首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and metabolic fate of purine nucleotides were studied, employing labeled precursors, in primary rat muscle cultures. The cultures were found to produce purine nucleotides, by de novo and salvage pathways, both exhibiting dependence on cellular availability of substrate 5-phosphoribosyl-1-pyrophosphate (PPRibP). Depletion of cellular PPRibP decelerated the rate of purine synthesis, whereas increasing PPRibP generation by high Pi concentration in the incubation medium, accelerated purine synthesis. Ribose accelerated purine synthesis, indicating that ribose 5-phosphate availability in the cultured muscle is limiting for PPRibP synthesis. The study in the muscle cultures of the metabolic fate if IMP formed from [14C]formate and that of nucleotides formed from labeled purine bases, revealed that the main flow in the nucleotide interconversions pathways is from AMP to IMP. The flow from IMP to GMP and to AMP appeared to be of a lesser magnitude and virtually no flow could be detected from GMP to IMP. The greatest proportion of radioactivity of purine nucleotides following synthesis by either de novo or salvage pathways, accumulated in IMP, reflecting the relative rates of flows between the various nucleotides and probably also a relatively low, or inhibited activity of the IMP nucleotidase. The results suggest that primary muscle cultures are a plausible model for the study of the role of purine metabolism in muscle work.  相似文献   

2.
Purine nucleotides of fresh human red cells and of red cells during storage at 4 degrees and 25 degrees C with additions of adenine, guanine, guanosine and inosine were estimated by HPLC. Six nucleotides were found in red cells: ATP, ADP, AMP, GTP, GDP, and IMP. The adenine nucleotides represented 92 per cent of the total purine nucleotides, guanine nucleotides 7 per cent and IMP less than 1 per cent. In red cells stored with adenine the total concentration of purine nucleotides increased to 125 per cent of the normal value. An adenine-free but guanine and guanine + inosine containing medium caused a decrease of the concentration of purine nucleotides by 10 to 20 per cent. When red cells were stored without adding guanine or guanosine the content of the guanine nucleotides decreased from 0.32 to 0.17 mumol/g Hb due to the decrease in the GTP content, but the GDP concentration increased slightly. In CPD-AG blood, however, the concentration of guanine nucleotides increased considerably up to 0.6 mumol/g Hb. IMP was estimated in all investigated stored red cells. In CPD-A and in CPD-AG blood 0.4 mumol/g Hb were produced during 3 weeks of storage, but twice of that in CPD-AI blood. The principles of the synthesis and the degradation of purine nucleotides in stored red cells are discussed in detail.  相似文献   

3.
Regulation of purine biosynthesis in G1 phase-arrested mammalian cells   总被引:1,自引:0,他引:1  
The effects of G1 phase growth arrest on purine biosynthesis were studied in cultured S49 T lymphoma cells. Incubations of wildtype S49 cells for 18 hr with dibutyryl cyclic AMP or forskolin, two agents which induced G1 arrest, reduced the rates of purine biosynthesis by 95%. Time course and concentration dependence studies indicated that the decrease in rates of purine biosynthesis correlated with the extent of G1 phase arrest. Similar studies with somatic cell mutants deficient in some component of cyclic AMP action or metabolism indicated that the depression in purine synthetic rates required G1 arrest and did not result from cell death. Rates of RNA and DNA synthesis were also markedly diminished in the growth arrested cells. Measurements of purine rates in the presence of azaserine indicated that the block in purine biosynthesis was prior to the formation of phosphoribosylformylglycinamide. Additionally, the activities of adenylosuccinate synthetase and IMP dehydrogenase were diminished in G1 arrested cells. The levels of all controlling enzymes, substrates, and cofactors, however, were not diminished in G1 arrested cells. Despite diminished rates of purine biosynthesis, the amounts of intracellular nucleotides in G1 cells were equivalent to those in exponentially growing cells. However, the concentrations of intracellular nucleotides were 30-50% higher in the growth arrested cells. These results suggested that perturbations in the consumption of nucleotides via inhibition of nucleic acid synthesis have profound effects on the purine pathway and indicated the importance of feedback inhibition by nucleotides in the regulation of purine synthesis in situ.  相似文献   

4.
A major problem involved in the direct fermentation of nucleotides is their breakdown by phosphohydrolases. Thus, adenine auxotrophs of most microorganisms produce hypoxanthine and/or inosine rather than inosine 5′-monophosphate (IMP) while guanine auxotrophs excrete xanthosine rather than xanthosine 5′-monophosphate (XMP). Examination of a Bacillus subtilis mutant producing hypoxanthine plus inosine revealed at least four phosphohydrolases, three of which could attack nucleotides. Even when the extracellular nucleotide phosphohydrolase was inhibited by Cu+2 and its surface-bound alkaline phosphohydrolase was repressed and inhibited by inorganic phosphate, or removed by mutation, the breakdown products were still the only products of fermentation. Under these conditions, the third enzyme, a surface-bound non-repressible nucleotide phosphohydrolase was still active. It appears, at least in B. subtilis, that excretion is dependent upon breakdown by this enzyme and if hydrolysis does not occur, excretion of purine nucleotides is feedback inhibited by the resultant high intracellular IMP concentration. Corynebacterium glutamicum mutants, on the other hand, can excrete intact nucleotides, and direct fermentations for IMP, XMP, and GMP have been described. An examination of phosphohydrolases in a GMP-producing culture revealed no extracellular or surface enzymes. Disruption of the cells resulted in liberation of cellular phosphohydrolase activity with a substrate specificity remarkably similar to the flavorenhancing properties of the 5′-nucleotides. The order of decreasing susceptibility was GMP, IMP, XMP; AMP was not attacked.  相似文献   

5.
A purine 5'-nucleotidase has been separated by DEAE-Trisacryl chromatography from other 5'-nucleotidase activities present in human haemolysates and purified approx. 30,000-fold by subsequent chromatography on Blue Sepharose. The enzyme has an Mr of around 250,000, displays hyperbolic substrate-saturation kinetics and hydrolyses preferentially IMP, GMP and their deoxy counterparts. It is much less active with AMP and dAMP. The purine 5'-nucleotidase is inhibited by Pi, and is strongly stimulated by ATP, dATP and GTP, and by glycerate 2,3-bisphosphate. Stimulators decrease Km and increase Vmax. Glycerate 2,3-bisphosphate is the most potent stimulator of the enzyme and, under physiological conditions, over-rides the influence of the other effectors. Glycerate 2,3-bisphosphate also influences the binding of the enzyme to DEAE-Trisacryl, as evidenced by the different elution profile obtained with fresh as compared with outdated blood. It is concluded that the glycerate 2,3-bisphosphate-stimulated purine 5'-nucleotidase is responsible for the dephosphorylation of IMP and GMP, but not of AMP, in human erythrocytes.  相似文献   

6.
E Zoref-Shani  O Sperling 《Enzyme》1980,25(6):413-418
Cultured fibroblasts with hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency exhibited acceleration of purine synthesis de novo, absence of salvage IMP synthesis from hypoxanthine, but normal total IMP synthesis. Cells with phosphoribosylpyrophosphate synthetase superactivity exhibited acceleration of both de novo and salvage IMP synthesis and increased total IMP synthesis. The study of mutant cells furnished evidence that in normal as well as mutant cells, GMP and AMP are not converted to each other in significant amounts and that these nucleotides are not degraded by nucleotidases. Purine nucleotide degradation in fibroblasts occurs mainly by dephosphorylation of IMP. In HGPRT-containing cells, salvage IMP synthesis from preformed and exogenously supplied hypoxanthine is the main source for IMP production.  相似文献   

7.
Rapid kinetic techniques were applied to determine the effect of transport inhibitors on the transport and metabolism of adenosine in human red cells. Dipyridamole inhibited the equilibrium exchange of 500 microM adenosine by deoxycoformycin-treated cells in a similar concentration dependent manner as the equilibrium exchange and zero-trans influx of uridine with 50% inhibition being observed at about 20 nM. Intracellular phosphorylation of adenosine at an extracellular concentration of 5 microM was inhibited only by dipyridamole concentrations greater than or equal to 100 nM, which inhibited transport about 95%. Lower concentrations of dipyridamole actually stimulated adenosine phosphorylation, because the reduced influx of adenosine lessened substrate inhibition of adenosine kinase. When the cells were not treated with deoxycoformycin, greater than 95% of the adenosine entering the cells at a concentration of 100 microM became deaminated. A 95-98% inhibition of adenosine transport by treatment with dipyridamole, dilazep, or nitrobenzylthioinosine inhibited its deamination practically completely, whereas adenosine phosphorylation was inhibited only 50-85%. Whether adenosine entering the cells is phosphorylated or deaminated is strictly based on the kinetic properties of the responsible enzymes, substrate inhibition of adenosine kinase, and the absolute intracellular steady state concentration of adenosine attained. The latter approaches the extracellular concentration of adenosine, since transport is not rate limiting, except when modulated by transport inhibitors. In spite of the extensive adenosine deamination in cells incubated with 100 microM adenosine, little IMP accumulated intracellularly when the medium phosphate concentration was 1 mM, but IMP formation increased progressively with increase in phosphate concentration to 80 mM. The intracellular phosphoribosylation of adenine and hypoxanthine were similarly dependent on phosphate concentration. The results indicate that adenosine is the main purine source for erythrocytes and is very efficiently taken up and converted to nucleotides under physiological conditions, whereas hypoxanthine and adenine are not significantly salvaged. Hypoxanthine resulting from nucleotide turnover in these cells is expected to be primarily released from the cells. Adenosine was also dephosphorylated in human red cells presumably by 5'-methylthioadenosine phosphorylase, but this reaction seems without physiological significance as it occurs only at high adenosine and phosphate concentrations and if deamination is inhibited.  相似文献   

8.
Pathways of adenine nucleotide catabolism in primary rat muscle cultures   总被引:2,自引:0,他引:2  
The pathways of AMP degradation and the metabolic fate of adenosine were studied in cultured myotubes under physiological conditions and during artificially induced enhanced degradation of ATP. The metabolic pathways were gauged by tracing the flow of radioactivity from ATP, prelabelled by incubation of the cultures with [14C]adenine, into the various purine derivatives. The fractional flow from AMP to inosine through adenosine was estimated by the use of the adenosine deaminase (EC 3.5.4.4) inhibitors, coformycin and 2'-deoxycoformycin. The activities of the enzymes involved with AMP and adenosine metabolism were determined in cell extracts. The results demonstrate that under physiological conditions, there is a small but significant flow of label from ATP to diffusible bases and nucleosides, most of which are effluxed to the incubation medium. This catabolic flow is mediated almost exclusively by the activity of AMP deaminase (EC 3.5.4.6), rather than by AMP 5'-nucleotidase (EC 3.1.3.5), reflecting the markedly higher Vmax/Km ratio for the deaminase. Enhancement of ATP degradation by inhibition of glycolysis or by combined inhibition of glycolysis and of electron transport resulted in a markedly greater flux of label from adenine nucleotides to nucleosides and bases, but did not alter significantly the ratio between AMP deamination and AMP dephosphorylation, which remained around 19:1. Combined inhibition of glycolysis and of electron transport resulted, in addition, in accumulation of label in IMP, reaching about 20% of total AMP degraded. In the intact myotubes at low adenosine concentration, the anabolic activity of adenosine kinase was at least 4.9-fold the catabolic activity of adenosine deaminase, in accord with the markedly higher Vmax/Km ratio of the kinase for adenosine. The results indicate the operation in the myotube cultures, under various rates of ATP degradation, of the AMP to IMP limb of the purine nucleotide cycle. On the other hand, the formation of purine bases and nucleosides, representing the majority of degraded ATP, indicates inefficient activity of the IMP to AMP limb of the cycle, as well as inefficient salvage of hypoxanthine under these conditions.  相似文献   

9.
Mahnke DK  Sabina RL 《Biochemistry》2005,44(14):5551-5559
Erythrocyte AMP deaminase [isoform E (AMPD3)] is activated in response to increased intracellular calcium levels in Tarui's disease, following exposure of ionophore-treated cells to extracellular calcium, and by the addition of calcium to freshly prepared hemolysates. However, the assumption that Ca(2+) is a positive effector of isoform E is inconsistent with the loss of sensitivity to this divalent cation following dilution of erythrocyte lysates or enzyme purification. Ca(2+) regulation of isoform E was studied by examining in vitro effects of calmodulin (CaM) on this enzyme and by monitoring the influence of CaM antagonists on purine catabolic flow in freshly prepared erythrocytes under various conditions of energy imbalance. Erythrocyte and recombinant isoform E both adsorb to immobilized Ca(2+)-CaM, and relative adsorption across a series of N-truncated recombinant enzymes localizes CaM binding determinants to within residues 65-89 of the AMPD3 polypeptide. Ca(2+)-CaM directly stimulates isoform E catalytic activity through a K(mapp) effect and also antagonizes the protein-lipid interaction between this enzyme and intracellular membranes that inhibits catalytic activity. AMP is the predominant purine catabolite in erythrocytes deprived of glucose or exposed to A23187 ionophore alone, whereas IMP accumulates when Ca(2+) is included under the latter conditions and also during autoincubation at 37 degrees C. Preincubation with a CaM antagonist significantly slows the accumulation of erythrocyte IMP under both conditions. The combined results reveal a protein-protein interaction between Ca(2+)-CaM and isoform E and identify a mechanism that advances our understanding of erythrocyte purine metabolism. Ca(2+)-CaM overcomes potent isoform E inhibitory mechanisms that function to maintain the total adenine nucleotide pool in mature erythrocytes, which are unable to synthesize AMP from IMP because of a developmental loss of adenylosuccinate synthetase. This may also explain why Tarui's disease erythrocytes exhibit accelerated adenine nucleotide depletion in response to an increase in intracellular Ca(2+) concentration. This regulatory mechanism could also play an important role in purine metabolism in other human tissues and cells where the AMPD3 gene is expressed.  相似文献   

10.
Primary rat cardiomyocyte cultures were utilized as a model for the study of purine nucleotide metabolism in the heart muscle, especially in connection with the mechanisms operating for the conservation of adenine nucleotides. The cultures exhibited capacity to produce purine nucleotides from nonpurine molecules (de novo synthesis), as well as from preformed purines (salvage synthesis). The conversion of adenosine to AMP, catalyzed by adenosine kinase, appears to be the most important physiological salvage pathway of adenine nucleotide synthesis in the cardiomyocytes. The study of the metabolic fate of IMP formed from [14C]formate or [14C]hypoxanthine and that of AMP formed from [14C]adenine or [14C]adenosine revealed that in the cardiomyocyte the main flow in the nucleotide interconversion pathways is from IMP to AMP, whereas the flux from AMP to IMP appeared to be markedly slower. Following synthesis from labeled precursors by either de novo or salvage pathways, most of the radioactivity in purine nucleotides accumulated in adenine nucleotides, and only a small proportion of it resided in IMP. The results suggest that the main pathway of AMP degradation in the cardiomyocyte proceeds through adenosine rather than through IMP. About 90% of the total radioactivity in purines effluxed from the cells during de novo synthesis from [14C]formate or following prelabeling of adenine nucleotides with [14C]adenine were found to reside in hypoxanthine. The activities in cell extracts of AMP 5'-nucleotidase and IMP 5'-nucleotidase, which catalyze nucleotide degradation, and of AMP deaminase, a key enzyme in the purine nucleotide cycle, were low. The nucleotidase activity resembles, and that of the AMP deaminase contrasts the respective enzyme activities in extracts of cultured skeletal-muscle myotubes. The results indicate that in the cardiomyocyte, in contrast to the myotube, the main mechanism operating for conservation of nucleotides is prompt phosphorylation of AMP, rather than operation of the purine nucleotide cycle. The primary cardiomyocyte cultures are a plausible model for the study of purine nucleotide metabolism in the heart muscle.  相似文献   

11.
Uptake and release of purines by red blood cells has been shown to be markedly sensitive to changes in pH, inorganic phosphate (Pi), and oxygen concentration (Berman, P., Black, D., Human, L., and Harley, E. (1988) J. Clin. Invest. 82, 980-986). The mechanism of this regulation has been further studied. We have shown that incubation of red cells in medium containing xanthine oxidase rapidly and completely depletes intracellular hypoxanthine and causes accumulation of 5-phosphoribosyl 1-pyrophosphate (PRPP) at physiological Pi concentrations. Hypoxanthine release from intracellular IMP is strictly dependent on PRPP depletion, induced by either alkalinizing the cells or by adding excess adenine. Xanthine oxidase abolishes this dependence. Oxygen depletion enhances adenine uptake and prevents hypoxanthine release. The results suggest that hypoxanthine release is governed by PRPP-dependent recycling of hypoxanthine to IMP. We propose that PRPP accumulation in red cells is regulated by a substrate cycle, comprising hypoxanthine, IMP, and inosine. Cycle flux is controlled by Pi inhibition and 2,3-bisphosphoglycerate activation of purine-5'-nucleotidase, which converts IMP to inosine. Oxypurine cycling may account for the sensitive control of purine uptake and release by changes in pH and oxygen tension that occur physiologically.  相似文献   

12.
Adenine uptake and hypoxanthine release by IMP-enriched human erythrocytes has been studied. The presence of IMP within the erythrocytes leads to an increase in the rate of adenine incorporation. Adenine is taken up by IMP-enriched erythrocytes as AMP, even when intracellular 5-phoshorobosyl-1-pyrophosphate concentration is undetectable and too low to allow IMP synthesis from hypoxanthine. During adenine uptake and AMP synthesis, hypoxanthine is released by the cells. The possibility that 5-phosphoribosyl-1-pyrophosphate, necessary for AMP synthesis, is formed through the hypoxanthine guanine phosphoribosyltransferese-catalyzed IMP pyrophosphorolysis is considered.  相似文献   

13.
A 5'-nucleotidase with unique specificity has been identified in the soluble fraction of normal human erythrocytes. It mediates the hydrolytic dephosphorylation of pyrimidine 5'-ribosemonophosphates but is catalytically ineffective with purine nucleotides or with the 2'-, 3'-, or cyclic isomers of pyrimidine nucleotides. Activities at 37 degrees in dialyzed hemolysates of nromal human erythrocytes averaged 7.3 and 6.2 mumol of Pi liberated per hour per g of hemoglobin for the substrates UMP and CMP, respectively. Activity with TMP as substrate was approximately one-half as much as with UMP or CMP. Apparent Michaelis constants were 0.33 mM UMP, 0.15 mM CMP, and 1.0 mM TMP. Magnesium was required for optimal activity, and this cation could not be replaced by Mn2+. Maximum activity was obtained between pH 7.0 and 7.5 with rapid decreases in more alkaline media and moderate decreases with acidification. The enzyme was quite sensitive to heat and was strongly inhibited by AMP, by some purine bases, and by both purine and pyrimidine nucleosides. Divalent cations of heavy metals were also strongly inhibitory, as were agents active against sulfhydryl groups. The presence of substrates and/or 2-mercaptoethanol provided considerable protection against some of these deleterious agents and conditions. Pyrimidine 5'-nucleotidase activity in hemolysates was clearly distinguishable from erythrocyte acid phosphatase and from leukocyte and serum alkaline phosphatases and nucleotidases.  相似文献   

14.
A phosphorylated regulatory subunit of cyclic AMP-dependent protein kinase (type II) was purified to homogeneity from inorganic [32P]phosphate-injected rats. A new method of measuring the phosphorylation reaction was developed. It was found that this regulatory subunit was phosphorylated in cells and comprised 60, 82 and 55% of the total regulatory subunit in brain, heart and liver cytosol fractions from rats, respectively. Dephosphorylation was stimuated by cyclic nucleotides. The Ka values for cyclic AMP and cyclic IMP were 0.30 and 1.0 microM, respectively. Purified phosphoprotein phosphatase could dephosphorylate the regulatory subunit and this reaction was also stimulated by cyclic nucleotides with similar Ka values. The inhibitors of phosphoprotein phosphatase, NaF and ZnCl2, protected against dephosphorylation unless ADP or cyclic AMP were present.  相似文献   

15.
1. The changes in the metabolite content in freeze-clamped livers of fed rats occurring on perfusion with 10mm-d-fructose have been examined. 2. The most striking effects of fructose were an accumulation of fructose 1-phosphate, as already known, up to 8.7mumol/g of liver within 10min, a loss of total adenine nucleotides (up to 35% after 40min) with a decrease in the ATP content to 23% within 10min, a sevenfold rise in the concentration of IMP to 1.1mumol/g and an eightfold rise of alpha-glycerophosphate to 1.1mumol/g. 3. There was a transient decrease in P(i) from 4.2 to 1.7mumol/g. Within 40min the P(i) content recovered to the normal value, probably because of an uptake of P(i) from the perfusion medium. 4. The degradation of the adenine nucleotides beyond the stage of AMP can be accounted for by the decrease of ATP and P(i). As ATP inhibits 5-nucleotidase, and as P(i) inhibits AMP deaminase any AMP arising in the tissue is liable to undergo dephosphorylation or deamination under the conditions occurring after fructose loading. 5. The content of lactate increased to 4.3mumol/g at 80min; pyruvate also increased and the [lactate]/[pyruvate] ratio remained within physiological limits. 6. The concentration of free fructose within the liver remained much below that in the perfusion medium, indicating that the rate of penetration of fructose into the tissue was lower than the rate of utilization. 7. The fission of fructose 1-phosphate by liver aldolase is inhibited by several phosphorylated intermediates, especially by IMP. This inhibition is competitive with a K(i) of 0.1mm. 8. The maximal rates of the enzymes synthesizing and splitting fructose 1-phosphate are about equal. The accumulation of fructose 1-phosphate on fructose loading is due to the inhibition of the fission of fructose 1-phosphate by the IMP arising from the degradation of the adenine nucleotides.  相似文献   

16.
The pathways of AMP degradation and the metabolic fate of adenosine were studied in cultured myotubes under physiological conditions and during artificially induced enhanced degradation of ATP. The metabolic pathways were gauged by tracing the flow of radioactivity from ATP, prelabelled by incubation of the cultures with [14C]adenine, into the various purine derivatives. The fractional flow from AMP to inosine through adenosine was estimated by the use of the adenosine deaminase (EC 3.5.4.4) inhibitors, coformycin and 2′-deoxycoformycin. The activities of the enzymes involved with AMP and adenosine metabolism were determined flow of label from ATP to diffusible bases and nucleosides, most of which are effluxed to the incubation medium. This catabolic flow is mediated almost exclusively by the activity of AMP deaminase (EC 3.5.4.6), rather than by AMP 5′-nucleotidase (EC 3.1.3.5), reflecting the markedly higher Vmax/Km ratio for the deaminase. Enhancement of ATP degradation by inhibition of glycolysis or by combined inhibition of glycolysis and of electron transport resulted in a markedly greater flux of label from adenine nucleotides to nucleosides and bases, but did not alter significantly the ratio between AMP deamination and AMP dephosphorylation, which remained around 19:1. Combined inhibition of glycolysis and of electron transport resulted, in addition, in accumulation of label in IMP, reaching about 20% of total AMP degraded. In the intact myotubes at low adenosine concentration, the anabolic activity of adenosine kinase was at least 4.9-fold the catabolic activity of adenosine deaminase, in accord with the markedly higher Vmax/Km ratio of the kinase for adenosine. The results indicate the operation in the myotube cultures, under various rates of ATP degradation, of the AMP to IMP limb of the purine nucleotide cycle. On the other hand, the formation of purine bases and nucleosides, representing the majority of degraded ATP, indicates inefficient activity of the IMP to AMP limb of the cycle, as well as inefficient salvage of hypoxanthine under these conditions.  相似文献   

17.
The binding of cyclic AMP to the proximal tubule luminal (brush border) membrane isolated from the rabbit renal cortex was studied. The rate of binding was dependent on temperature; at 37 degrees equilibrium was attained in 45 min, whereas at 0 degrees 120 min was required. The final levels of binding were identical. The binding of 3H-cyclic AMP was reversed by dilution or addition of unlabeled cyclic nucleotide. Debinding was markedly temperature sensitive. Binding was only partially saturable with respect to cyclic AMP concentration, apparently with more than one binding site. The cyclic AMP bound to the membrane was recovered unchanged. When bound to the membrane cyclic AMP was resistant to hydrolysis by endogenous membrane or exogenously added phosphodiesterase. The binding to the membranes was relatively specific for cyclic AMP, although other cyclic purine nucleotides inhibited, cyclic IMP greater than dibutyryl cyclic AMP greater than cyclic GMP. The renal membranes did bind cyclic GMP, but this binding was relatively non-specific. Hormones and drugs, that mediate cyclic AMP generation or renal function, as well as other compounds common to the proximal tubule were without significant effect on cyclic AMP binding. Binding was inhibited by sulfhydryl reacting agents and this inhibition could be blocked and partially reversed by mercaptoethanol.  相似文献   

18.
1. The purine bases adenine, hypoxanthine and guanine were rapidly incorporated into the nucleotide fraction of Ehrlich ascites-tumour cells in vivo. 2. The reaction of 5'-phosphoribosyl pyrophosphate with adenine phosphoribosyltransferase from ascites-tumour cells (K(m) 6.5-11.9mum) was competitively inhibited by AMP, ADP, ATP and GMP (K(i) 7.5, 21.9, 395 and 118mum respectively). Similarly the reactions of 5'-phosphoribosyl pyrophosphate with both hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase (K(m) 18.4-31 and 37.6-44.2mum respectively) were competitively inhibited by IMP (K(i) 52 and 63.5mum) and by GMP (K(i) 36.5 and 5.9mum). 3. The nucleotides tested as inhibitors did not appreciably compete with the purine bases in the phosphoribosyltransferase reactions. 4. It was postulated that the purine phosphoribosyltransferases of Ehrlich ascites-tumour cells may be effectively separated from the adenine nucleotide pool of these cells.  相似文献   

19.
The metabolism of some purine compounds to urate and their effects on de novo urate synthesis in chicken hepatocytes were investigated. The purines, listed in descending order of rates of catabolism to urate, were hypoxanthine, xanthine, inosine, guanosine, guanine, IMP, GMP, adenosine, AMP, and adenine. During a 1-h incubation period, conversion to urate accounted for more than 80% of the total quantities of guanine, guanosine, and inosine metabolized, but only 42% of the adenosine and 23% of the adenine metabolism. Adenine, adenosine, and AMP inhibited de novo urate synthesis [( 14C]formate incorporation into urate), whereas the other purines, especially guanine, guanosine, and GMP, stimulated de novo urate synthesis. When hepatocytes were incubated with glutamine and adenosine, AMP, guanine, guanosine, or GMP, the rates of de novo urate synthesis were lower than the additive effects of glutamine and the purine in separate incubations. Increasing phosphate concentrations had no effect on urate synthesis in the absence of added purines but, in combination with adenosine, AMP, guanosine, or GMP, increased urate synthesis. These results indicate that the ratio of adenine to guanine nucleotides and the interaction between substrates and purine nucleotides are involved in the regulation of urate biosynthesis in chicken liver.  相似文献   

20.
The degradation and short-term resynthesis of adenine nucleotides have been examined in a preparation of isolated rat heart myocytes. These myocyte preparations are essentially free of vascular and endothelial cells, contain levels of adenine nucleotides quite comparable to those of intact heart tissue, and retain these components remarkably well for up to 2 h of aerobic incubation in the presence of 1 mM Ca2+. When the cells are rapidly and synchronously de-energized by addition of uncoupler, an inhibitor of respiration and iodoacetate, cellular ATP is degraded almost quantitatively to AMP. The AMP is then converted to either intracellular adenosine, which accumulates to high concentrations before release to the cell exterior, or to IMP. The relative contribution of these two pathways depends on the metabolic state of the cells just prior to de-energization, with IMP production favored when respiring cells are de-energized and adenosine formation predominant when glycolyzing myocytes are subjected to this treatment. Cells de-energized by anaerobiosis in the absence of glucose lose ATP and adenine nucleotides with the production of IMP and adenosine. Upon reoxygenation, these cells restore a high adenylate energy charge and about 60% of control levels of GTP. There is a net resynthesis of 5-7 nmol of adenine nucleotides.mg-1 protein with a corresponding decline in IMP. Added [14C]adenosine labels the adenine nucleotide pool, but little net resynthesis of adenine nucleotides via adenosine kinase can be detected. It therefore appears that a rapid regeneration of adenine nucleotides can occur via the enzymes of the purine nucleotide cycle in heart myocytes and is limited by the size of the IMP pool retained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号