首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Transcarboxylase is a 1.2 million Dalton (Da) multienzyme complex from Propionibacterium shermanii that couples two carboxylation reactions, transferring CO(2)(-) from methylmalonyl-CoA to pyruvate to yield propionyl-CoA and oxaloacetate. Crystal structures of the 5S metalloenzyme subunit, which catalyzes the second carboxylation reaction, have been solved in free form and bound to its substrate pyruvate, product oxaloacetate, or inhibitor 2-ketobutyrate. The structure reveals a dimer of beta(8)alpha(8) barrels with an active site cobalt ion coordinated by a carbamylated lysine, except in the oxaloacetate complex in which the product's carboxylate group serves as a ligand instead. 5S and human pyruvate carboxylase (PC), an enzyme crucial to gluconeogenesis, catalyze similar reactions. A 5S-based homology model of the PC carboxyltransferase domain indicates a conserved mechanism and explains the molecular basis of mutations in lactic acidemia. PC disease mutations reproduced in 5S result in a similar decrease in carboxyltransferase activity and crystal structures with altered active sites.  相似文献   

2.
Y Kimura  R Sato  K Mimura    M Sato 《Journal of bacteriology》1997,179(22):7098-7102
A dcm-1 mutant, obtained by transposon mutagenesis of Myxococcus xanthus, could aggregate and form mounds but was unable to sporulate under nutrient starvation. A sequence analysis of the site of insertion of the transposon showed that the insertion lies within the 3' end of a 1,572-bp open reading frame (ORF) designated the M. xanthus pccB ORF. The wild-type form of the M. xanthus pccB gene, obtained from a lambdaEMBL library of M. xanthus, shows extensive similarity to a beta subunit of propionyl coenzyme A (CoA) carboxylase, an alpha subunit of methylmalonyl-CoA decarboxylase, and a 12S subunit of transcarboxylase. In enzyme assays, extracts of the dcm-1 mutant were deficient in propionyl-CoA carboxylase activity. This enzyme catalyzes the ATP-dependent carboxylation of propionyl-CoA to yield methylmalonyl-CoA. The methylmalonyl-CoA rescued the dcm-1 mutant fruiting body and spore development. During development, the dcm-1 mutant cells also had reduced levels of long-chain fatty acids (C16 to C18) compared to wild-type cells.  相似文献   

3.
Malonyl-CoA decarboxylase from the uropygial gland of goose decarboxylated (R,S)-methylmalonyl-CoA at a slow rate and introduced 3H from [3H]2O into the resulting propionyl-CoA. Carboxylation of this labeled propionyl-CoA by propionyl-CoA carboxylase from pig heart and acetyl-CoA carboxylase from the uropygial gland completely removed 3H. Repeated treatment of (R,S)-[methyl-14C]methylmalonyl-CoA with the decarboxylase converted 50% of the substrate into propionyl-CoA, whereas (S)-methylmalonyl-CoA, generated by both carboxylases, was completely decarboxylated. Radioactive (R)- (S), and (R,S)-methylmalonyl-CoA were equally incorporated into fatty acids by fatty acid synthetase from the uropygial gland. The residual methylmalonyl-CoA remaining after fatty acid synthetase reaction on (R,S)-methylmalonyl-CoA was also racemic. These results show that: (a) the decarboxylase is stereospecific, (b) replacement of the carboxyl group by hydrogen occurs with retention of configuration, (c) acetyl-CoA carboxylase of the uropygial gland generates (S)-methylmalonyl-CoA from propionyl-CoA, and (d) fatty acid synthetase is not stereospecific for methylmalonyl-CoA.  相似文献   

4.
Crude cell-free extracts isolated from the uropygial glands of goose catalyzed the carboxylation of propionyl-CoA but not acetyl-CoA. However, a partially purified preparation catalyzed the carboxylation of both substrates and the characteristics of this carboxylase were similar to those reported for chicken liver carboxylase. The Km and Vmax for the carboxylation of either acetyl-CoA or propionyl-CoA were 1.5 times 10- minus-5 M and 0.8 mumol per min per mg, respectively. In the crude extracts an inhibitor of the acetyl-CoA carboxylase activity was detected. The inhibitor was partially purified and identified as a protein that catalyzed the rapid decarboxylation of malonyl-CoA. This enzyme was avidin-insenitive and highly specific for malonyl-CoA with very low rates of decarboxylation for methylmalonyl-CoA and malonic acid. Vmax and Km for malonyl-CoA decarboxylation, at the pH optimum of 9.5, were 12.5 mumol per min per mg and 8 times 10- minus-4 M, respectively. The relative activities of the acetyl-CoA carboxylase and malonyl-CoA decarboxylase were about 4 mumol per min per gland and 70 mumoles per min per gland, respectively. Therefore acetyl-CoA and methylmalonyl-CoA should be the major primer and elongating agent, respectively, present in the gland. The major fatty acid formed from these precursors by the fatty acid synthetase of the gland would be 2,4,6,8-tetramethyl-decanoic acid which is known to be the major fatty acid of the gland (Buckner, J. S. and Kolattukudy, P. E. (1975), Biochemistry, following paper). Therefore it is concluded that the malonyl-CoA decarboxylase controls fatty acid synthesis in this gland.  相似文献   

5.
Acetyl-CoA carboxylase (ACC) and propionyl-CoA carboxylase (PCC) catalyze the carboxylation of acetyl- and propionyl-CoA to generate malonyl- and methylmalonyl-CoA, respectively. Understanding the substrate specificity of ACC and PCC will (1) help in the development of novel structure-based inhibitors that are potential therapeutics against obesity, cancer, and infectious disease and (2) facilitate bioengineering to provide novel extender units for polyketide biosynthesis. ACC and PCC in Streptomyces coelicolor are multisubunit complexes. The core catalytic beta-subunits, PccB and AccB, are 360 kDa homohexamers, catalyzing the transcarboxylation between biotin and acyl-CoAs. Apo and substrate-bound crystal structures of PccB hexamers were determined to 2.0-2.8 A. The hexamer assembly forms a ring-shaped complex. The hydrophobic, highly conserved biotin-binding pocket was identified for the first time. Biotin and propionyl-CoA bind perpendicular to each other in the active site, where two oxyanion holes were identified. N1 of biotin is proposed to be the active site base. Structure-based mutagenesis at a single residue of PccB and AccB allowed interconversion of the substrate specificity of ACC and PCC. The di-domain, dimeric interaction is crucial for enzyme catalysis, stability, and substrate specificity; these features are also highly conserved among biotin-dependent carboxyltransferases. Our findings enable bioengineering of the acyl-CoA carboxylase (ACCase) substrate specificity to provide novel extender units for the combinatorial biosynthesis of polyketides.  相似文献   

6.
While a number of studies underline the importance of anaplerotic pathways for hepatic biosynthetic functions and cardiac contractile activity, much remains to be learned about the sites and regulation of anaplerosis in these tissues. As part of a study on the regulation of anaplerosis from propionyl-CoA precursors in rat livers and hearts, we investigated the degree of reversibility of the reactions of the propionyl-CoA pathway. Label was introduced into the pathway via NaH13CO3, [U-13C3]propionate, or [U-13C3]lactate + [U-13C3]pyruvate, under various concentrations of propionate. The mass isotopomer distributions of propionyl-CoA, methylmalonyl-CoA, and succinyl-CoA revealed that, in intact livers and hearts, (i) the propionyl-CoA carboxylase reaction is slightly reversible only at low propionyl-CoA flux, (ii) the methylmalonyl-CoA racemase reaction keeps the methylmalonyl-CoA enantiomers in isotopic equilibrium under all conditions tested, and (iii) the methylmalonyl-CoA mutase reaction is reversible, but its reversibility decreases as the flow of propionyl-CoA increases. The thermodynamic dis-equilibrium of the combined reactions of the propionyl-CoA pathway explains the effectiveness of anaplerosis from propionyl-CoA precursors such as heptanoate.  相似文献   

7.
The possible role of some metabolic systems producing acetyl-CoA, and methylmalonyl-CoA as initial precursors in the biosynthesis of the macrolide antibiotic A 6599 by Streptomyces hygroscopicus JA 6599 was studied. The activities of pyruvate decarboxylase exceeded in two higher producing strains about twofold those found in the mycelium of a lower producing one suggesting that in this organism an enhanced production of acetyl-CoA should be one of the prerequisites necessary for an improved antibiotic biosynthesis. No clear interrelationship was established, however, between the biosynthesis of the secondary metabolite A 6599 on the one hand and the acetate and propionate kinase content on the other hand. In S. hygroscopicus JA 6599 the carboxylation of acetyl-CoA or propionyl-CoA seems to be the major pathway giving malonyl-CoA or methylmalonyl-CoA, respectively. Thus, the activities of acetyl-CoA and propionyl-CoA carboxylases corresponded with both the levels of antibiotic production in several strains and with variations observed in the specific antibiotic production rate during the cultivation. Some other pathways synthesizing these precursors, e.g. via oxaloacetate, are assumed to be negligible since even in the mycelium of the lower producing strain increased activities of phosphoenolpyruvate carboxylase were present.  相似文献   

8.
Carey PR  Sönnichsen FD  Yee VC 《IUBMB life》2004,56(10):575-583
The enzyme transcarboxylase (TC) catalyzes an unusual reaction; TC transfers a carboxylate group from methylmalonyl-CoA to pyruvate to form oxaloacetate and propionyl-CoA. Remarkably, to perform this task in Propionii bacteria Nature has created a large assembly made up of 30 polypeptides that totals 1.2 million daltons. In this nanomachine the catalytic machinery is repeated 6-12 times over using ordered arrays of replicated subunits. The latter are sites of the half reactions. On the so-called 12S subunit a biotin cofactor accepts carboxylate, - CO2- , from methylmalonyl-CoA. The carboxylated-biotin then translocates to a second subunit, the 5S, to deliver the carboxylate to pyruvate. We have not yet characterized the intact nanomachine, however, using a battery of biophysical techniques, we have been able to derive novel,and sometimes unexpected, structural and mechanistic insights into the 12S and 5S subunits. Similar insights have been obtained for the small 1.3S subunit that acts as the biotin carrier linking the 12S and 5S forms. Interestingly, some of these insights gained for the 12S and 5S subunits carry over to related mammalian enzymes such as human propionyl-CoA carboxylase and human pyruvate carboxylase, respectively, to provide a rationale for their malfunction in disease-related mutations.  相似文献   

9.
A Hoffmann  P Dimroth 《FEBS letters》1987,220(1):121-125
The steric course of the decarboxylation of (S)-methylmalonyl-CoA to propionyl-CoA, catalyzed by the biotin-dependent sodium pump methylmalonyl-CoA decarboxylase of Veillonella alcalescens was determined. The decarboxylation of (S)-methylmalonyl-CoA in 3H2O yielded (R)-[2-3H]propionyl-CoA; and the decarboxylation of (S)-[2-3H]methylmalonyl-CoA in H2O produced (S)-[2-3H]propionyl-CoA. The results demonstrate retention of configuration during the decarboxylation reaction. The substrate stereochemistry of methylmalonyl-CoA decarboxylase is thus the same as that of all other biotin-containing enzymes investigated.  相似文献   

10.
Transcarboxylase (TC) from Propionibacterium shermanii, a biotin-dependent enzyme, catalyzes the transfer of a carboxyl group from methylmalonyl-CoA to pyruvate to form propionyl-CoA and oxalacetate. Within the multi-subunit enzyme complex, the 1.3S subunit functions as the carboxyl group carrier and also binds the other two subunits to assist in the overall assembly of the enzyme. The 1.3S subunit is a 123 amino acid polypeptide (12.6 kDa) to which biotin is covalently attached at Lys 89. The three-dimensional solution structure of the full-length holo-1.3S subunit of TC has been solved by multidimensional heteronuclear NMR spectroscopy. The C-terminal half of the protein (51-123) is folded into a compact all-beta-domain comprising of two four-stranded antiparallel beta-sheets connected by short loops and turns. The fold exhibits a high 2-fold internal symmetry and is similar to that of the biotin carboxyl carrier protein (BCCP) of acetyl-CoA carboxylase, but lacks an extension that has been termed "protruding thumb" in BCCP. The first 50 residues, which have been shown to be involved in intersubunit interactions in the intact enzyme, appear to be disordered in the isolated 1.3S subunit. The molecular surface of the folded domain has two distinct surfaces: one side is highly charged, while the other comprises mainly hydrophobic, highly conserved residues.  相似文献   

11.
Acetyl-CoA carboxylase catalyzes the committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multifunctional enzyme consisting of three separate proteins: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component, which catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source, has a homologous functionally identical subunit in the mammalian biotin-dependent enzymes propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase. In humans, mutations in either of these enzymes result in the metabolic deficiency propionic acidemia or methylcrotonylglycinuria. The lack of a system for structure-function studies of these two biotin-dependent carboxylases has prevented a detailed analysis of the disease-causing mutations. However, structural data are available for E. coli biotin carboxylase as is a system for its overexpression and purification. Thus, we have constructed three site-directed mutants of biotin carboxylase that are homologous to three missense mutations found in propionic acidemia or methylcrotonylglycinuria patients. The mutants M169K, R338Q, and R338S of E. coli biotin carboxylase were selected for study to mimic the disease-causing mutations M204K and R374Q of propionyl-CoA carboxylase and R385S of 3-methylcrotonyl-CoA carboxylase. These three mutants were subjected to a rigorous kinetic analysis to determine the function of the residues in the catalytic mechanism of biotin carboxylase as well as to establish a molecular basis for the two diseases. The results of the kinetic studies have revealed the first evidence for negative cooperativity with respect to bicarbonate and suggest that Arg-338 serves to orient the carboxyphosphate intermediate for optimal carboxylation of biotin.  相似文献   

12.
13.
A procedure is given for the preparation of an avidin monomer affinity column which is useful in the purification of biotin-containing enzymes. Both the propionyl-CoA carboxylase of Mycobacterium smegmatis and the methylmalonyl-CoA pyruvate transcarboxylase (EC 2.1.3.1) of Arachnia propionica and Propionibacterium shermanii bind to the column and can be specifically eluted with (+)-biotin.  相似文献   

14.
Autotrophic Archaea of the family Sulfolobaceae (Crenarchaeota) use a modified 3-hydroxypropionate cycle for carbon dioxide assimilation. In this cycle the ATP-dependent carboxylations of acetyl-CoA and propionyl-CoA to malonyl-CoA and methylmalonyl-CoA, respectively, represent the key CO2 fixation reactions. These reactions were studied in the thermophilic and acidophilic Metallosphaera sedula and are shown to be catalyzed by one single large enzyme, which acts equally well on acetyl-CoA and propionyl-CoA. The carboxylase was purified and characterized and the genes were cloned and sequenced. In contrast to the carboxylase of most other organisms, acetyl-CoA/propionyl-CoA carboxylase from M. sedula is active at 75 degrees C and is isolated as a stabile functional protein complex of 560 +/- 50 kDa. The enzyme consists of two large subunits of 57 kDa each representing biotin carboxylase (alpha) and carboxytransferase (gamma), respectively, and a small 18.6 kDa biotin carrier protein (beta). These subunits probably form an (alpha beta gamma)4 holoenzyme. It has a catalytic number of 28 s-1 at 65 degrees C and at the optimal pH of 7.5. The apparent Km values were 0.06 mm for acetyl-CoA, 0.07 mm for propionyl-CoA, 0.04 mm for ATP and 0.3 mm for bicarbonate. Acetyl-CoA/propionyl-CoA carboxylase is considered the main CO2 fixation enzyme of autotrophic members of Sulfolobaceae and the sequenced genomes of these Archaea contain the respective genes. Due to its stability the archaeal carboxylase may prove an ideal subject for further structural studies.  相似文献   

15.
A heat-stable endogenous CO(2) acceptor has been found in extracts of Rhodospirillum rubrum grown photoheterotrophically on acetate. Evidence is presented which suggests that this factor is propionic acid. Thus, paper and gas chromatographic analyses have indicated that propionic acid is present in boiled extracts prepared from R. rubrum cells. The products of (14)CO(2) fixation obtained with either the boiled extract or propionic acid as the CO(2) acceptor were identical and were identified as methylmalonic acid and succinic acid by paper chromatography. The enzyme which catalyzes the carboxylation of propionyl-coenzyme A (propionyl-CoA carboxylase) was purified from R. rubrum cells grown on acetate and its properties were studied. The enzyme is similar to propionyl-CoA carboxylases isolated from mammalian sources.  相似文献   

16.
Fluorometric assay procedures are described for the quantitative measurements of succinyl-CoA and propionyl-CoA down to concentrations of 0.1 μm in the reaction mixture. The enzymatic assay for succinyl-CoA couples the reaction of 3-ketoacid CoA transferase (succinyl-CoA transferase) to β-OH butyryl-CoA dehydrogenase. A simple purification procedure is described for the isolation of succinyl-CoA transferase from beef heart. Two enzyme assays for propionyl-CoA are described. In the first, CoA, acetyl-CoA and propionyl-CoA are assayed by sequential addition of α-ketoglutarate dehydrogenase, citrate synthase and phosphotransacetylase. The second assay for propionyl-CoA utilized propionyl-CoA carboxylase to convert propionyl-CoA to methylmalonyl-CoA in the presence of ATP and bicarbonate, and the ADP formed was assayed by coupling pyruvate kinase with lactate dehydrogenase. Illustrations are given for the application of these assay procedures to measurements of succinyl-CoA and propionyl-CoA in neutralized perchloric acid extracts prepared from rat heart and liver mitochondria incubated under a variety of conditions.  相似文献   

17.
In adult F. hepatica pyruvate is decarboxylated via pyruvate dehydrogenase to acetyl-CoA; acetyl-CoA is then cleaved to acetate via three possible mechanisms (1) carnitine dependent hydrolysis, (2) CoA transferase, (3) reversal of a GTP dependent acyl-CoA synthetase. Of these three systems, CoA transferase has by far the greatest activity. Propionate production by F. hepatica is similar to the mammalian system, succinate being metabolized via succinic thiokinase, methylmalonyl-CoA isomerase, methyl-malonyl-CoA racemase and propionyl-CoA carboxylase to propionyl-CoA. Propionyl-CoA is then cleaved to propionate by the same three pathways as acetyl-CoA. No ATP or GTP production could be demonstrated when acetyl- or propionyl-CoA were incubated with homogenates of F. hepatica. This indicates that carnitine dependent hydrolysis or CoA transferase are the major pathways of acetyl- or propionyl-CoA breakdown. The CoA transferase reaction would result in the conservation of the bond energy although there is no net ATP synthesis.  相似文献   

18.
An acyl-coenzyme A carboxylase that carboxylates acetyl-CoA, butyryl-CoA, propionyl-CoA, and succinyl-CoA was purified from Myxococcus xanthus. Since the enzyme showed maximal rates of carboxylation with propionyl-CoA, the enzyme is thought to be propionyl-CoA carboxylase. The apparent K m values for acetyl-CoA, butyryl-CoA, propionyl-CoA, and succinyl-CoA were found to be 0.2, 0.2, 0.03, and 1.0 mM, respectively. The native enzyme has a molecular mass of 605–615 kDa and is composed of nonidentical subunits (α and β) with molecular masses of 53 and 56 kDa, respectively. The enzyme showed maximal activity at pH 7.0–7.5 and at 25–30°C, and was affected by variation in concentrations of ATP and Mg2+. During development of M. xanthus, the propionyl-CoA carboxylase activity increased gradually, with maximum activity observed during the sporulation stage. Previous work has shown that a propionyl-CoA-carboxylase-deficient mutant of M. xanthus reduces levels of long-chain fatty acids. These results suggest that the propionyl-CoA carboxylase is also responsible for the carboxylation of acetyl-CoA to malonyl-CoA used for the synthesis of long-chain fatty acids during development. Received: 24 February 1998 / Accepted: 25 May 1998  相似文献   

19.
Mechanisms of growth inhibition by propionate on the growth of Rhodopseudomonas sphaeroides were studied. Partially purified pyruvate dehydrogenase complex (PDC) from R. sphaeroides was inhibited by propionyl-CoA, one of the metabolic intermediates of propionate, while propionate itself did not inhibit the enzyme. This suggests that the inhibitor of the growth in vivo is not propionate but propionyl-CoA. The inhibition by propionyl-CoA was competitive with respect to coenzyme A concentration. The K1 value for propionyl-CoA was 0.84 mM. Addition of NaHCO3, which restored the growth of this bacterium in the presence of propionate, increased the rate of propionate incorporation by 1.7-fold and decreased the intracellular level of propionyl-CoA by half. These findings suggest that HCO3-ion lowers the level of propionyl-CoA by accelerating its carboxylation reaction, which is catalyzed by propionyl-CoA carboxylase. Effects of NaHCO3 and acetate on the growth restoration were also studied by the use of propionyl-CoA carboxylase-deficient mutants. NaHCO3 did not restore the growth of the mutants, indicating an essential role of propionyl-CoA carboxylase on the restoration of growth by NaHCO3 as suggested above. Addition of acetate restores the growth of the mutants in the presence of propionate. Acetate probably restores the growth by supplying acetyl-CoA.  相似文献   

20.
The 12S subunit of transcarboxylase is a 338 000 Da hexamer that transfers carboxlylate from methylmalonyl-CoA (MM-CoA) to biotin; in turn, the biotin transfers the carboxylate to pyruvate on another subunit, the 5S. Here, Raman difference microscopy is used to study the binding of substrate and product, and their analogues, to single crystals of 12S. A single crystal is the medium of choice because it provides Raman data of unprecedented quality. Crystalline ligand-protein complexes were formed by cocrystallization or by the soaking in/soaking out method. Raman difference spectra were obtained by subtracting the spectrum of the apo crystal from that of a crystal with the substrate or product bound. Raman difference spectra from crystals with the substrate bound are dominated by bands from the protein's amide bonds and aromatic side chain residues. In contrast, Raman difference spectra involving the product, propionyl-CoA, are dominated by modes from the ligand. These results show that substrate binding triggers a conformational change in 12S, whereas product binding does not. The conformational change involves an increase in the amount of alpha-helix since markers for this secondary structure are prominent in the difference spectra of the substrate complex. The number of MM-CoA ligands bound per 12S hexamer can be gauged from the intensity of the MM-CoA Raman features and the fact that the protein concentration in the crystals is known from X-ray crystallographic data. Most crystal samples had six MM-CoAs per hexamer although a few, from different soaking experiments, contained only 1-2. However, both sets of crystals showed the same degree of protein conformational change, indicating that the change induced by the substrate is cooperative. This effect allowed us to record the Raman spectrum of bound MM-CoA without interference from protein modes; the Raman spectrum of a 12S crystal containing 2 MM-CoA ligands per hexamer was subtracted from the Raman spectrum of a 12S crystal containing six MM-CoA ligands per hexamer. The conformational change is reversible and can be controlled by soaking out or soaking in the ligand, using either concentrated ammonium sulfate solutions or the solution used in the crystallization trials. Malonyl-CoA also binds to 12S crystals and brings about conformational changes identical to those seen for MM-CoA; in addition, butyryl-CoA binds and behaves in a manner similar to propionyl-CoA. These data implicate the -COO- group on MM-CoA (that is transferred to biotin in the reaction on the intact enzyme) as the agent bringing about the cooperative conformational change in 12S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号