首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chicken erythrocyte chromatins containing a single species of linker histone, H1 or H5, have been prepared, using reassembly techniques developed previously. The reconstituted complexes possess the conformation of native chicken erythrocyte chromatin, as judged by chemical and structural criteria; saturation is reached when two molecules of linker histone are bound per nucleosome, as in native erythrocyte chromatin, which the resulting material resembles in its appearance in the electron microscope and quantitatively in its linear condensation factor relative to free DNA. The periodicity of micrococcal nuclease-sensitive sites in the linker regions associated with histone H1 or H5 is 10.4 base pairs, suggesting that the spatial organization of the linker region in the higher-order structure of chromatin is similar to that in isolated nucleosomes. The susceptible sites are cut at differing frequencies, as previously found for the nucleosome cores, leading to a characteristic distribution of intensities in the digests. The scission frequency of sites in the linker DNA depends additionally on the identity of the linker histone, suggesting that the higher-order structure is subject to secondary modulation by the associated histones.  相似文献   

2.
Quantitative analysis of the circular dichroism of nucleohistones and protein-free DNA was carried out in order to determine the structure and the role of the linker region DNA in chromatin, in terms of the conformational change of chromatin as a function of the ionic strength. It is shown clearly that the circular dichroism of Hl-depleted chromatin isolated from calf thymus is determined only by the ratio of the core region to the linker region and demonstrated by the linear combination of the spectrum of protein-free DNA and that of the nucleosome core in 5 mm-Tris · HCl, 1 mm-EDTA (pH 7.8). The calculated spectrum for the linker region in the H1-depleted chromatin was in good agreement with that of protein-free DNA. From the difference spectra between nucleohistones and protein-free DNA, it is suggested that the chromatin has an additional winding of DNA other than 146 base-pairs of DNA around the histone core. By decreasing the ionic strength to values lower than 5 mm-Tris · HCl, 1 mm-EDTA, the ellipticity of H1-depleted chromatin increased greatly between 250 nm and 300 nm while the increase was small in the case of chromatin and the nucleosome core. Nucleosomes with linker region DNA but without histone H1 also show great increase in ellipticity in this range of wavelengths as the ionic strength is decreased. Therefore, the linker region in H1-depleted chromatin plays an important role in the conformational changes brought about by changes in the ionic strength, and the conformational changes caused in the DNA of chromatin by decreasing the ionic strength are suppressed by the presence of histone H1.  相似文献   

3.
In this work we have studied the effect of chromatin structure on the base excision repair (BER) efficiency of 8-oxoG. As a model system we have used precisely positioned dinucleosomes assembled with linker histone H1. A single 8-oxoG was inserted either in the linker or the core particle DNA within the dinucleosomal template. We found that in the absence of histone H1 the glycosylase OGG1 removed 8-oxoG from the linker DNA and cleaved DNA with identical efficiency as in the naked DNA. In contrast, the presence of histone H1 resulted in close to 10-fold decrease in the efficiency of 8-oxoG initiation of repair in linker DNA independently of linker DNA length. The repair of 8-oxoG in nucleosomal DNA was very highly impeded in both absence and presence of histone H1. Chaperone-induced uptake of H1 restored the efficiency of the glycosylase induced removal of 8-oxoG from linker DNA, but not from the nucleosomal DNA. We show, however, that removal of histone H1 and nucleosome remodelling are both necessary and sufficient for an efficient removal of 8-oxoG in nucleosomal DNA. Finally, a model for BER of 8-oxoG in chromatin templates is suggested.  相似文献   

4.
Properties of chromatin subunits from developing trout testis.   总被引:5,自引:0,他引:5  
When a sample of trout testis nuclei is digested with micrococcal nuclease, the DNA is cleaved almost entirely to discrete fragments approximately 200 base pairs long and multiples thereof. The same DNA fragments can be obtained when isolated chromatin, as opposed to intact nuclei, is nuclease digested. These DNA fragments can also be found in discrete chromatin "subunits" isolated from nuclease-digested nuclei. Sedimentation through sucrose gradients or velocity sedimentation in an analytical ultracentrifuge separates these chromatin subunits into 11 S (monomer), 16 S (dimer), and 22 S (trimer) etc. species. Subunits can also be fractionated on a Sepharose 2B column equilibrated and run in low salt. High salt (greater than 40 mM NaCl) or divalent cations (congruent to 5 mM) cause subunit precipitation. Chromatin subunits have a protein to DNA ratio of approximately 1.2 and contain all the histones, including the trout-specific histone T. There are, however, no detectable nonhistone chromosomal proteins. Mg-2+ precipitates of the 11 S chromatin monomers, when pelleted, are thin and clear, while oligomer Mg-2+ pellets are thick and white. This could reflect a more symmetrical or ordered packing of 11 S monomers, which are deficient in histone I. This histone may cross-link the larger oligomers, resulting in a disordered Mg-2+ complex. These results are consistent with the subunit model of chromatin structure, based on 200 base pair long regions of DNA associated with histones. These subunits would be separated by nuclease-sensitive DNA spacer regions and cross-linked by histone I.  相似文献   

5.
The belief that histone H1 interacts primarily with DNA in chromatin and much less with the protein component has led to numerous studies of artificial H1-DNA complexes. This review summarizes and discusses the data on different aspects of the interaction between the linker histone and naked DNA, including cooperativity of binding, preference for supercoiled DNA, selectivity with respect to base composition and nucleotide sequence, and effect of H1 binding on the conformation of the underlying DNA. The nature of the interaction, the structure of the complexes, and the role histone H1 exerts in chromatin are also discussed.  相似文献   

6.
Native rat liver chromatin fragments exposed to 600 mM NaCl at 37 degrees C for 45 min exhibit substantial modification of their original (approximately 200 base pairs) repeating subunit structure: a new repeat of 140 base pairs, superimposed on a high background, is observed after micrococcal nuclease digestion. The same material appears, in the electron microscope, as clusters of tightly packed beads connected by stretches of 'free' DNA. These modifications are not observed when the native chromatin is incubated at 37 degrees C at NaCl concentrations up to 400 mM. When native rat liver chromatin depleted of histone H1 by tRNA extraction is exposed to ionic strengths up to 600 mM NaCl at 4 degrees C, almost no modifications of the original native repeating structure are observed. However, when the incubation is carried out at 37 degrees C in 150, 300 or 400 mM NaCl, rearrangements of the native structure occur as indicated by micrococcal nuclease digestion and electron microscopic studies. Incubation of H1-depleted chromatin at 600 mM NaCl for 45 min at 37 degrees C induces, as for the native chromatin, a complete rearrangement characterized by the appearance of a 140-base-pair repeat superimposed on a high background upon digestion by micrococcal nuclease. It is suggested that these rearrangements are mediated by hydrophobic interactions between the histone cores and are prevented at ionic strengths lower than 500 mM by the presence of histone H1.  相似文献   

7.
Rat liver telomeric DNA is organised into nucleosomes characterised by a shorter and more homogeneous average nucleosomal repeat than bulk chromatin as shown by Makarov et al. (1). The latter authors were unable to detect the association of any linker histone with the telomeric DNA. We have confirmed these observations but show that in sharp contrast chicken erythrocyte telomeric DNA is organised into nucleosomes whose spacing length and heterogeneity are indistinguishable from those of bulk chromatin. We further show that chicken erythrocyte telomeric chromatin contains chromatosomes which are preferentially associated with histone H1 relative to histone H5. This contrasts with bulk chromatin where histone H5 is the more abundant species. This observation strongly suggests that telomeric DNA condensed into nucleosome core particles has a higher affinity for H1 than H5. We discuss the origin of the discrimination of the lysine rich histones in terms of DNA sequence preferences, telomere nucleosome preferences and particular constraints of the higher order chromatin structure of telomeres.  相似文献   

8.
9.
The contribution of the linker region to maintenance of condensed chromatin was examined in two model systems, namely sea urchin sperm nuclei and chicken red blood cell nuclei. Linkerless nuclei, prepared by extensive digestion with micrococcal nuclease, were compared with Native nuclei using several assays, including microscopic appearance, nuclear turbidity, salt stability, and trypsin resistance. Chromatin in the Linkerless nuclei was highly condensed, resembling pyknotic chromatin in apoptotic cells. Linkerless nuclei were more stable in low ionic strength buffers and more resistant to trypsin than Native nuclei. Analysis of histones from the trypsinized nuclei by polyacrylamide gel electrophoresis showed that specific histone H1, H2B, and H3 tail regions stabilized linker DNA in condensed nuclei. Thermal denaturation of soluble chromatin preparations from differentially trypsinized sperm nuclei demonstrated that the N-terminal regions of histones Sp H1, Sp H2B, and H3 bind tightly to linker DNA, causing it to denature at a high temperature. We conclude that linker DNA exerts a disruptive force on condensed chromatin structure which is counteracted by binding of specific histone tail regions to the linker DNA. The inherent instability of the linker region may be significant in all eukaryotic chromatins and may promote gene activation in living cells.  相似文献   

10.
The distribution of histone H1 subfractions in chromatin subunits.   总被引:5,自引:2,他引:3       下载免费PDF全文
Rat liver chromatin was digested with micrococcal nuclease to various extents and fractionated into nucleosomes, di and trimers of nucleosomes on an isokinetic sucrose gradient. In conditions under which degradation of linker DNA within the particles was limited, the electrophoretic analysis of the histone content showed that the overall content of H1 histone increased from nucleosomes to higher order oligomers. Moreover, the histone H1 subfractions were found unevenly distributed among the chromatin subunits, one of them, H1--3 showing most variation. A more regular distribution of these subfractions was found in subunits obtained from a more extended digestion level of chromatin. It is suggested that the H1 subfractions differ in the protection they confer upon DNA.  相似文献   

11.
Polynucleosomes with a definite length (about 4,500 base pairs) were prepared from chicken erythrocyte nuclei without depleting magnesium ions from the medium. The polynucleosomes in the presence of Mg2+ ions as well as monovalent salts were more compact than those with monovalent salts alone. We minimized the occurrence of nicks in the DNA of nucleosome fiber during the preparation. When histones H1 and H5 were completely removed from polynucleosomes, linker histone-depleted polynucleosomes sedimented slower than the original ones. When isolated histone H1 or H5 was reassembled with linker histone-depleted polynucleosomes, no significant difference was observed among the reconstituted polynucleosomes with histone H1, the reconstituted polynucleosomes with histone H5, and the original polynucleosomes. We concluded that histones H1 and H5 are similar in their effects on higher order structure of polynucleosomes, as far as can be judged from such characteristics as sedimentation velocity, linker histone content, and the patterns of nuclease digestion.  相似文献   

12.
The size of DNA involved in the interaction with a histone octamer in H1-depleted chromatin was re-examined. We compared the thermal untwisting of chromatin DNA and naked DNA using CD and electrophoretic topoisomer analysis, and found that DNA of 175 +/- 10 base pairs (bp) in length interacted with the histone core under physiological conditions. The decrease of ionic strength below 20 mM NaCl reduced this length down to 145 bp: apparently, an extra 30 bp DNA dissociated from the histone core to yield well-known 145-bp core particle. Histone cores partly dissociate within the temperature range of 25 to 40 degrees C. Quantitative analysis of histone thermal dissociation from DNA shows that the size of DNA protected against thermal untwisting would be significantly overestimated if this effect is neglected. The results presented in this paper also suggest that the dimers (H2A, H2B) act as a lock, which prevents transmission of conformational alterations from a linker to nucleosome core DNA. The histone core dissociation as well as (H2A, H2B) dimer displacement are discussed in the light of their possible participation in the eukaryotic genome activation.  相似文献   

13.
The histones isolated from the siliceous sponge Geodia cydonium have been separated using two electrophoretic techniques. A comparison of their mobilities with those of calf thymus and rat liver show that some Geodia histone species (H3, H1 and H1(0) exhibit electrophoretic variance. The results show, that as in other eukaryotic systems the sponge chromatin contains the core histones (H2A, H2B, H3 and H4) and the linker histone (H1). ADP-ribosylation of Geodia histones and separation of the individual histones by electrophoresis resulted in four histones being radiolabeled. Digestion of Geodia chromatin with endogenous endonuclease is shown to result in the formation of nucleosome particles containing approximately 200 base pairs of DNA. A major product of endogenous endonuclease digestion is a relatively stable 110 base pair intermediate. Incubation of chromatin with DNase II and separation of the products under denaturing conditions reveals 20 bands migrating at 10 base intervals.  相似文献   

14.
Circular dichroism has been used to measure the conformation changes in the DNA of chromatin and chromatin subunits as a function of ionic strength. Transfer of chromatin from 0.15 M to 0.25 mM salt led to an enhancement of the circular dichroic bands at 275 and 285 nm. Removal of histone H1 did not appreciably affect the circular dichroic spectrum when measured in 0.15 M salt, but in 0.25 mM salt H1 depletion led to a marked increase in the ellipticity. Conformation changes due to low ionic strength were also observed with a 145- and a 172-bp chromatin subunit. A linear combination of the ellipticities of the DNA of the two domains in chromatin, namely core and linker, was successful for measurements at 0.15 M salt, but large unexplained discrepancies appeared with the data from measurements in 0.25 mM salt.  相似文献   

15.
La Penna G  Furlan S  Perico A 《Biopolymers》2006,83(2):135-147
Molecular dynamics computer simulations were performed for the 25-residue N-terminal tail of the H3 histone protein in the proximity of a DNA segment of 10 base pairs (bp), representing a model for the linker DNA in chromatin. Several least biased configurations were used as initial configurations. The secondary structure content of the protein was increased by the presence of DNA close to it, but the locations of the secondary motifs were different for different initial orientations of the DNA grooves with respect to the protein. As a common feature to all simulations, the electrostatic attraction between negatively charged DNA and positively charged protein was screened by the water solvent and counterbalanced by the intrinsic compaction of the protein due to hydrophobic effects. The protein secondary structure limited the covering of DNA by the protein to 4-5 bp. The degree of compaction and charge density of the bound protein suggests a possible role of H3 tail in a nonspecific bending and plasticity of the linker DNA when the protein is located in the crowded dense chromatin.  相似文献   

16.
Heterogeneity of chromatin subunits in vitro and location of histone H1.   总被引:74,自引:40,他引:34       下载免费PDF全文
Chromatin subunits ("nucleosomes") which were purified by sucrose gradient centrifugation of a staphylococcal nuclease digest of chromatin have been studied. We found that such a preparation contains nucleosomes of two discrete types which can be separated from each other by polyacrylamide gel electrophoresis. Nucleosome of the first type contains all five histones and a DNA segment of approximately 200 base pairs long, whereas nucleosome of the second type lacks histone H1 and its DNA segment is approximately 170 base pairs long, i.e., about 30 base pairs shorter than the DNA segment of the nucleosome of the first type. Purified dimer of the nucleosome also can be fractionated by gel electrophoresis into three discrete bands which correspond to dinucleosomes containing two molecules of histone H1, one and no H1. These and related findings strongly suggest that the H1 molecule is bound to a short (approximately 30 base pairs) terminal stretch of the nucleosomal DNA segment which can be removed by nuclease (possibly in the form of H1-DNA complex) without any significant disturbance of main structural features of the nucleosome.  相似文献   

17.
We previously reported that HMGB1, which originally binds to chromatin in a manner competitive with linker histone H1 to modulate chromatin structure, enhances both intra-molecular and inter-molecular ligations. In this paper, we found that histone H1 differentially enhances ligation reaction of DNA double-strand breaks (DSB). Histone H1 stimulated exclusively inter-molecular ligation reaction of DSB with DNA ligase IIIbeta and IV, whereas HMGB1 enhanced mainly intra-molecular ligation reaction. Electron microscopy of direct DNA-protein interaction without chemical cross-linking visualized that HMGB1 bends and loops linear DNA to form compact DNA structure and that histone H1 is capable of assembling DNA in tandem arrangement with occasional branches. These results suggest that differences in the enhancement of DNA ligation reaction are due to those in alteration of DNA configuration induced by these two linker proteins. HMGB1 and histone H1 may function in non-homologous end-joining of DSB repair and V(D)J recombination in different manners.  相似文献   

18.
Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.  相似文献   

19.
20.
Linker histone binding to nucleosomal arrays in vitro causes linker DNA to form an apposed stem motif, stabilizes extensively folded secondary chromatin structures, and promotes self-association of individual nucleosomal arrays into oligomeric tertiary chromatin structures. To determine the involvement of the linker histone C-terminal domain (CTD) in each of these functions, and to test the hypothesis that the functions of this highly basic domain are mediated by neutralization of linker DNA negative charge, four truncation mutants were created that incrementally removed stretches of 24 amino acids beginning at the extreme C terminus of the mouse H1(0) linker histone. Native and truncated H1(0) proteins were assembled onto biochemically defined nucleosomal arrays and characterized in the absence and presence of salts to probe primary, secondary, and tertiary chromatin structure. Results indicate that the ability of H1(0) to alter linker DNA conformation and stabilize condensed chromatin structures is localized to specific C-terminal subdomains, rather than being equally distributed throughout the entire CTD. We propose that the functions of the linker histone CTD in chromatin are linked to the characteristic intrinsic disorder of this domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号