首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The reducing sugars, glucose, and ethanol produced during growth of the anaerobes Clostridium thermocellum and Acetivibrio cellulolyticus on cellulose were assayed. Zymomonas mobilis was grown under similar conditions and could ferment glucose to ethanol. The ethanol production by the cellulolytic bacteria alone and in co-culture with Zymomonas is described. Approximately 27% of a 1% cellulose substrate could be converted to ethanol by this co-culture.  相似文献   

2.
Summary Hexose and pentose sugars, produced by hydrogen-fluoride solvolysis of aspen wood chips, were totally consumed in a coculture fermentation by Zymomonas mobilis and a mutant of Clostridium saccharolyticum. Z. mobilis converted the glucose to ethanol, while the mutant, which was improved in both ethanol production and tolerance, converted the xylose component to ethanol. A high conversion efficiency of wood sugars to ethanol was obtained, and the cells after the fermentation were successfully used for cell recycle.NRCC no. 23211  相似文献   

3.
Summary Studies on the growth ofZ.mobilis revealed that high concentrations of glucose (10-25%) can be efficiently and rapidly converted to ethanol in batch culture. By comparison withS. carlsbergensis,Z.mobilis had specific glucose uptake rates and specific ethanol productivies several times greater than the yeast.Z.mobilis also had ethanol yields of up to 97% of a theoretical value.  相似文献   

4.
Summary The specific ethanol productivity withSaccharomyces cerevisiae grown aerobically in a chemostat at a growth rate of 0.17 hr–1 was found to increase from zero to 13 mmol/g cell dry matter·h when the potassium content in the substrate used was decreased to 0.05 mol/kg glucose. 78% of the glucose metabolized were converted to ethanol under these aerobic growth conditions.  相似文献   

5.
The examination of the effect of N2, air and O2 on the glucose to 2,3-butanediol fermentation byBacillus polymyxa showed that N2 sparging resulted in best 2,3-butanediol production at low yeast extract concentration (0.5%, w/v) whereas aeration produced best results with high yeast extract levels (1.2%, w/v). However, under all atmospheric conditions, improvements in rates and yields of 2,3-butanediol production and rates of glucose utilization were observed with high yeast extract. Regardless of the yeast extract levels, highest concentrations of ethanol and acetoin were obtained with N2 sparging and aeration respectively. No acetoin accumulated under anaerobic (N2) conditions and no ethanol accumulated with aeration. The rate of glucose utilization, in all fermentations, was highest under N2 and lowest with O2 sparging. In addition to the biochemical results, morphological observations with O2, N2 and air sparging are also reported.NRCC No. 23868  相似文献   

6.
Summary In an effort to establish the reasons for the limitations in the final ethanol concentration of Zymomonas mobilis fermentation, the effects of CO2 and ethanol on the fermentation were investigated using continuous and fed-batch cultivation systems. The nucleation and stripping out of CO2 from the fermenter using diatomaceous earth or nitrogen gas or both exhibited a profound effect on the glucose uptake rate during the early stages of fed-batch fermentation, but did not improve final ethanol yields. The addition of ethanol together with above mentioned experiments confirmed conclusively that ethanol inhibition is responsible for the final ethanol concentration obtainable during Zymomonas mobilis fermentation. The final concentration lies between 90 and 110 gl−1 or approximately 12–15% (v/v) ethanol.  相似文献   

7.
Summary A coculture consisting of two mesophilic anaerobes, produced about 0.8 mole of ethanol per mole of cellulose from a variety of cellulosic materials. The non-cellulolytic member of this coculture, Clostridium saccharolyticum sp. nov. converted glucose and xylose to ethanol and acetic acid in ratios over 4 to 1.  相似文献   

8.
Summary The effect of CO2 removal by continuous sparging of N2 in batch cultures ofZymomonas mobilis (ATCC10988) was examined. N2 sparging considerably reduces lag times in batch cultures, possibly because of continuous removal of CO2 from the culture media. Ventilation of CO2 from culture media results in an increase of about 15% in the average specific growth rate and about 12% in the cell-mass yield with no noticeable trend in the average specific glucose uptake and ethanol production rates. The overall ethanol yield on glucose, however, decreases slightly by 5%. Analysis of ventilated experiments show that the CO2 production is directly coupled with the ethanol formation but not necessarily with the cell-mass production, indicating a decoupling of growth from ethanol production. Further, comparison of ventilated and non-ventilated experiments rules out the possibility of CO2 accumulation in the culture media as a factor responsible for increasing growth inhibition and decoupling of growth from ethanol fermentation at increasing initial glucose concentrations in batch cultures.  相似文献   

9.
Summary The study shows that the yeastSaccharomyces cerevisiae ATCC 36859 can be successfully used for the production of fructose syrup from glucose-fructose mixtures or from Jerusalem artichoke juice by the conversion of glucose to ethanol. During these processes fructose concentration was unchanged.Ethanol yield (YP/S), based on glucose consumed in Jerusalem artichoke juice, and ethanol concentration were 0.428 g/g and 1.7% (w/v) respectively. When the juice was supplemented with glucose higher ethanol concentrations were attained but with lower ethanol yields.  相似文献   

10.
Summary Nitrosoguanidine-induced, stable theromotolerant mutant (ZMI2) ofZymomonas mobilis ZM4 was found to possess almost normal cell morphology, and a better ethanol tolerance at 42°C than the parent strain (ZM4). Its kinetic parameters, in converting different concentrations of glucose to ethanol, were comparable to ZM4 at 30°C, and significantly superior at 42°C. In a 200 g/L glucose medium in a pH-stat (5.0) at 42°C, the mutant yielded more ethanol (71.0 g/L) (improved to 73.7 g/L at pH 5.5) and alcohol dehydrogenase (ADH) than the parent strain. The ADH levels in both the strains were repressed, depending upon the increased level of sugar and degree of temperature.  相似文献   

11.
Summary A highly flocculent strain of Saccharomyces uvarum was used to convert glucose to ethanol and CO2 in a single stage, continuous, gas-lift tower fermenter. Satisfactory operation was maintained in prolonged runs with yeast concentrations in excess of 100 g/L (d.w.) and hydraulic retention times less than 0.4 h. Maximum ethanol concentration and productivity were 88 g/L and 44.5 g/Lh respectively. Conversion efficiency was between 80 and 95% of theoretical.  相似文献   

12.
Summary Specific glucose and xylose isomerases have been identified in cell-free culture filtrates of a Chainia species. Treatment with DEAE-cellulose selectively adsorbed xylose isomerase activity while only the glucose isomerase was adsorbed on CM-cellulose. Glucose isomerase was completely inhibited by xylose at 1.3 × 10-4 M concentration. The differential identity of the extracellular glucose and xylose isomerases, unique to Chainia, is discussed.(NCL Communication 3562)  相似文献   

13.
Summary Addition of calcium carbonate enhanced ethanol production byZymomonas mobilis ZM4 and a mutant (ZMI2), especially at higher concentrations (200–400 g/L) of glucose and sucrose, as well as at higher temperature (42°C) by the mutant. Calcium and sodium carbonates neutralized the acid produced in the medium and enhanced the ethanol production. The Na salts were less effective in the parent strain and were not favourable for the mutant. Ca2+ ions played a direct role in augmenting ethanol production as evidenced by the effect of calcium chloride at controlled pH (5.5).  相似文献   

14.
Summary Two mutants, unable to utilize fructose (Fru) as a sole source of carbon and energy, were isolated fromZymomonas mobilis following ethyl methane sulfonate (EMS) mutagenesis. The frequency of stable Fru mutants among survivors of mutagenesis was 1 in 104. The two Fru mutants were able to cleave sucrose to glucose and fructose, and then ferment only the glucose to ethanol while accumulating fructose close to the theoretical value. Under controlled fermentation conditions, sucrose was converted to ethanol plus 80% or higher purity fructose syrup in a single-stage batch fermentation process, improving the Sucrotech Process significantly.  相似文献   

15.
Summary In order to minimize the adverse effect of CO2 gas in a packed bed immobilized yeast reactor, a fluidized bed reactor was used for the continuous production of ethanol from glucose. Immobilized yeast was prepared by entrapping whole cells of Saccharomyces cerevisiae within a Caalginate matrix. It was found that the efficiency of the ethanol production in a fluidized bed reactor was 100% better than that for a packed bed reactor system. The alcohol productivity obtained was 21 g/l/hr in a fluidized bed reactor at 94% of conversion level.  相似文献   

16.
Summary Thermophilic degradation of sugar beet pulp was studied in batch cultures at 55°C by different associations of bacteria, includingClostridium thermocellum,Methanobacterium sp. andMethanosarcina MP.C. thermocellum produced acetate, succinate, methanol, ethanol, H2 and CO2. The coculture ofC. thermocellum andMethanobacterium sp. produced trace amounts of ethanol and succinate; acetate concentration was about three times higher than in theC. thermocellum monoculture. The association of this coculture withMethanosarcina MP produced 5.5 mmol CH4/g dry weight sugar beet pulp.  相似文献   

17.
Adenosine 5'-O(3-thiotriphosphate) in the control of phosphorylase activity   总被引:22,自引:0,他引:22  
Rabbit muscle phosphorylase b (EC 2.4.1.1) is converted to a thio-analog of phosphorylase a by phosphorylase kinase, Mg2+ and adenosine 5′-O(3-thiotriphosphate)(ATPγS). Conversion proceeds at one-fifth the rate obtained with ATP though the extent of reaction and final level of activation of the enzyme are the same. However, the thiophosphorylase a produced is resistant to phosphorylase phosphatase and, therefore, behaves as a competitive inhibitor with a KI of 3 μM, similar to the KM obtained with normal phosphorylase a. ATPγS can also be utilized by protein kinase in the activation of phosphorylase kinase at a rate similar to that obtained with ATP. It is hydrolyzed at 5 to 10 times the normal rate by the sarcoplasmic reticulum ATPase. When added to a muscle glycogen-particulate complex in the presence of Ca2+ and Mg2+, ATPγS triggers an activation of phosphorylase with simultaneous inhibition of phosphorylase phosphatase as previously observed with ATP.  相似文献   

18.
Summary Production of ethanol from cellodextrins, as large as cellohexose, byCandida lusitaniae andC. wickerhamii was studied.C. lusitaniae fermented only glucose and cellobiose, whereasC. wickerhamii efficiently fermented cellodextrins. Maximum ethanol yields of 29.2 g/liter from 54 g/liter cellodextrins were achieved byC. wickerhamii in 3–4 days.  相似文献   

19.
Summary Previous studies have demonstrated that Zymomonas mobilis is a very promising organism for ethanol production. In the present study comparative kinetic data from batch and continuous cultures on glucose media are presented which show that a new strain of Z. mobilis has higher specific rates of growth and ethanol production as well as a higher tolerance to ethanol.  相似文献   

20.
Summary Growth ofKluyveromyces fragilis NRC 2475 and the production of ethanol by the yeast were studied in the media containing one of the following sugars: glucose, lactose, galactose, or a glucose-galactose (50% 50%) mixture as a carbon source.The largest biomass yield and the lowest yield of ethanol were obtained in the medium containing glucose. The medium containing galactose gave the lowest yield of biomass and the largest yield of ethanol. When lactose was used for the growth and production of ethanol the obtained results for both biomass and ethanol were between those obtained with glucose and galactose.The ethanol productivities, expressed in terms of ethanol produced either per unit of cells, or per unit of cells and time, were the highest in the system with galactose and the lowest in that with glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号