-long, hydrophilic, acidic protein, is a component of the yeast mitochondrial F1Fo ATP synthase. This subunit, homologous to the mammalian factor F6, is essential for the correct assembly and/or functioning of this enzyme since yeast cells lacking it are not able to grow on nonfermentable carbon sources. Chemical cross-links between subunit h and subunit 4 have previously been shown, suggesting that subunit h is a component of the peripheral stalk of the F1Fo ATP synthase. The construction of cysteine-containing subunit h mutants and the use of bismaleimide reagents provided insights into its environment. Cross-links were obtained between subunit h and subunits alpha, f, d, and 4. These results and secondary structure predictions allowed us to build a structural model and to propose that this subunit occupies a central place in the peripheral stalk between the F1 sector and the membrane. In addition, subunit h was found to have a stoichiometry of one in the F1Fo ATP synthase complex and to be in close proximity to another subunit h belonging to another F1Fo ATP synthase in the inner mitochondrial membrane. Finally, functional characterization of mitochondria from mutants expressing different C-terminal shortened subunit h suggested that its C-terminal part is not essential for the assembly of a functional F1Fo ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号