首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioartificial liver (BAL) devices have been developed to treat patients undergoing acute liver failure. One of the most important parameters to consider in designing these devices is the oxygen consumption rate of the seeded hepatocytes which are known to have oxygen consumption rates 10 times higher than most other cell types. Hepatocytes in various culture configurations have been tested in BAL devices including those formats that involve co-culture of hepatocytes with other cell types. In this study, we investigated, for the first time, oxygen uptake rates (OUR)s of hepatocytes co-cultured with 3T3-J2 fibroblasts at various hepatocyte to fibroblast seeding ratios. OURs were determined by measuring the rate of oxygen disappearance using a ruthenium-coated optical probe after closing and sealing the culture dish. Albumin and urea production rates were measured to assess hepatocyte function. Lower hepatocyte density co-cultures demonstrated significantly higher OURs (2 to 3.5-fold) and liver- specific functions (1.6-fold for albumin and 4.5-fold for urea production) on a per cell basis than those seeded at higher densities. Increases in OUR correlated well with increased liver-specific functions. OURs (V(m)) were modeled by fitting Michaelis-Menten kinetics and the model predictions closely correlated with the experimental data. This study provides useful information for predicting BAL design parameters that will avoid oxygen limitations, as well as maximize metabolic functions.  相似文献   

2.
Focusing on drug metabolism in liver, we constructed and evaluated a drug-metabolizing bioartificial liver (BAL) support system. In a previous study, we constructed ammonia-metabolizing CHO and hepatoma-derived HepG2 cell lines by recombination of the glutamine synthetase (GS) gene. For further mimicking of liver metabolism, the human hepatoma-derived cell line HepG2 was transformed by the pBudCE-GS-CYP3A4 vector, which contains GS and drug-metabolizing CYP 3A4 genes. The constructed GS-3A4-HepG2 cell line showed 3A4 activity higher than that of human primary hepatocytes. The drug-metabolizing activity of BAL (BAL clearance) was evaluated using this cell line. The estimated clearance was higher than that of the human hepatocyte system.  相似文献   

3.
Human hepatocytes, suitable for treatment of patients with liver failure, for the creation of bioartificial (BAL) devices, or for studies for toxicity and metabolization studies in the pharmaceutical industry, are in short supply due to the lack of donor organs. Therefore, methods that allow ex vivo expansion of hepatocytes with mature function are being pursued. One cell source, believed to be a possible inexhaustible source of hepatocytes, is pluripotent stem cells (PSCs). However, directed differentiation of PSCs to cells with features of adult hepatocytes is not yet possible. Differentiated progeny remains mixed and PSC progeny does not have a number of the functional features of mature hepatocytes. In this review article, we will address tools being developed that allow for the identification of mature hepatocytes, in a non-invasive manner; to perform lineage tracing of PSC progeny; and novel culture systems being created for the in vitro differentiation of PSCs to hepatocyte like cells, and for the maintenance of primary liver derived hepatocytes or PSC-derived hepatic progeny in culture. As conventional two-dimensional (2D) static culture conditions poorly recapitulate the in vivo cellular environment, we will discuss bioreactor systems for liver tissue engineering, both macro-scale and micro-scale culture systems.  相似文献   

4.
Extracorporeal bioartificial liver devices (BAL) are perhaps among the most promising technologies for the treatment of liver failure, but significant technical challenges remain in order to develop systems with sufficient processing capacity and of manageable size. One key limitation is that during BAL operation, when the device is exposed to plasma from the patient, hepatocytes are prone to accumulate intracellular lipids and exhibit poor liver-specific functions. Based on hepatic intermediary metabolism, we have utilized mathematical programming techniques to optimize the biochemical environment of hepatocyte cultures towards the desired effect of increased albumin and urea synthesis. To investigate the feasible range of optimal hepatic function, we have obtained a Pareto optimal set of solutions corresponding to liver-specific functions of urea and albumin secretion in the metabolic framework using multiobjective optimization. The importance of amino acids in the supplementation and the criticality of the metabolic pathways have been investigated using logic-based programming techniques. Since the metabolite measurements are bound to be patient specific, and hence subject to variability, uncertainty has to be integrated with system analysis to improve the prediction of hepatic function. We have used the concept of two stage stochastic programming to obtain robust solutions by considering extracellular variability. The proposed analysis represents a new systematic approach to analyze behavior of hepatocyte cultures and optimize different operating parameters for an extracorporeal device based on real-time conditions.  相似文献   

5.
Severe acute liver failure, even when transient, must be treated by transplantation and lifelong immune suppression. Treatment could be improved by bioartificial liver (BAL) support, but this approach is hindered by a shortage of human hepatocytes. To generate an alternative source of cells for BAL support, we differentiated mouse embryonic stem (ES) cells into hepatocytes by coculture with a combination of human liver nonparenchymal cell lines and fibroblast growth factor-2, human activin-A and hepatocyte growth factor. Functional hepatocytes were isolated using albumin promoter-based cell sorting. ES cell-derived hepatocytes expressed liver-specific genes, secreted albumin and metabolized ammonia, lidocaine and diazepam. Treatment of 90% hepatectomized mice with a subcutaneously implanted BAL seeded with ES cell-derived hepatocytes or primary hepatocytes improved liver function and prolonged survival, whereas treatment with a BAL seeded with control cells did not. After functioning in the BAL, ES cell-derived hepatocytes developed characteristics nearly identical to those of primary hepatocytes.  相似文献   

6.
To develop a method of human-oriented evaluation in tissue engineering and regenerative medicine, we applied the analytic hierarchy process (AHP) in the evaluation of tissue engineering reactors. For evaluating a reactor for a bioartificial liver (BAL) support system, we identified five criteria: safety, scalability, cell growth environment, mimicking native liver functions and handling. Based on these criteria, we evaluated six different types of BAL bioreactors by three panelists. Using the AHP method, we successfully ranked BAL systems for bridge use in liver transplantation in the attempt at decision making based on human-oriented evaluation.  相似文献   

7.
Long‐term primary cultures of hepatocytes are essential for bioartificial liver (BAL) devices and to reduce and replace animal tests in lead candidate optimization in drug discovery and toxicology tests. The aim of this work was to improve bioreactor cultures of hepatocyte spheroids by adding a more physiological perfusion feeding regime to these bioreactor systems. A continuous perfusion feeding was compared with 50% medium replacement (routinely used for in vitro tests) at the same dilution rate, 0.125 day−1, for three operative weeks. Perfusion feeding led to a 10‐fold improvement in albumin synthesis in bioreactors containing non‐encapsulated hepatocyte spheroids; no significant improvement was observed in phase I drug metabolizing activity. When ultra high viscous alginate encapsulated spheroids were cultured in perfusion, urea synthesis, phase I drug metabolizing activity and oxygen consumption had a threefold improvement over the 50% medium replacement regime; albumin production was the same for both feeding regimes. The effective diffusion of albumin in the alginate capsules was 7.75.10−9 cm2 s−1 and no diffusion limitation for this protein was observed using these alginate capsules under our operational conditions. In conclusion, perfusion feeding coupled with alginate encapsulation of hepatocyte spheroids showed a synergistic effect with a threefold improvement in three independent liver‐specific functions of long‐term hepatocyte spheroid cultures. Biotechnol. Bioeng. 2011; 108:41–49. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
The performance of an extracorporeal bioartificial liver (BAL) support system depends on the functional activities of the hepatocytes immobilized in the system. One of the most promising techniques in retaining liver-specific functions is co-culturing hepatocytes with other cell types, such as epithelial cells, endothelial cells and dermal fibroblasts. Primary rat hepatocytes were suspension co-cultured with rat prostate endothelial cell line (RPEn) for 20 h in a spinner vessel to form hetero-spheroids, which contain the two types of the cells, i.e., hepatocytes and endothelial cells in the same spheroid. For the subsequent culture, the hetero-spheroids were entrapped in a Ca-alginate gel bead. From the results of incorporation efficiency test, it was found that RPEn cells have a significantly higher attachment affinity to hepatocytes than human dermal fibroblast and rat liver epithelial cells. We clearly found out that RPEn cells located on the surface of the hepatocyte spheroids from immunostained paraffin sections of the hetero-spheroids. Identical with in vivo liver tissue, laminin was stained at the surface of the hetero-spheroids. Ultrastructures of liver tissue, such as bile canaliculus-like and Disse’s space-like structures, were also found at the surface of the hetero-spheroids. In vivo liver tissue, in which hepatocytes were covered with sinusoidal endothelial cells, was partly mimicked by the endothelial cell-covered hepatocyte spheroids. And the hetero-spheroids showed significantly higher and stable albumin secretion and ammonia removal activities than pure spheroids for 12 days of observations.

Therefore, the endothelial cell-covered hepatocyte hetero-spheroids may offer a useful study model of epithelial–mesenchymal interactions and information about liver tissue engineering research as well as a substitute of a cell source of a BAL system.  相似文献   


9.
Development of a bioartificial liver employing xenogeneic hepatocytes   总被引:4,自引:0,他引:4  
Liver failure is a major cause of mortality. A bioartificial liver (BAL) employing isolated hepatocytes can potentially provide temporary support for liver failure patients. We have developed a bioartificial liver by entrapping hepatocytes in collagen loaded in the luminal side of a hollow fiber bioreactor. In the first phase of development, liver-specific metabolic activities of biosynthesis, biotransformation and conjugation were demonstrated. Subsequently anhepatic rabbits were used to show that rat hepatocytes continued to function after the BAL was linked to the test animal. For scale-up studies, a canine liver failure model was developed using D-galactosamine overdose. In order to secure a sufficient number of hepatocytes for large animal treatment, a collagenase perfusion protocol was established for harvesting porcine hepatocytes at high yield and viability. An instrumented bioreactor system, which included dissolved oxygen measurement, pH control, flow rate control, an oxygenator and two hollow fiber bioreactors in series, was used for these studies. An improved survival of dogs treated with the BAL was shown over the controls. In anticipated clinical applications, it is desirable to have the liver-specific activities in the BAL as high as possible. To that end, the possibility of employing hepatocyte spheroids was explored. These self-assembled spheroids formed from monolayer culture exhibited higher liver-specific functions and remained viable longer than hepatocytes in a monolayer. To ease the surface requirement for large-scale preparation of hepatocyte spheroids, we succeeded in inducing spheroid formation in stirred tank bioreactors for both rat and porcine hepatocytes. These spheroids formed in stirred tanks were shown to be morphologically and functionally indistinguishable from those formed from a monolayer. Collagen entrapment of these spheroids resulted in sustaining their liver-specific functions at higher levels even longer than those of spheroids maintained in suspension. For use in the BAL, a mixture of spheroids and dispersed hepatocytes was used to ensure a proper degree of collagen gel contraction. This mixture of spheroids and dispersed cells entrapped in the BAL was shown to sustain the high level of liver-specific functions. The possibility of employing such a BAL for improved clinical performance warrants further investigations.  相似文献   

10.
To engineer reliable in vitro liver tissue equivalents expressing differentiated hepatic functions at a high level and over a long period of time, it appears necessary to have liver cells organized into a three‐dimensional (3D) multicellular structure closely resembling in vivo liver cytoarchitecture and promoting both homotypic and heterotypic cell–cell contacts. In addition, such high density 3D hepatocyte cultures should be adequately supplied with nutrients and particularly with oxygen since it is one of the most limiting nutrients in hepatocyte cultures. Here we propose a novel but simple hepatocyte culture system in a microplate‐based format, enabling high density hepatocyte culture as a stable 3D‐multilayer. Multilayered co‐cultures of hepatocytes and 3T3 fibroblasts were engineered on collagen‐conjugated thin polydimethylsiloxane (PDMS) membranes which were assembled on bottomless frames to enable oxygen diffusion through the membrane. To achieve high density multilayered co‐cultures, primary rat hepatocytes were seeded in large excess what was rendered possible due to the removal of oxygen shortage generally encountered in microplate‐based hepatocyte cultures. Hepatocyte/3T3 fibroblasts multilayered co‐cultures were maintained for at least 1 week; the so‐cultured cells were normoxic and sustained differentiated metabolic functions like albumin and urea synthesis at higher levels than hepatocytes monocultures. Such a microplate‐based cell culture system appears suitable for engineering in vitro miniature liver tissues for implantation, bioartificial liver (BAL) development, or chemical/drug screening. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011.  相似文献   

11.
Predicting and improving oxygen transport within bioartificial liver (BAL) devices continues to be an important engineering challenge since oxygen is one of the critical nutrients necessary for maintaining hepatocyte viability and function. Such a computational model would not only help predict outcomes but it would also allow system modifications to be analyzed prior to developing experimental protocols. This would help to facilitate future design improvements while reducing both experimental time and capital resource costs, and is the focus of the current study. Specifically, a computational model of O(2) transport through collagen and microporous collagen ECMs is analyzed for hollow fiber (HF), flat plate (FP), and spheroid BAL designs. By modifying the O(2) boundary conditions, hepatocyte O(2) consumption levels, O(2) permeability of the ECM, and ECM void fractions, O(2) transport predictions are determined for each system as a function of time and distance. Accuracy of the predictive model is confirmed by comparing computational vs. experimental results for the HF BAL system. The model's results indicate that O(2) transport within all three BAL designs can be improved significantly by incorporating the enhancement technique. This technique modifies a diffusion-dominant gel ECM into a porous matrix with diffusive and convective flows that mutually transport O(2) through the ECMs. Although tortuous pathways increase the porous ECM's overall effective length of O(2) travel, the decreased transport resistances of these pathways allow O(2) to permeate more effectively into the ECMs. Furthermore, because the HF design employs convective flow on both its inner and outer ECM surfaces, greater control of O(2) transport through its ECM is predicted, as compared with the single O(2) source inputs of the flat plate and spheroid systems. The importance of this control is evaluated by showing how modifying the O(2) concentration and/or transfer coefficients of the convective flows can affect O(2) transport.  相似文献   

12.
13.
It is necessary to proliferate hepatocytes and to increase the number of hepatocytes for development of bioartificial liver (BAL) and reconstitutive therapy. But usually the cell has a precarious balance between proliferation and differentiation: as the cell proliferation increases, functional differentiation decreases. Therefore, it is desirable for the hepatocytes to be functional by differentiation as a material for such clinical use not to be proliferative. In this study, we investigated the background of hepatocyte proliferation for the springboard of control between proliferation and differentiation of hepatocytes, and we focused attention to the asialoglycoprotein receptors (ASGP-R) of the hepatocytes. Partially hepatectomized (PH) rats were used as a model animal. When the isolated hepatocytes were plated onto the artificial extracellular matrix of poly-(N-p-vinylbenzyl-O-beta-d-galactopyranosyl-d-gluconamide) (PVLA) having galactose residues as cell-specific ligand, the rate of adhesion was decreased along with liver regeneration. Interestingly, the release of the ASGP-R from hepatocytes in serum after PH in vivo and reduction of ASGP-R of the hepatocytes in the proliferative state occurred due to cell growth in vitro. It is suggested that the ASGP-R on the hepatocyte surface during the differentiation was released in the proliferative state.  相似文献   

14.
Bioartificial livers (BALs) are a potentially effective countermeasure against liver failure, particularly in cases of acute or fulminant liver failure. It is hoped these devices can sustain a patient's liver function until recovery or transplant. However, no large‐scale clinical trial has yet proven that BALs are particularly effective and evidently design issues remain to be addressed. One aspect of BAL design that must be considered is the mass transfer of adequate oxygen to the hepatocytes within the device. We present here a mathematical modeling approach to oxygen mass transport in a BAL. A mathematical model based upon Krogh cylinders is outlined to describe a diffusion‐limited hollow fiber bioreactor. In addition, operating constraints are defined on the system—cells should not experience hypoxia and the cell population should be of adequate size. By combining modeling results with these operating constraints and presenting the results graphically, “operating region” charts can be constructed for the hollow fiber BAL (HF‐BAL). The effects of varying various operating parameters on the BAL are then established. It is found that smaller radii and short, thin walled fibers are generally advantageous while cell populations in excess of 10 billion could be supported in the BAL with a plasma flow rate of 200 mL/min. For fibers of intermediate length and lumen radius, the minimum number of fibers required to produce a viable design ranges approximately from 7,000–10,000. In theory, this may be enough to support patients with failing livers. Biotechnol. Bioeng. 2010;106: 980–988. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
Difficulties associated with bioartificial liver (BAL) preservation limit not only the commercialization of BAL, but also its clinical trials. In this study, the possibility of cold preservation of BAL cartridges containing porcine hepatocytes was examined at 4 °C. In anin vitro perfusion culture system, BAL cartridges maintained cytochrome P450 metabolic function for at least 50 days. However, all BAL cartridges completely lost their ammonia eliminating ability when stored at 4 °C. We also studied the effect of cell density on the maintenance of BAL liver function in a highly differentiated and healthy state. As expected, BALs containing a larger number of hepatocytes demonstrated higher metabolic functions. When metabolic functions were compared per gram of hepatocytes, no large differences were observed between devices containing different densities of hepatocytes. Decreased cell density did not successfully prolong BAL function. The viability and function of isolated hepatocytes highly depend on the culture conditions, such as cell density, substrata, culture media, and additives to the culture media. Perfusion culture of BAL cartridges at 4°C gave a promosing result with respect to the maintenance of P450 activity. However, as indicated by the rapid loss of ammonia metabolic activity, many factors still remain to be optimized for preservation of BAL keeping high metabolic functions for a longer time.  相似文献   

16.
Despite recent advances in medical supportive therapy, patients with severe fulminant hepatic failure (FHF) have mortality rate approaching 90%. Investigators have attempted to improve survival by using various extracorporeal liver support systems loaded with sorbents and liver tissue preparations. None of them succeeded in gaining clinical acceptance and orthotopic liver transplantation (OLT) remains a primary therapeutic option for patients with FHF. In this study, authors discuss the systems which utilize isolated hepatocytes. Most of these devices were tested in vitro and in animals with chemically and surgically induced liver failure. In some studies, signficant levels of detoxification and liver functions were achieved. The authors describe their own hepatocyte-based artificial liver (BAL). It is based on plasma perfusion through a hollow-fiber module seeded with matrix-anchored porcine hepatocytes. The BAL was used 14 times to treat 9 patients with acute liver failure. On 10 occasions, a charcoal column was included in the plasma circuit. Each treatment lasted 7 +/- 1 h. All procedures were tolerated well and 8 patients (including 6 patients with FHF) underwent OLT. Five patients with increased intracranial pressure (ICP) and evidence of decerebration had normalization of ICP and enjoyed full neurologic recovery after OLT. Laboratory data showed evidence for bilirubin conjugation, decrease in blood ammonia, maintenance of low lactic acid levels, and increase in the ration between the branched chain and aromatic amino acids. No allergic reactions to xenogeneic hepatocytes were observed. The authors conclude that BAL treatment with porcine hepatocytes appears to be safe and can help maintain patients alive and neurologically intact until a liver becomes available for transplantation. (c) 1994 John Wiley & Sons, Inc.  相似文献   

17.
Metabolic flux analysis of cultured hepatocytes exposed to plasma   总被引:3,自引:0,他引:3  
Hepatic metabolism can be investigated using metabolic flux analysis (MFA), which provides a comprehensive overview of the intracellular metabolic flux distribution. The characterization of intermediary metabolism in hepatocytes is important for all biotechnological applications involving liver cells, including the development of bioartificial liver (BAL) devices. During BAL operation, hepatocytes are exposed to plasma or blood from the patient, at which time they are prone to accumulate intracellular lipids and exhibit poor liver-specific functions. In a prior study, we found that preconditioning the primary rat hepatocytes in culture medium containing physiological levels of insulin, as opposed to the typical supraphysiological levels found in standard hepatocyte culture media, reduced lipid accumulation during subsequent plasma exposure. Furthermore, supplementing the plasma with amino acids restored hepatospecific functions. In the current study, we used MFA to quantify the changes in intracellular pathway fluxes of primary rat hepatocytes in response to low-insulin preconditioning and amino acid supplementation. We found that culturing hepatocytes in medium containing lower physiological levels of insulin decreased the clearance of glucose and glycerol with a concomitant decrease in glycolysis. These findings are consistent with the general notion that low insulin, especially in the presence of high glucagon levels, downregulates glycolysis in favor of gluconeogenesis in hepatocytes. The MFA model shows that, during subsequent plasma exposure, low-insulin preconditioning upregulated gluconeogenesis, with lactate as the primary precursor in unsupplemented plasma, with a greater contribution from deaminated amino acids in amino acid-supplemented plasma. Concomitantly, low-insulin preconditioning increased fatty acid oxidation, an effect that was further enhanced by amino acid supplementation to the plasma. The increase in fatty acid oxidation reduced intracellular triglyceride accumulation. Overall, these findings are consistent with the notion that the insulin level in medium culture presets the metabolic machinery of hepatocytes such that it directly impacts on their metabolic behavior during subsequent plasma culture.  相似文献   

18.
Acute liver failure (ALF) is a life-threatening illness. The extracorporeal cell-based bioartificial liver (BAL) system could bridge liver transplantation and facilitate liver regeneration for ALF patients by providing metabolic detoxification and synthetic functions. Previous BAL systems, based on hepatoma cells and non-human hepatocytes, achieved limited clinical advances, largely due to poor hepatic functions, cumbersome preparation or safety concerns of these cells. We previously generated human functional hepatocytes by lineage conversion (hiHeps). Here, by improving functional maturity of hiHeps and producing hiHeps at clinical scales (3 billion cells), we developed a hiHep-based BAL system (hiHep-BAL). In a porcine ALF model, hiHep-BAL treatment restored liver functions, corrected blood levels of ammonia and bilirubin, and prolonged survival. Importantly, human albumin and α-1-antitrypsin were detectable in hiHep-BAL-treated ALF pigs. Moreover, hiHep-BAL treatment led to attenuated liver damage, resolved inflammation and enhanced liver regeneration. Our findings indicate a promising clinical application of the hiHep-BAL system.  相似文献   

19.
The liver plays a complex role in metabolism and detoxification, and better tools are needed to understand its function and to develop liver-targeted therapies. In this study, we establish a mechanobiological model of liver transport and hepatocyte biology to elucidate the metabolism of urea and albumin, the production/detoxification of ammonia, and consumption of oxygen and nutrients. Since hepatocellular shear stress (SS) can influence the enzymatic activities of liver, the effect of SS on the urea and albumin synthesis are empirically modeled through the mechanotransduction mechanisms. The results demonstrate that the rheology and dynamics of the sinusoid flow can significantly affect liver metabolism. We show that perfusate rheology and blood hematocrit can affect urea and albumin production by changing hepatocyte mechanosensitive metabolism. The model can also simulate enzymatic diseases of the liver such as hyperammonemia I, hyperammonemia II, hyperarginemia, citrollinemia, and argininosuccinicaciduria, which disrupt the urea metabolism and ammonia detoxification. The model is also able to predict how aggregate cultures of hepatocytes differ from single cell cultures. We conclude that in vitro perfusable devices for the study of liver metabolism or personalized medicine should be designed with similar morphology and fluid dynamics as patient liver tissue. This robust model can be adapted to any type of hepatocyte culture to determine how hepatocyte viability, functionality, and metabolism are influenced by liver pathologies and environmental conditions.  相似文献   

20.
Hypothermic preservation of bioartificial liver (BAL) has long been appreciated in BAL storage and transportation. However, the deterioration of cell activity during hypothermia/rewarming limits its clinical use and the complete prevention of hypothermia-induced hepatocyte injury has not been achieved. In this article, a miniaturized BAL that underwent three preservation stages (i.e. pre-incubation, hypothermia and rewarming) was applied as a hypothermic preservation model to locate the protection of several protective agents against hypothermia-induced cell injury. The agents, including vitamin E, schisandrin B, glycyrrhizic acid, N-acetyl-cysteine, ruthenium red, trehalose, anisodamine, fructose-1, 6-diphosphate, cyclosporin A and matrine (Mat), were found to exert their functions at different preservation stages, which were speculated to associate with the specific protection of each agent as well as the corresponding cell injuries at each stage. Such hypothesis was further strengthened by focusing on Mat, which only suppressed the hypothermia-induced injury through the inhibition of Ca(2+) overload at the rewarming stage, whereas its presence at the hypothermic stage excessively down-regulated the cytosolic free Ca(2+) and then aggravated cell death. The results indicate that the specific cell injury at each preservation stage requires a corresponding protective agent. However, the untimely misuse of the agents may inversely aggravate cell injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号