首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Differentiation of normal glioblasts was induced by glia maturation factor (GMF), and the structural change in the oligosaccharide chains of the plasmalemmal glycoproteins was investigated. After the glycopeptides obtained by trypsin treatment of the intact cells had been digested with pronase, the resulting glycopeptides were separated into 4 fractions by gel filtration. The first 2 fractions were found to contain mainly N-glycosidically linked glycopeptides, and the last 2, O-linked oligosaccharides. There were a variety of N-linked oligosaccharides whose apparent molecular weights were greater than that of isomaltoheptaose. As compared to those, O-linked oligosaccharides were fewer in type and lower in molecular weight. The N-linked oligosaccharides corresponding to isomaltohepta- decaose and larger saccharide chains augmented in differentiated glioblasts, whereas the N-linked oligosaccharides smaller than isomaltoheptade- caose decreased. The turnover rate of the high molecular weight oligosaccharides was faster than that of other membrane oligosaccharides, and was accelerated by GMF treatment. The content of an O-linked oligosaccharide fraction increased after GMF treatment.  相似文献   

2.
The structure and synthesis of the saccharide chains of Golgimembrane glycoproteins in suspension-cultured rice (Oryza sativaL.) cells were studied. Peanut lectin (PNA) and Ulex europaeuslectin-I (UEA-I) have high affinity for typical O-linked saccharidechains and both recognized the saccharide chains of rice Golgimembrane glycoproteins. These glycoproteins were also sensitiveto alkali and to O-glycanase. These results indicate that theGolgi membrane glycoproteins have O-linked saccharide chains.Brefeldin A, a specific inhibitor of Golgi-mediated secretion,induced morphological changes in Golgi complexes and preventedthe synthesis of the saccharide chains of the membrane glycoproteinsthat could be recognized by PNA and UEA-I. These glycoproteinswere typically localized in all compartments of the Golgi complex.Monensin can arrest the transport of secretory proteins frommedial to trans Golgi compartments but did not affect the formationand localization of the Golgi membrane glycoproteins. Tunicamycin,an inhibitor of the synthesis of N-linked saccharide chains,did not inhibit the synthesis of the saccharide chains of theseGolgi membrane glycoproteins. These results strongly suggestthat the synthesis of O-linked saccharide chains of Golgi membraneglycoproteins is initiated in the cis Golgi compartment. (Received September 24, 1992; Accepted June 4, 1993)  相似文献   

3.
The lack of a cell wall, flagella, fimbria, and other extracellular appendages and the possession of only a single membrane render the mycoplasmas structurally simplistic and ideal model organisms for the study of glycoconjugates. Most species have genomes of about 800 kb and code for few proteins predicted to have a role in glycobiology. The murine pathogens Mycoplasma arthritidis and Mycoplasma pulmonis have only a single gene annotated as coding for a glycosyltransferase but synthesize glycolipid, polysaccharide and glycoproteins. Previously, it was shown that M. arthritidis glycosylated surface lipoproteins through O-linkage. In the current study, O-linked glycoproteins were similarly found in M. pulmonis and both species of mycoplasma were found to also possess N-linked glycans at residues of asparagine and glutamine. Protein glycosylation occurred at numerous sites on surface-exposed lipoproteins with no apparent amino acid sequence specificity. The lipoproteins of Mycoplasma pneumoniae also are glycosylated. Glycosylation was dependent on the glycosidic linkages from host oligosaccharides. As far as we are aware, N-linked glycoproteins have not been previously described in Gram-positive bacteria, the organisms to which the mycoplasmas are phylogenetically related. The findings indicate that the mycoplasma cell surface is heavily glycosylated with implications for the modulation of mycoplasma-host interactions.  相似文献   

4.
Gallbladder mucus is mainly composed of glycoproteins, which seem to play a critical role in cholesterol nucleation during gallstone formation. The biosynthetic pathway and sequential processing as well as the characterization of the oligosaccharide sidechains of human gallbladder secretory glycoproteins have not been completely defined. The aim of the present study is the subcellular characterization of the glycoproteins in the principal cells of human gallbladder. Principal cells of normal human gallbladder were studied by means of a variety of cytochemical techniques, including lectin histochemistry, enzyme and chemical treatments, immunocytochemistry and lectin-gold technology. Fucose, galactose, N-acetylglucosamine, N-acetylgalactosamine and N-acetylneuraminic acid residues were detected in mucous granules, Golgi apparatus and apical membrane of principal cells. Mannose residues were only observed in dense bodies. Oligosaccharide side-chains of the glycoproteins contained in the biliary mucus are synthesized in the Golgi apparatus of the principal cells of the gallbladder epithelium and are also contained in the mucous granules of these cells. Terminal N-acetylneuraminic acid(2-3)galactose(1-3)N-acetylgalactosamine, N-acetylneuraminic acid(2-3)galactose(1-4)N-acetylglucosamine and galactose(1-4)N-acetylglucosamine sequences are contained in the oligosaccharide chains of gallbladder mucus glycoproteins. The dense bodies detected in the cytoplasm of the principal cells contained N-linked glycoproteins. Mucin-type O-linked glycoproteins were the main components of the mucous granules although some N-linked chains were also detected.  相似文献   

5.
Although the Ewing sarcoma (EWS) proto-oncoprotein is found in the nucleus and cytosol and is associated with the cell membrane, the regulatory mechanisms of its subcellular localization are still unclear. Here we found that adipogenic stimuli induce the nuclear localization of EWS in 3T3-L1 cells. Tyrosine phosphorylation in the C-terminal PY-nuclear localization signal of EWS was negative throughout adipogenesis. Instead, an adipogenesis-dependent increase in O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of EWS was observed. Pharmacological inactivation of O-GlcNAcase in preadipocytes promoted perinuclear localization of EWS. Our findings suggest that the nuclear localization of EWS is partly regulated by the glycosylation.  相似文献   

6.
As one of several biologically active compounds in milk, glycoproteins have been indicated to be involved in the protection of newborns from bacterial infection. As much of the physical and immune development of the tammar wallaby (Macropus eugenii) young occurs during the early phases of lactation and not in utero, the tammar is a model species for the characterization of potential developmental support agents provided by maternal milk. In the present study, the N- and O-linked glycans from tammar wallaby milk glycoproteins from six individuals at different lactation time points were subjected to glycomics analyses using porous graphitized carbon liquid chromatography electrospray ionization mass spectrometry. Structural characterization identified a diverse range of glycan structures on wallaby milk glycoproteins including sialylated, sulphated, core fucosylated and O-fucosylated structures. 30 % of N-linked structures contained a core (α1-6) fucose. Several of these structures may play roles in development, and exhibit statistically significant temporal changes over the lactation period. The N-glycome was found to contain structures with NeuGc residues, while in contrast the O-glycome did not. O-fucosylated structures were identified in the early stages of lactation indicating a potential role in the early stages of development of the pouch young. Overall the results suggest that wallaby milk contains structures known to have developmental and immunological significance in human milk and reproduction in other animals, highlighting the importance of glycoproteins in milk.  相似文献   

7.
The O-glycosidase, endo-α-N-acetylgalactosaminidase from Enterococcus faecalis (endoEF) catalyzes the cleavage of core 1 and core 3 type O-linked disaccharides between GalNAc and serine or threonine residues from glycoproteins. The endoEF has broad substrate specificity and thus is extensively utilized for the structural and functional analysis of the O-linked glycans. In this study, we expressed and purified the recombinant endoEF (rEndoEF) by using the silkworm-baculovirus expression vector system (Silkworm-BEVS) and confirmed the deglycosylation activity of rEndoEF targeting reporter glycoproteins, which was equivalent to the commercial O-glycosidase. Thus, our study provides important clues to produce highly active rEndoEF O-glycosidases employing silkworm-BEVS as an alternative.  相似文献   

8.
Increased modification of proteins with O-linked N-acetylglucosamine (O-GlcNAc) has been implicated in the development of diabetic cardiomyopathy. We used the well-characterized ES cells (Nkx2.5GFP knock-in ES cells), to investigate the role of O-GlcNAcylation in cardiomyocyte development. O-GlcNAcylation decreased in differentiating ES cells, as did the expression of O-GlcNAc transferase. Increasing O-GlcNAcylation with glucosamine or by inhibiting N-acetylglucosaminidase (streptozotocin or PUGNAc) decreased the number of cardiomyocyte precursors and cardiac-specific gene expression. On the other hand, decreasing O-GlcNAcylation with an inhibitor of glutamine fructose-6-phosphate amidotransferase (6-diazo-5-oxo-norleucine) increased cardiomyocyte precursors. These results suggest that excessive O-GlcNAcylation impairs cardiac cell differentiation in ES cells.  相似文献   

9.
The major sialoglycoproteins of the rat erythrocyte membrane were purified by hot phenol partitioning followed by cation-exchange chromatography on SP-Sephadex. Further purification was obtained by extraction with n-butanol and anion-exchange chromatography on DEAE-cellulose. The resulting sialoglycoprotein fraction was free of lipids and nonsialylated glycoproteins and gave rise to four major periodic acid-Schiff staining bands when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The fastest migrating protein on these gels with an apparent molecular weight of 19,000 was purified to homogeneity by gel filtration. The amino acid and sugar compositions of these materials are reported. The protein moiety is rich in serine, threonine, and hydrophobic amino acids and the carbohydrate moiety is high in sialic acid and N-acetylgalactosamine. Most of the carbohydrate is linked O-glycosidically to serine and threonine residues, as shown by susceptibility to base-catalyzed β-elimination and concomitant reduction of serine and threonine to alanine and α-aminobutyric acid and of N-acetylgalactosamine to N-acetylgalactosaminitol in the presence of reducing agents. The significance of these data in light of the known role of the rat erythrocyte membrane sialoglycoproteins in erythropoiesis is discussed. The properties of the rat erythrocyte membrane sialoglycoproteins are compared to those of other species.  相似文献   

10.
Summary Lectins were used to characterize mucin glycoproteins and other secretory glycoconjugates synthesized by a human colon adenocarcinoma-derived cell line which expresses a goblet cell phenotype. Despite being clonally derived, HT29-18N2 (N2) cells, like normal goblet cells in situ were heterogeneous in their glycosylation of mucin. Only wheat-germ agglutinin, which recognizes N-acetylglucosamine and sialic acid residues, and succinylated wheat-germ agglutinin, which binds N-acetylglucosamine, stained the contents of all secretory granules in all N2 goblet cells. The N-acetylgalactosamine binding lectins Dolichos biflorus and Glycine max stained 20% and 21% of N2 goblet cells respectively. Ricinus communis I, a galactose-binding lectin, stained 67% of N2 goblet cells although staining by another galactose-binding lectin, Bandeiraea simplicifolia I, was limited to 19%. Peanut agglutinin, a lectin whose Gal(1–3)GalNAc binding site is not present on mucins produced in the normal colon but which is found on most mucins of cancerous colonic epithelia, stained 68% of the cells. Ulex europeus I, a fucose-binding lectin, did not stain any N2 goblet cells. Four lectins (Lens culinaris, Pisum sativum, Phaseolus vulgaris E, Phaseolus vulgaris L) which recognize sugars normally present only in N-linked oligosaccharides stained up to 38% of N2 goblet cells. The binding of these lectins indicates either both O-linked and N-linked oligosac-charide chains are present on the mucin protein backbone or the co-existence of non-mucin N-linked glycoproteins and O-linked mucins within the goblet cell secretory granule.  相似文献   

11.
There is growing evidence that asparagine (N)-linked glycans play pivotal roles in protein folding and intra- or intercellular trafficking of N-glycosylated proteins. During the N-glycosylation of proteins, significant amounts of free oligosaccharides (fOSs) and phosphorylated oligosaccharides (POSs) are generated at the endoplasmic reticulum (ER) membrane by unclarified mechanisms. fOSs are also formed in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins destined for proteasomal degradation. This article summarizes the current knowledge of the molecular and regulatory mechanisms underlying the formation of fOSs and POSs in mammalian cells and Saccharomyces cerevisiae.  相似文献   

12.
Phenol extraction of horse, sheep, cow, pig and human erythrocyte membranes and human milk fat globule membranes gave glycoprotein fractions, all of which were shown by gas chromatography to contain the reduced disaccharide β-d-galactosyl (1?3)-N-acetyl-d-galactosaminital after treatment with alkaline borohydride. Cow and pig erythrocyte membrane glycoproteins were found however to contain much lower amounts than the erythrocyte membrane glycoproteins of the other species tested. After gel filtration, a tetrasaccharide was isolated from horse and sheep glycoproteins containing the disaccharide plus two molecules of sialic acid. Periodate oxidation together with paper chromatography of alkaline degraded fragments showed these two molecules of sialic acid to be linked to positions C3 and C6 of the galactosyl and N-acetylgalactosamine residues respectively. Evidence was obtained for a similar structure from pig and cow erythrocyte glycoproteins and human milk fat globule membrane glycoproteins although the complete structure was not elucidated.In all native glycoprotein fractions, the unsubstituted disaccharide β-d-galactosyl (1?3)-N-acetyl-d-galactosamine was found to be present to different extents.Haemagglutination inhibition tests against human anti-T serum, Arachis hypogoea and Vicia graminea by desialylated glycoproteins showed the presence of the T-antigen, confirming the chemical findings. Inhibition was found to be proportional to the chemically detected amounts of disaccharide in each fraction. Evidence for a second carbohydrate chain in horse, sheep and human erythrocyte glycoproteins with a sialic acid substituted N-acetylgalactosamine residue as the terminal sequence was obtained using the agglutinin from Helix pomatia.  相似文献   

13.
Site-specific structural characterization of glycoproteins is important for understanding the exact functional relevance of protein glycosylation. Resulting partly from the multiple layers of structural complexity of the attached glycans, the system-wide site-specific characterization of protein glycosylation, defined as glycoproteomics, is still far from trivial leaving the N- and O-linked glycoproteomes significantly under-defined. However, recent years have seen significant advances in glycoproteomics driven, in part, by the developments of dedicated workflows and efficient sample preparation, including glycopeptide enrichment and prefractionation. In addition, glycoproteomics has benefitted from the continuous performance enhancement and more intelligent use of liquid chromatography and tandem mass spectrometry (LC–MS/MS) instrumentation and a wider selection of specialized software tackling the unique challenges of glycoproteomics data. Together these advances promise more streamlined N- and O-linked glycoproteome analysis. Tangible examples include system-wide glycoproteomics studies detecting thousands of intact glycopeptides from hundreds of glycoproteins from diverse biological samples. With a strict focus on the system-wide site-specific analysis of protein N- and O-linked glycosylation, we review the recent advances in LC–MS/MS based glycoproteomics. The review opens with a more general discussion of experimental designs in glycoproteomics and sample preparation prior to LC–MS/MS based data acquisition. Although many challenges still remain, it becomes clear that glycoproteomics, one of the last frontiers in proteomics, is gradually maturing enabling a wider spectrum of researchers to access this new emerging research discipline. The next milestone in analytical glycobiology is being reached allowing the glycoscientist to address the functional importance of protein glycosylation in a system-wide yet protein-specific manner.  相似文献   

14.
The effect of vitamin A deficiency onN-linked oligosaccharides of membrane glycoproteins was studied in rat liver in order to evaluate the suggested role of retinol in proteinN-glycosylation. First, oligosaccharides of newly synthesized glycoproteins from rough endoplasmic reticulum of vitamin A deficient liver were compared with that of pair-fed controls. Oligosaccharides were metabolically labelled withd-[2-3H]mannose, released from the glycoproteins with endoglycosidase H, purified by reversed phase HPLC and ion exchange chromatography, and were reduced with sodium borohydride. HPLC fractionation of the oligosaccharide alditols showed that the glycoproteins carried mainly four oligosaccharide species, Glc1Man9GlcNAc2, Man9GlcNAc2, Man8GlcNAc2 and Man7GlcNAc2, in identical relative amounts in the vitamin A deficient and the control tissue. In particular, no increase in the proportion of short chain oligosaccharides was noted in vitamin A deficient liver. Second, the number ofN-linked oligosaccharides was estimated in dipeptidylpeptidase IV (DPP IV), a major glycoprotein constituent of the hepatic plasma membrane, comparing the newly synthesized glycoprotein from rough endoplasmic reticulum and the mature form of DPP IV from the plasma membrane. No evidence was obtained that retinol deficiency caused incomplete glycosylation of this membrane glycoprotein. From these data, the suggested role of retinol as a cofactor involved in the synthesis ofN-linked oligosaccharides of glycoproteins must be questioned.Abbreviations DolP Dolichyl phosphate - DolPP dolichyl pyrophosphoryl - RetPMan retinyl phosphate mannose - DPP IV dipeptidyl peptidase IV (EC 3.4.14.5) - endo H endo--N-acetylglucosaminidase H (EC 3.2.1.96) - endo F endo--N-acetylglucosaminidase F (EC 3.2.1.96) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

15.
16.
The Saccharomyces cerevisiae mnn10 mutant is defective in thesynthesis of N-linked oligosaccharides (Ballou et al., 1989).This mutation has no effect on O-linked sugars, but resultsin the accumulation of glycoproteins that contain severely truncatedN-linked outer-chain oligosaccharides. We have cloned the MNN10gene by complementation of the hygromycin B sensitivity conferredby the mutant phenotype. Sequence analysis predicts that Mnn10pis a 46.7 kDa type II membrane protein with structural featurescharacteristic of a glycosyltransferase. Subcellular fractionationdata indicate that most of the Mnn10 protein cofractionateswith Golgi markers and away from markers for the endoplasmicreticulum (ER), suggesting Mnn10p is localized to the Golgicomplex. A comparison of the Mnn10 protein sequence to proteinsin the two different databases identified five proteins thatare homologous to Mnn10p, including a well characterized Schizosaccharomycespombe  相似文献   

17.
Increased flux through the hexosamine biosynthetic pathway (HBP) has been shown to affect the activity and translocation of certain protein kinase C (PKC) isoforms. It has been suggested that this effect is due to increases in the β-O-linked N-acetylglucosamine (O-GlcNAc) modification. Herein, we demonstrate the effect of increasing the O-GlcNAc modification on the translocation of select PKC isozymes in a human astroglial cell line. Treating cells with either 8 mM d-glucosamine (GlcN), 5 mM streptozotocin (STZ), or 80 μM O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc) produced a significant increase in the O-GlcNAc modification on both cytosolic and membrane proteins; however, both the level and rate of O-GlcNAc increase varied with the compound. GlcN treatment resulted in a rapid, transient translocation of PKC-βII that was maximal after 3 h (73±8%) and also produced a 48±15% decrease in membrane-associated PKC-ε after 9 h of treatment. Similar to GlcN treatment, STZ and PUGNAc treatment also resulted in decreased levels of PKC-ε in the membrane fraction. Significant decreases were seen as early as 5 h and, by 9 h of treatment, had decreased by 87±6% with STZ and 73±7% with PUGNAc. Unlike GlcN, both STZ and PUGNAc produced a decrease in PKC-α membrane levels by 9 h posttreatment (78±10% with STZ and 66±8% with PUGNAc) while neither compound produced any changes in PKC-βII translocation. In addition, none of the three compounds affected membrane levels of PKC-ι. Altogether, these results demonstrate a novel link between increased levels of the O-GlcNAc modification and the regulation of specific PKC isoforms.  相似文献   

18.
The observation that N-carbamoylputrescine is quantitatively excluded on O-(carboxymethyl)-cellulose columns with simultaneous retention of putrescine and agmatine has been utilized to develop a sensitive radiometric assay for putrescine transcarbamoylase and a colorimetric assay for agmatine iminohydrolase. A simple procedure for obtaining bulk amounts of pure synthetic N-carbamoylputrescine by separation from putrescine and dicarbamoylputrescine on Dowex 50 (Na+) resin is described.  相似文献   

19.
Glycan Atlas is a set of glycan maps over the whole body of an organism. The glycan map that includes data of glycan structure and quantity displays micro-heterogeneity of the glycans in a tissue, an organ, or cells. The two-dimensional glycan mapping is widely used for structure analysis of N-linked oligosaccharides on glycoproteins. In this study we developed a comprehensive method for the mapping of both N- and O-glycans with and without sialic acid. The mapping data of 150 standard pyridylaminated glycans were collected. The empirical additivity rule which was proposed in former reports was able to adapt for this extended glycan map. The adapted rule is that the elution time of pyridylamino glycans on high performance liquid chromatography (HPLC) is expected to be the simple sum of the partial elution times assigned to each monosaccharide residue. The comprehensive mapping method developed in this study is a powerful tool for describing the micro-heterogeneity of the glycans. Furthermore, we prepared 42 pyridylamino (PA-) glycans from human serum and were able to draw the map of human serum N- and O-glycans as an initial step of Glycan Atlas editing.  相似文献   

20.
Production of human erythropoietin by chimeric chickens   总被引:1,自引:0,他引:1  
The use of transgenic avian allows cost effective and safe production of pharmaceutical proteins. Here, we report the successful production of chimeric chickens expressing human erythropoietin (hEpo) using a high-titer retroviral vector. The hEpo expressed by transgenic hens accumulated abundantly in egg white and had N- and O-linked carbohydrates. While attachment of terminal sialic acid and galactose was incomplete, portions of N- and O-linked carbohydrates were present. In vitro biological activity of egg white-hEpo was comparable to that produced by recombinant CHO cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号