首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kríz J  Makrlík E  Vanura P 《Biopolymers》2006,81(2):104-109
In addition to the well-known complexes of valinomycin with alkali metal cations, an equimolar complex of the same compound with proton was found to be formed in nitrobenzene. Hydrogen bis(1,2-dicarbollylide) cobaltate (HDCC) was used as a proton source. According to NMR spectra, the complex formation is quantitative at proton/valinomycin molar ratios up to 1:1 but there is fast exchange of protons between coordinated and uncoordinated valinomycin molecules at lower ratios. 1H and 13C NMR spectra show a dramatic change in the valinomycin conformation during its coordination with protons, probably from a propeller-like to a bracelet-like form. As valinomycin is one of the well-known ion-carrying ionophores facilitating especially the K+ ion transport across a biological membrane, the existence of the valinomycin-proton complex could be important in biochemistry and biology.  相似文献   

2.
To investigate the effect of ionophores on Cl- distribution in human erythrocyte suspensions, we measured the membrane potential by using 19F and 31P NMR methods. Incubation of human erythrocytes with 0.005 mM of the neutral ionophores valinomycin and nonactin resulted in membrane potentials of -21.2 and -17.8 mV in the presence and absence of DIDS. However, 0.020 mM of the carboxylic ionophores lasalocid, monensin, and nigericin yielded membrane potentials similar to those measured in the absence of ionophore (-9.4 mV). In methanol, the 35Cl- NMR linewidth in the presence of valinomycin was twice as broad as those observed in the presence of carboxylic ionophores, suggesting that neutral ionophores induce Cl- efflux in part via ion pairing.  相似文献   

3.
Kimura S  Naito A  Tuzi S  Saitô H 《Biopolymers》2001,58(1):78-88
We have recorded (13)C NMR spectra of selectively [3-(13)C]Ala-, [1-(13)C]Ala-, or [1-(13)C]Val-labeled synthetic transmembrane peptides of bacteriorhodopsin (bR) and enzymatically cleaved C-2 fragment in the solid and dimyristoylphosphatidylcholine bilayer. It turned out that these transmembrane peptides either in hexafluoroisopropanol or cast from it take an ordinary alpha-helix (alpha(I)-helix) irrespective of their amino acid sequences with reference to the conformation-dependent (13)C chemical shifts of (Ala)(n) taking the alpha-helix form. These transmembrane peptides are not always static in the lipid bilayer as in the solid state but undergo rigid-body motions with various frequencies as estimated from suppressed peaks either by fast isotropic or large-amplitude motions (>10(8) Hz) or intermediate frequencies (10(5) or 10(3) Hz). Further, (13)C chemical shifts of the [3-(13)C]Ala-labeled peptides in the bilayer were displaced downfield by 0.3-1.1 ppm depending upon amino acid sequence with respect to those in the solid state, which were explained in terms of local conformational fluctuation (10(2) Hz) deviated from the torsion angles (alpha(II)-helix) from those of standard alpha-helix, under anisotropic environment in lipid bilayer, in addition to the above-mentioned rigid-body motions. The carbonyl (13)C peaks, on the other hand, are not sensitively displaced by such local anisotropic fluctuations, because they are more sensitive to the manner of hydrogen-bond interactions. The amino acid sequences of these peptides inserted within the bilayer were not always the same as those of intact bR, causing disposition of the transmembrane alpha-helical segment from that of intact bR. Finally, we confirmed that the (13)C NMR peak positions of the random coil form are located at the boundary between the alpha-helix and a turned structure in loop regions.  相似文献   

4.
Nonrespiring rat-liver mitochondria swell in media containing high concentrations of thallous nitrate, indicating passive penetration of Tl+. This swelling could be further stimulated by 10 nM or more nonactin while even 1 microM valinomycin was without effect. Nonactin was also much more potent than valinomycin in stimulating swelling of respiring mitochondria in the presence of thallous acetate. It is evident that nonactin acts as a potent ionophore of Tl+ able to promote both the passive and energized uptake of Tl+ in mitochondria. The distribution of Tl+, present in trace concentrations below 1 mM, was measured during energisation by respiration both in the presence and absence of ionophores. Respiration induced net uptake of Tl+ only in the presence of ionophores, though Tl+ as a permeant cation was expected to sense respiration-induced changes in the membrane potential. The data may be interpreted as indicating that no transmembrane potential is formed upon energisation, but localized fields, which are able to interact with the lipophilic ionophore complexes of Tl+, but not with the hydrophilic cation Tl+. This interpretation is valid only if thermodynamic equilibrium has been reached.  相似文献   

5.
The solution conformation of cyclo-[D-Val-L-Pro-L-Val-D-Pro]3 (PV) and its alkali-metal ion complexes was investigated by proton nuclear magnetic resonance spectroscopy. It is concluded that the cation complexes of PV have S6 symmetry and are essentially isostructural with the K complex of valinomycin. In contrast to valinomycin, the Li- and Na-PV complexes are stable in methanol and have dissociation rate constants that are several orders of magnitude slower than the corresponding valinomycin complexes. Also in contrast to valinomycin, free PV exists in two different conformational states which interconvert at very slow rates (less than 1 s-1). One of these conformers has S6 symmetry and is structurally similar to that of the cation complexes. The other species, which has lower symmetry than S6, is the more stable conformer. Depending upon concentration and solvent polarity, the latter represents between 50 and 75% of the total mixture. It is proposed that PV may have a higher affinity for cations than valinomycin because of its higher potential energy in the uncomplexed state.  相似文献   

6.
We recorded 13C NMR spectra of type I and IV collagens in the anhydrous and hydrated states, in order to confirm our previous assignment of peaks, and to analyze the mode of partial renaturation of soluble collagens by hydration, as well as rapid intramolecular motions such as ring puckering in proline or hydroxyproline residues. First, we attempted to assign all 13C NMR peaks of collagen fibrils on the basis of computer simulation by utilizing amino-acid composition and chemical shift data from both the solid state and solution. We confirmed that some previously unassigned peaks were not ascribable to a denatured portion but to the minor amino-acid residues. The 13C NMR peaks from soluble collagens were appreciably broadened and some peaks were displaced as compared with those of intact collagen fibrils. This was caused by the presence of a partial conformational disorder and/or denaturation at the time of acid-solubilization and dehydration. Those line broadening and displacements of peaks, however, were partially removed by humidification under an atmosphere of 96% R.H. over 12 h. Furthermore, we found that the 13C spin-lattice relaxation times (T1s) of both the C beta and C gamma carbons of Pro and Hyp in fibrils are substantially reduced as compared with those of some crystalline oligopeptides. It was shown that the presence of rapid ring puckering motion in these residues results in a reduction of the NT1 values, where N stands for the number of protons attached to the carbon under consideration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The reversibility of the binding of ionophores to the thylakoid membrane is studied. While gramicidin binds practically irreversibly, valinomycin and nonactin bind reversibly, however, only a small fraction (about 1%) of the membrane-bound valinomycin or nonactin is active in ion transport. The current-voltage relationship is evaluated under these circumstances. We have found that it is practically linear. This together with the relationship between current and ion concentration agrees qualitatively with the results reported for bimolecular lipid membranes, which contain a large fraction of negatively charged lipids. For the ionophores, valinomycin and nonactin, the binding equilibria (K approximately equal to 10-4) and the turnover numbers (approximately equal to 3-10-4/s) are evaluated for their action on the thylakoid membrane. Possible reasons for the inactivity of the majority of membrane-bound ionophore molecules are discussed.  相似文献   

8.
The development and application of model membrane systems on the basis of tetraether lipids from Thermoplasma acidophilum has been proposed. In this respect incorporation of membrane proteins and ionophores is indispensable and is demonstrated in the case of alamethicin, melittin, nonactin, and valinomycin by calorimetry. Dipalmitoylphosphatidylcholine (DPPC) and dihexadecylmaltosylglycerol (DHMG) were chosen for comparison. Melittin and alamethicin prove to broaden the lipid phase transition and to reduce the melting temperature Tm and enthalpy change (delta H) of the main phospholipid from T. acidophilum (MPL) and DPPC. The decrease in Tm, however, is more pronounced in DPPC than in MPL. Valinomycin shows only a marginal effect on the temperature and width of the transition; delta H is reduced in MPL and remains constant in DPPC and DHMG. With nonactin the phase transition of DPPC is quenched, and delta H and the half-height width are increased. DHMG is affected to a lesser extent and MPL only marginally. The four ionophores exhibit different modulation of the phase transition behavior of the various lipids as expected from their varying molecular structures. Thus, the integral membrane protein alamethicin, the peripheral protein melittin, valinomycin, and nonactin interact primarily with lipid head groups and are readily incorporated into the tetraether lipid structures.  相似文献   

9.
Rates of M(+)/H(+) exchange (M(+)=K(+), Na(+)) across phospholipid membranes by ionophore mediated electroneutral translocations and transports through channels could either increase or decrease or change negligibly on adding the polar molecule phloretin to the membrane. The changes depend on pH, the concentration and choice of M(+) and choice of ionophore/channel. Such diverse behaviours have been inferred from studies on the decay of the pH difference across soybean phospholipid vesicular membrane (=Delta pH). The transporters used in this study are (a) the exchange ionophores: nigericin, monensin; (b) combinations of alkali metal ion carriers, valinomycin or nonactin with weak acids carbonyl cyanide m-chlorophenylhydrazone or 2,4-dinitrophenol and (c) channels formed by gramicidin A. All the diverse results can be rationally explained if we take note of the following. (i) The rate limiting steps are associated with the transmembrane translocations involving the rate limiting species identified in the literature. (ii) Phloretin in the membrane decreases the apparent M(+) dissociation constant, K(M), of the M(+) bound ionophores/channels which has the effect of increasing the concentration of these species. (iii) The concentrations of H(+) bound ionophores/channels decrease on adding phloretin. (iv) Phloretin inhibits ternary complex formation (involving valinomycin or nonactin, M(+) and an anion) by forming 1:2 complexes with valinomycin-M(+) or nonactin-M(+). (v) On adding 6-ketocholestanol to the membrane (instead of phloretin) K(M) increases. The decreases/increases in K(M) mentioned above are consistent with the consequences of a hypothesis in which phloretin decreases and 6-ketocholestanol increases the positive internal membrane dipole potential.  相似文献   

10.
The reversibility of the binding of ionophores to the thylakoid membrane is studied. While gramicidin binds practically irreversibly, valinomycin and nonactin bind reversibly, however, only a small fraction (about 1 %) of the membrane-bound valinomycin or nonactin is active in ion transport. The current-voltage relationship is evaluated under these circumstances. We have found that it is practically linear. This together with the relationship between current and ion concentration agrees qualitatively with the results reported for bimolecular lipid membranes, which contain a large fraction of negatively charged lipids. For the ionophores, valinomycin and nonactin, the binding equilibria (K ≈ 104) and the turnover numbers (≈ 3 · 104/s) are evaluated for their action on the thylakoid membrane. Possible reasons for the inactivity of the majority of membrane-bound ionophore molecules are discussed.  相似文献   

11.
The X-ray diffraction analysis, (13)C CP MAS NMR spectra and powder X-ray diffraction patterns were obtained for selected methyl glycosides: alpha- and beta-d-lyxopyranosides (1, 2), alpha- and beta-l-arabinopyranosides (3, 4), alpha- and beta-d-xylopyranosides (5, 6) and beta-d-ribopyranoside (7) and the results were confirmed by GIAO DFT calculations of shielding constants. In X-ray diffraction analysis of 1 and 2, a characteristic shortening and lengthening of selected bonds was observed in molecules of 1 due to anomeric effect and, in crystal lattice of 1 and 2, hydrogen bonds of different patterns were present. Also, an additional intramolecular hydrogen bond with the participation of ring oxygen atom was observed in 1. The observed differences in chemical shifts between solid state and solution come from conformational effects and formation of various intermolecular hydrogen bonds. The changes in chemical shifts originating from intermolecular hydrogen bonds were smaller in magnitude than conformational effects. Furthermore, the powder X-ray diffraction (PXRD) performed for 4, 5 and 7 revealed that 7 existed as a mixture of two polymorphs, and one of them probably consisted of two non-equivalent molecules.  相似文献   

12.
Raman spectra are reported for crystalline nonactin, monactin, dinactin, trinactin, and tetranactin and their solutions in CCl4, CHCl3, CH3OH, and 4:1 (v/v) CH3OH:CHCl3. The macrotetrolide nactins selectively bind a wide variety of cations, and are important model compounds for the study of ion complexation. The conformations of nonactin, monactin, and dinactin in solution are similar. Their conformations are found to be sufficiently open to permit the ester carbonyl groups to form hydrogen bonds with CH3OH; this gives rise to characteristic changes in the vibration frequencies associated with the ester groups. Nonactin, which is the least soluble of the nactins in CH3OH, is also the least effective at forming hydrogen bonds with CH3OH. The greater ability of the higher nactins to form hydrogen bonds with CH3OH may be due to the increased inductive effect of ethyl over methyl side chains, which may increase the dipole moment of the ester carbonyl groups. Spectra of crystalline nonactin, monactin, and tetranactin are fairly similar, while the spectra of dinactin and trinactin comprise a second, distinct family. This is consistent with X-ray crystallographic studies, which show that nonactin and tetranactin form monoclinic crystals, while trinactin is triclinic.  相似文献   

13.
H T Cheung  B Birdsall  J Feeney 《FEBS letters》1992,312(2-3):147-151
13C NMR studies of 13C-labelled ligands bound to dihydrofolate reductase provide (DHFR) a powerful means of detecting and characterizing multiple bound conformations. Such studies of complexes of Escherichia coli DHFR with [4,7,8a,9-13C]- and [2,4a,6-13C]methotrexate (MTX) and [4,6,8a-13C]- and [2,4a,7,9-13C]folic acid confirm that in the binary complexes, MTX binds in two conformational forms and folate binds as a single conformation. Earlier studies on the corresponding complexes with Lactobacillus casei DHFR indicated that, in this case, MTX binds as a single conformation whereas folate binds in multiple conformational forms (both in its binary complex and ternary complex with NADP+); two of the bound conformational states for the folate complexes are very different from each other in that there is a 180 degrees difference in their pteridine ring orientation. In contrast, the two different conformational states observed for MTX bound to E. coli DHFR do not show such a major difference in ring orientation and bind with N1 protonated in both forms. The major difference appears to involve the manner in which the 4-NH2 group of MTX binds to the enzyme (although the same protein residues are probably involved in both interactions). Addition of either NADP+ or NADPH to the E. coli DHFR-MTX complex results in a single set of 13C signals for bound methotrexate consistent with only one conformational form in the ternary complexes.  相似文献   

14.
Rates of M+/H+ exchange (M+=K+, Na+) across phospholipid membranes by ionophore mediated electroneutral translocations and transports through channels could either increase or decrease or change negligibly on adding the polar molecule phloretin to the membrane. The changes depend on pH, the concentration and choice of M+ and choice of ionophore/channel. Such diverse behaviours have been inferred from studies on the decay of the pH difference across soybean phospholipid vesicular membrane (=ΔpH). The transporters used in this study are (a) the exchange ionophores: nigericin, monensin; (b) combinations of alkali metal ion carriers, valinomycin or nonactin with weak acids carbonyl cyanide m-chlorophenylhydrazone or 2,4-dinitrophenol and (c) channels formed by gramicidin A. All the diverse results can be rationally explained if we take note of the following. (i) The rate limiting steps are associated with the transmembrane translocations involving the rate limiting species identified in the literature. (ii) Phloretin in the membrane decreases the apparent M+ dissociation constant, KM, of the M+ bound ionophores/channels which has the effect of increasing the concentration of these species. (iii) The concentrations of H+ bound ionophores/channels decrease on adding phloretin. (iv) Phloretin inhibits ternary complex formation (involving valinomycin or nonactin, M+ and an anion) by forming 1:2 complexes with valinomycin–M+ or nonactin–M+. (v) On adding 6-ketocholestanol to the membrane (instead of phloretin) KM increases. The decreases/increases in KM mentioned above are consistent with the consequences of a hypothesis in which phloretin decreases and 6-ketocholestanol increases the positive internal membrane dipole potential.  相似文献   

15.
The interaction of a newly developed Helicobacter pylori eradicating agent (TG44, 4-methylbenzyl-4'-[trans-4-(guanidinomethyl)cyclohexylcarbonyloxy]-biphenyl-4-carboxlylate monohydrochloride) with cyclomaltoheptaose (beta-cyclodextrin, beta-CyD) in the solid state was studied by high-speed frequency-switched Lee-Goldburg (FSLG) (13)C-(1)H heteronuclear correlation (HETCOR) NMR experiments. The TG44/beta-CyD solid complex in a 1:1 stoichiometry was prepared by the grinding method. Powder X-ray diffractometry confirmed that the complex is in an amorphous state. The solid-state (13)C signals of TG44 and beta-CyD were significantly broadened by the complexation. As the temperature increased, the (13)C signals of the aromatic moieties of TG44 were insignificantly influenced, whereas those of the cyclohexyl moiety became sharper. The T1(rho) H values of the aromatic moieties of TG44 were almost the same as those of the beta-CyD carbons, whereas those of other TG44 carbons gave much smaller values. The (13)C-(1)H HETCOR spectra gave the intermolecular correlation peaks between the aromatic carbons of TG44 and the beta-CyD protons or between the biphenyl protons of TG44 and the beta-CyD carbons, when measured using longer contact times (500 and 1500mus). On the basis of these solid NMR spectroscopic data together with aqueous NMR data, we assume that beta-CyD includes predominantly the biphenyl moiety of TG44 in the solid state. (13)C-(1)H HETCOR spectroscopy is particularly useful for the determination of inclusion modes of the complexes that occurring in an amorphous form.  相似文献   

16.
The anomeric carbon chemical shifts of free cyclomaltohexaose, -heptaose, -octaose, -decaose, and -tetradecaose (alpha-, beta-, gamma-, epsilon-, and eta-cyclodextrin, respectively), and of alpha-cyclodextrin inclusion complexes, both in the solid state and in solution, were computed using ab initio 13C chemical shift surfaces for the D-Glcp-alpha-(1-->4)-D-Glcp linkage as a function of the glycosidic bond dihedral angles. Chemical shift calculations in the solid state used angle pairs measured from cyclodextrin X-ray structures as input. For estimations in the liquid state two different approaches were employed to account for dynamic averaging. In one, the computed solid-state anomeric carbon chemical shifts for each cyclodextrin D-Glcp monomer were simply averaged to obtain an estimate of the 13C shifts in solution. In the other, chemical shifts for the anomeric carbons were determined by averaging back-calculated 13C shift trajectories derived from a series of 5 ns molecular dynamic simulations for the oligosaccharides with explicit representation of water. Good agreement between calculated and experimental 13C shifts was found in all cases. Furthermore, our results show that the ab initio 13C chemical shift surfaces are sufficiently sensitive to reproduce the small variations observed for the anomeric 13C shifts of the different cyclodextrin D-Glcp units in the solid state with excellent accuracy. The use of chemical shift surfaces as tools in conformational studies of oligosaccharides is discussed.  相似文献   

17.
We have recorded (13)C NMR spectra of [2-(13)C]-, [1-(13)C]-, [3-(13)C],- and [1,2,3-(13)C(3)]Ala-labeled bacteriorhodopsin (bR), and its mutants, A196G, A160G, and A103C, by means of cross polarization-magic angle spinning (CP-MAS) and dipolar decoupled-magic angle spinning (DD-MAS) techniques, to reveal the conformation and dynamics of bR, with emphasis on the loop and C-terminus structures. The (13)C NMR signals of the loop (C-D, E-F, and F-G) regions were almost completely suppressed from [2-(13)C]-, [1-(13)C]Ala-, and [1-(13)C]Gly-labeled bR, due to the presence of conformational fluctuation with correlation times of 10(-4) s that interfered with the peak-narrowing by magic angle spinning. The observation of such suppressed peaks for specific residues provides a unique means of detecting intermediate frequency motions on the time scale of ms or micros in the surface loops of membrane proteins. Instead, the three well-resolved (13)C CP-MAS NMR signals of [2-(13)C]Ala-bR, at 50.38, 49.90, and 47.96 ppm, were ascribed to the C-terminal alpha-helix previously proposed from the data for [3-(13)C]Ala-bR: the former two peaks were assigned to Ala 232 and 238, in view of the results of successive proteolysis experiments, while the highest-field peak was ascribed to Ala 235 prior to Pro 236. Even such (13)C NMR signals were substantially broadened when (13)C NMR spectra of fully labeled [1,2,3-(13)C]Ala-bR were recorded, because the broadening and splitting of peaks due to the accelerated transverse relaxation rate caused by the increased number of relaxation pathways through a number of (13)C-(13)C homo-nuclear dipolar interactions and scalar J couplings, respectively, are dominant among (13)C-labeled nuclei. In addition, approximate correlation times for local conformational fluctuations of different domains, including the C-terminal tail, C-terminal alpha-helix, loops, and transmembrane alpha-helices, were estimated by measurement of the spin-lattice relaxation times in the laboratory frame and spin-spin relaxation times under the conditions of cross-polarization-magic angle spinning, and comparative study of suppressed specific peaks between the CP-MAS and DD-MAS experiments.  相似文献   

18.
13C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled D85N mutant of bacteriorhodopsin (bR) reconstituted in egg PC or DMPC bilayers were recorded to gain insight into their secondary structures and dynamics. They were substantially suppressed as compared with those of 2D crystals, especially at the loops and several transmembrane alphaII-helices. Surprisingly, the 13C NMR spectra of [3-(13)C]Ala-D85N turned out to be very similar to those of [3-(13)C]Ala-bR in lipid bilayers, in spite of the presence of globular conformational and dynamics changes in the former as found from 2D crystalline preparations. No further spectral change was also noted between the ground (pH 7) and M-like state (pH 10) as far as D85N in lipid bilayers was examined, in spite of their distinct changes in the 2D crystalline state. This is mainly caused by that the resulting 13C NMR peaks which are sensitive to conformation and dynamics changes in the loops and several transmembrane alphaII-helices of the M-like state are suppressed already by fluctuation motions in the order of 10(4)-10(5) Hz interfered with frequencies of magic angle spinning or proton decoupling. However, 13C NMR signal from the cytoplasmic alpha-helix protruding from the membrane surface is not strongly influenced by 2D crystal or monomer. Deceptively simplified carbonyl 13C NMR signals of the loop and transmembrane alpha-helices followed by Pro residues in [1-(13)C]Val-labeled bR and D85N in 2D crystal are split into two peaks for reconstituted preparations in the absence of 2D crystalline lattice. Fortunately, 13C NMR spectral feature of reconstituted [1-(13)C]Val and [3-(13)C]Ala-labeled bR and D85N was recovered to yield characteristic feature of 2D crystalline form in gel-forming lipids achieved at lowered temperatures.  相似文献   

19.
T A Gerken 《Biochemistry》1984,23(20):4688-4697
13C NMR spectroscopy has been used to study the amino group environments and metal binding properties of 13C reductively methylated bovine alpha-lactalbumin. Bovine alpha-lactalbumin is a Ca2+ metalloprotein containing 12 lysyl amino groups and a free amino terminus. All 13 amino groups can be 13C-dimethylated without altering Ca2+ binding or biological activity. pH titrations (chemical shift vs. pH) of this dimethylated protein reveal unique behavior for each of the 13 amino groups. The pKa values for the lysyl amino groups range from 9.1 to 10.8 while the pKa for the N-terminal amino group is 8.3. This relatively high pKa (by 1 pH unit) for the N-terminal supports its interaction in an ion pair as proposed by Warme et al. [Warme, P. K., Momany, F. A., Rumball, S. V., Tuttle, R. W., & Scheraga, H. A. (1974) Biochemistry 13, 768-782]. Carbon-13 NMR studies further show that the removal of Ca2+ from the high-affinity binding site results in a conformational change, with the disruption of the N-terminal ion pair interaction (pKa decreased to 7.4). The study of Zn2+ binding to Ca2+-saturated protein suggests that Zn2+ binds initially at a low-affinity Ca2+ site while maintaining the N-terminal ion pair interaction. The further addition of Zn2+ leads to the disruption of this ion pair forming a presumed apoprotein-like conformation. Finally on the basis of the specific effects of added Mn2+ on the 13C NMR spectra of the methylated protein, a low-affinity divalent metal binding site is proposed about 7.5 A from the amino terminus.  相似文献   

20.
In order to clarify the difference between solution NMR and X-ray diffraction analyses concerning the presence of alpha-helical structure in protein A, the 13C conformation-dependent chemical shifts of the 13C-labeled carbonyl carbons for selectively labeled protein A were used. In the 13C CP/MAS NMR spectra, the higher-field shifts of the carbonyl carbons of 13C-labeled Thr and Val residues compared with the random coil chemical shifts both in solution and solid state imply the presence of the third helix in the polypeptide chain, in contrast to the crystal structure of Fc-bound B-domain. Thus, a combination of selective isotope labeling and conformation-dependent chemical shifts will be a good Indicator to monitor the local structure of homologous protein in solution and solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号