首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss of rainforest because of agricultural and urban development may impact the abundance and diversity of species that are rainforest natives. Tropical fruit flies are one group of such organisms indigenous to rainforests. In southeast Queensland, a region subject to rapid urbanization, we assessed the impact of habitat disturbance on the distribution and abundance of native fruit flies. Data on four species (Bactrocera tryoni, Bactrocera neohumeralis, Bactrocera chorista, and Dacus aequalis) were gathered and analyzed over 6 months in three habitat types: suburbia, open sclerophyll forest, and rainforest. We also analyzed the data at a combined "dacine fruit fly" level incorporating all fruit fly species trapped over the period of study (as might occur in a biodiversity assessment): these included the four species already named and Bactrocera melas, Bactrocera bryoniae, Bactrocera newmani, and Dacus absonifacies. Analysis at the species level showed that the polyphagous pest species responded differently to the monophagous species. Bactrocera tryoni, which has more exotic than native hosts, was positively affected by transformation of natural habitat into suburbia whereas B. neohumeralis, which has nearly identical numbers of native and exotic hosts, was found equally across habitat types. Bactrocera chorista and Dacus aequalis, each monophagous on a species-specific rainforest host plant, were most abundant in rainforest. The analysis based on the combined data suggests that replacing rainforest with suburbia has a neutral, or even positive, effect on the abundance of fruit flies as a whole. At the species level, however, it can be seen that this is an erroneous conclusion biased by the abundance of a single pest species. Our discussion raises the issue of analyses at supraspecific levels in biodiversity and impact assessment studies. Received: March 6, 2000 / Accepted: June 19, 2000  相似文献   

2.
Significant plant pests such as fruit flies that travel with fresh produce between countries as eggs or larvae pose a great economic threat to the agriculture and fruit industry worldwide. Time‐limited and expensive quarantine decisions require accurate identification of such pests. Immature stages are often impossible to identify, making them a serious concern for biosecurity agencies. Use of COI barcoding PCR, often the only molecular identification resource, is time‐consuming. We assess the suitability of the COI barcoding region for real‐time PCR assays to identify four pest fruit fly species (Family: Tephritidae), in a diagnostic framework. These species, namely Mediterranean fruit fly (Ceratitis capitata), Queensland fruit fly (Bactrocera tryoni), African invader fly (Bactrocera invadens) and Island fly (Dirioxa pornia) each provide a different set of genetic species delimitation problems. We discuss the benefits and limitations of using a single‐gene TaqMan? real‐time approach for such species. Our results indicate that COI‐based TaqMan? real‐time PCR assays, in particular for genetically distinct species, provide an accurate, sensitive and rapid diagnostic tool.  相似文献   

3.
Six polymorphic microsatellite loci are isolated from the Oriental fruit fly Bactrocera dorsalis (Hendel), an agricultural pest in Asia, including Taiwan. To assess their potential utility as high‐resolution genetic markers, polymerase chain reaction (PCR) primers, amplification conditions, and an automated fluorescence detection protocol were developed. In analyses of 71 individual flies from six different areas of Taiwan, allele numbers ranged from five to 25 were detected for each locus. The observed heterozygosity ranged between 0.268 and 0.737 among these loci. No linkage disequilibrium was found. These microsatellite markers have potential utility to population structure and gene flow studies of B. dorsalis (Hendel).  相似文献   

4.
The dorsalis complex contains some of the most economically important fruit fly pests of the Asia–Pacific regions, including Bactrocera dorsalis, Bactrocera papayae and Bactrocera carambolae. These species are morphologically indistinct and genetically very similar. We describe the development of 12 microsatellite markers isolated from a representative of the dorsalis complex, B. papayae. We show the potential utility of the B. papayae microsatellites and a set of microsatellites isolated from Bactrocera tryoni as population and species markers for the dorsalis complex.  相似文献   

5.
Diachasmimorpha kraussii is a polyphagous endoparasitoid of dacine fruit flies. The fruit fly hosts of D. krausii, in turn, attack a wide range of fruits and vegetables. The role that fruits play in host selection behaviour of D. kraussii has not been previously investigated. This study examines fruit preference of D. kraussii through a laboratory choice‐test trial and field fruit sampling. In the laboratory trial, oviposition preference and offspring performance measures (sex ratio, developmental time, body length, hind tibial length) of D. kraussii were investigated with respect to five fruit species [Psidium guajava L. (guava), Prunis persica L. (peach), Malus domestica Borkh. (apple), Pyrus communis L. (pear) and Citrus sinensis L. (orange)], and two fruit fly species (Bactrocera jarvisi and B. tryoni). Diachasmimorpha kraussii responded to infested fruit of all fruit types in both choice and no‐choice tests, but showed stronger preference for guava and peach in the choice tests irrespective of the species of fly larvae within the fruit. The wasp did not respond to uninfested fruit. The offspring performance measures differed in a non‐consistent fashion between the fruit types, but generally wasp offspring performed better in guava, peach and orange. The offspring sex ratio, except for one fruit/fly combination (B. jarvisi in apple), was always female biased. The combined results suggest that of the five fruits tested, guava and peach are the best fruit substrates for D. krausii. Field sampling indicated a non‐random use of available, fruit fly infested fruit by D. kraussii. Fruit fly maggots within two fruit species, Plachonia careya and Terminalia cattappa, had disproportionately higher levels of D. krausii parasitism than would be expected based on the proportion of different infested fruit species sampled, or levels of fruit fly infestation within those fruit.  相似文献   

6.
Oriental fruit fly, Bactrocera dorsalis (Hendel), is a highly polyphagous fruit fly which, in the last 15 years, has invaded (with or without establishment) Africa, Europe and North America. As a direct result of these invasions, there is increasing research interest in the invasion history and spread patterns of this fly. A statement being repeatedly used in the B. dorsalis invasion literature is that the species was first identified from Taiwan in 1912 and that it subsequently spread through South‐East and South Asia during the 20th century. This assumption is incorrect and stems from: (a) an incomplete knowledge of B. dorsalis taxonomic history; and (b) a confounding of first taxonomic record with first invasion record. Rather than being first detected in Taiwan in 1912, the first record of oriental fruit fly was from “East India” (India orientali) under the synonymous name of Musca ferruginea by Fabricius in 1794, and in the 1910s, it was known not only from Taiwan, but widely across tropical Asia with records from India, Burma, Bengal, Sri Lanka (as Ceylon), Singapore and Indonesia (multiple islands). The taxonomic literature is very clear that oriental fruit fly has not invaded the rest of Asia from Taiwan since 1912, and this error should not continue to be repeated in the literature.  相似文献   

7.
Phytophagous insects of the genus Bactrocera are among the most economically important invasive fruit fly pests. In 2003, an unknown Bactrocera species was found in Kenya. First identified as an ‘aberrant form’ of the Asian B. dorsalis complex, it was later recognized as a new species, Bactrocera invadens. Within 2 years of its discovery, the species was recorded in several African countries, becoming an important quarantine pest. As this invasive fly was discovered only recently, no data are available on its invasion pattern in Africa. This pilot study attempts to infer from genetic data the dynamic aspects of the African invasion of this pest. Using microsatellite markers, we evaluated the level of genetic diversity and the extent of common ancestry among several African populations collected across the invaded areas. A sample from the Asian Sri Lankan population was analysed to confirm the Asian origin of this pest. Genetic data cast no doubt that Sri Lanka belongs to the native range, but only a small percentage of its genotypes can be found in Africa. African populations display relatively high levels of genetic diversity associated with limited geographical structure and no genetic footprints of bottlenecks. These features are indicative of processes of rapid population growth and expansion with possible multiple introductions. In the span of relatively few years, the African invasion registered the presence of at least two uncorrelated outbreaks, both starting from the East. The results of the analyses support that invasion started in East Africa, where B. invadens was initially isolated.  相似文献   

8.
  • 1 Diachasmimorpha krausii is a braconid parasitoid of larval tephritid fruit flies, which feed cryptically within host fruit. At the ovipositor probing stage, the wasp cannot discriminate between hosts that are physiologically suitable or unsuitable for offspring development and must use other cues to locate suitable hosts.
  • 2 To identify the cues used by the parasitoid to find suitable hosts, we offered, to free flying wasps, different combinations of three fruit fly species (Bactrocera tryoni, Bactrocera cacuminata, Bactrocera cucumis), different life stages of those flies (adults and larvae) and different host plants (Solanum lycopersicon, Solanum mauritianum, Cucurbita pepo). In the laboratory, the wasp will readily oviposit into larvae of all three flies but successfully develops only in B. tryoni. Bactrocera tryoni commonly infests S. lycopersicon (tomato), rarely S. mauritianum (wild tobacco) but never C. pepo (zucchini). The latter two plant species are common hosts for B. cacuminata and B. cucumis, respectively.
  • 3 The parasitoid showed little or no response to uninfested plants of any of the test species. The presence of adult B. tryoni, however, increased parasitoid residency time on uninfested tomato.
  • 4 When the three fruit types were all infested with larvae, parasitoid response was strongest to tomato, regardless of whether the larvae were physiologically suitable or unsuitable for offspring development. By contrast, zucchini was rarely visited by the wasp, even when infested with B. tryoni larvae.
  • 5 Wild tobacco was infrequently visited when infested with B. cacuminata larvae but was more frequently visited, with greater parasitoid residency time and probing, when adult flies (either B. cacuminata or B. tryoni) were also present.
  • 6 We conclude that herbivore‐induced, nonspecific host fruit wound volatiles were the major cue used by foraging D. krausii. Although positive orientation to infested host plants is well known from previous studies on opiine braconids, the failure of the wasp to orientate to some plants even when infested with physiologically suitable larvae, and the secondary role played by adult fruit flies in wasp host searching, are newly‐identified mechanisms that may aid parasitoid host location in environments where both physiologically suitable and unsuitable hosts occur.
  相似文献   

9.
Although Japan has maintained the state of eradication of the oriental fruit fly, Bactrocera dorsalis Hendel complex (Diptera: Tephritidae) since 1986, B. dorsalis complex are occasionally trapped within a limited area and short time period on Japan's small south‐western islands. Trapping events occurred on Amamioshima Island, Kagoshima Prefecture, in 2015, and male adults were also caught in surveillance traps on neighbouring Tokunoshima (south of Amamioshima) and Yakushima (north of Amamioshima) islands as well as on several islands in Okinawa Prefecture (south of Amamioshima). To investigate possible domestic dispersal of the pest from Amamioshima Island, a trajectory analysis was performed to reveal the timing and flight distance of possible dispersal. Surveillance data indicated that the first trappings on Tokunoshima and Yakushima islands occurred in November, which was after the number of trapped male adults on Amamioshima Island peaked in late October. Backward trajectories from Tokunoshima Island beginning 14 days prior to the first trapping passed over Amamioshima Island, which suggested possible dispersal between the islands. Several backward trajectories from the islands in Okinawa Prefecture also passed Amamioshima Island. Moreover, forward trajectories from Amamioshima Island beginning during peak occurrence, from mid‐October to early November, arrived over Tokunoshima, Iheya and Okinawa islands where the flies were caught. Such circumstantial evidence suggests that domestic dispersal of B. dorsalis complex occurred on Amamioshima Island. A situation similar to that on Tokunoshima Island also occurred on Yakushima Island. However, since the number of traps has been limited until the first capture, it was not clear when and from where the immigrants arrived on the island.  相似文献   

10.
桔小实蝇生物学特点及其防治研究概述   总被引:24,自引:0,他引:24  
谢琦  张润杰 《生态科学》2005,24(1):52-56
桔小实蝇Bactrocera(Bactrocera)dorsalis(Hendel)是危害热带、亚热带水果的重要检疫性害虫之一,本文综述了桔小实蝇主要生物学、生态学特点和防治措施的研究进展,包括桔小实蝇在国内的总体分布情况,对寄主的选择差异,各虫态的形态特征、发育历期和不同因子对其生长发育的影响,生活史以及农业防治、化学农药防治、诱杀防治、生物防治、物理防治等不同防治方法的研究和应用情况,并对今后的研究提出一些建议。  相似文献   

11.
Host plants used by phytophagous insects can have significant consequences on demography parameters, overall lifetime fitness and their subsequent population dynamics. Here, we conduct a comparative demographic study between the specialist Zeugodacus cucumis (French) and generalist Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) to determine whether the host plants used by these fly species play any role in their overall lifetime fitness and explains current host use patterns. These two fly species are pests within the north-eastern region of Australia and we further aimed to use complete life-history data to determine the population parameters and models that would help identify the sensitive life-history stage that could be targeted for effective field management. Eggs collected from laboratory-reared flies were inoculated into organically grown fruits of both the primary and alternate host plant cultivars of both fly species. The proportion surviving each life stage from egg through to adult and fecundity were monitored for all cohorts from the different plant cultivars. Complete stage-base life-tables for cohorts of each fly species developing from each fruit cultivar were constructed, and the key demographic parameters and population models were analysed using PopTools matrix model programme. Our results showed that the host used by each fly species had significant consequences on fly demographic parameters and hence their overall lifetime fitness. The generalist B. tryoni was able to compensate for the fitness loss experienced at the pre-adult stage by having adults with higher fecundity, but this was not the case for the specialist Z. cucumis. Stage-base population models revealed that the population growth rate of both species was highly sensitive at the adult reproductive stage, indicating that manipulating probability of survival at this life stage would effectively manage populations of these pest species. This study provides the empirical evidence of undertaking complete life history demography studies of phytophagous insects to accurately understand their lifetime fitness consequences of using a certain host, their observed host use patterns, and overall population dynamics. We suggest that any efforts to manage dacine fruit fly pest population should consider life-history consequences of host use.  相似文献   

12.
Good culturing methods play an important role in the study of insect behavior and its application to pest management. Here, we describe and validate a new method for rearing the parasitoid wasp, Diachasmimorpha kraussii, which attacks some of the world's worst fruit fly pests and is an internationally used biological control agent. Our method differs from standard culturing approaches by presenting adult wasps with host‐infested artificial media within a “culturing bag,” which mimics a natural (fruit) oviposition substrate. In laboratory trials using wild collected D. kraussii, the culturing bag method was compared to the use of host‐infested nectarines, and a commonly used laboratory method of presenting host‐infested artificial media within Petri dishes. The culturing bag method proved to be a significant improvement on both methods, combining the advantages of high host survival in artificial media with parasitism levels that were the equivalent to those recorded using host‐infested fruits. In our field study, culturing bags infested with the Queensland fruit fly, Bactrocera tryoni, and hung in a mixed peach and nectarine orchard proved to be effective “artificial fruits” attracting wild D. kraussii for oviposition. Significantly more adult wasps were reared from the culturing bags compared to field collected fruits. This was shown to be due to higher fruit fly larval density in the bags, as similar percentage parasitism rates were found between the culturing bags and ripe fruits. We discuss how this cheap, time‐efficient method could be applied to collecting and monitoring wild D. kraussii populations in orchards, and assist in maintaining genetic variability in parasitoid laboratory cultures.  相似文献   

13.
The olive fruit fly Bactrocera oleae is responsible for worldwide economic damage. In this report, we describe the first B. oleae lines transinfected with the Wolbachia strain wCer2, an endosymbiont of the cherry fruit fly Rhagoletis cerasi. Immunostaining followed by confocal microscopy, detects high numbers of Wolbachia in embryos as well as in ovarioles and sperm from individuals of both transinfected lines. wCer2 was uniformly distributed in B. oleae egg chambers and the cortex of preblastoderm embryos. Wolbachia is known to manipulate host reproduction with several strategies, one of which is cytoplasmic incompatibility (CI), resulting in embryonic mortality in incompatible crosses. Wolbachia was found to induce complete CI in the novel host, suggesting that symbiont‐based approaches can be used as novel environmentally friendly tools for the control of natural olive fruit fly populations.  相似文献   

14.
In tests on feral populations of polyphagous Bactrocera tryoni (Froggatt) adults on host guava trees, both sexes were significantly more attracted to Tangletrap‐coated 50 mm diameter spheres colored blue or white than to similar spheres colored red, orange, yellow, green, or black or to Tangletrap‐coated 50 mm diameter yellow‐green guava fruit. In contrast, in tests on feral populations of oligophagous Bactrocera cacuminata (Hering) on host wild tobacco plants, both sexes were significantly more attracted to Tangletrap‐coated 15 mm diameter spheres colored orange or yellow than to other colors of spheres or to Tangletrap‐coated 15 mm diameter green wild tobacco fruit. Both sexes of both tephritid species were significantly more attracted to blue (in the case of B. tryoni) or orange (in the case of B. cacuminata) 50 mm spheres displayed singly than to blue or orange 15 mm spheres displayed in clusters, even though fruit of wild tobacco plants are borne in clusters. Finally, B. tryoni adults were significantly less attracted to non‐ultraviolet reflecting bluish fruit‐mimicking spheres than to bluish fruit‐mimicking spheres having a slightly enhanced level of ultraviolet reflectance, similar to the reflectance of possible native host fruit of B. tryoni, whose bluish skin color is overlayed with ultraviolet‐reflecting waxy bloom. Responses to fruit visual stimuli found here are discussed relative to responses found in other tephritid species.  相似文献   

15.
The frugivorous “true” fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a nonresourced‐based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource‐based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: (i) mating pairs were aggregated or nonaggregated; (ii) mating system was resource or nonresource based; (iii) flies utilized possible landmarks (tall trees over short) as mate‐rendezvous sites; and (iv) males called females from male‐dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: (i) mating pairs were aggregated; (ii) mating nearly always occurred in tall trees over short; (iii) mating was nonresource based; and (iv) that males and females arrived at the mate‐rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource‐based mating system. Some aspects of Bactrocera tryoni mating behavior align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a nonresource based, aggregation system for which we also have evidence that land‐marking may be involved.  相似文献   

16.
Around the world, several pest tephritids are extending their ranges from warm tropical or Mediterranean climates into cooler temperate regions. The ability to tolerate climatic diversity is uncommon among insects, and understanding the population phenology drivers of such species across different parts of their range will be critical for their management. Here, we determined the role of temperature versus fruit availability on the population phenology of Queensland fruit fly, Bactrocera tryoni. Using a field site located at the subtropical/temperate interface, with host fruits continuously available, we monitored the development times and abundance of B. tryoni, a species which has invaded temperate Australia from the tropics. From fruit samples held at ambient and controlled conditions, the abundance of emerging flies was highly variable among collection dates, but the variance did not reflect the observed changes in temperature. For most samples, the survival rate of flies in a field site was lower than predicted by a day‐degree population model fitted with mean daily field temperatures. The development time of the immature stage in the field was prolonged, presumably due to cooler ambient conditions, but the fitted day‐degree population model consistently over‐predicted estimated development times. Our results indicate that at the subtropical/temperate interface, the decline in B. tryoni populations during winter is only partly driven by temperature and host availability. We classify B. tryoni as a climate generalist, which likely employs physiological as well as behavioural mechanisms to achieve broad climatic tolerance ranges.  相似文献   

17.
Control of mobile pests frequently requires area‐wide management (AWM) that spans commercial and non‐commercial habitats. Spatial modelling of habitat suitability can guide investment and implementation of AWM, but current approaches rarely capture population drivers, including local foraging, at an appropriate spatial resolution. To support the development of AWM for the fruit fly pest, Bactrocera tryoni (Tephritidae), we developed a habitat suitability model for the three premier fruit‐growing regions in south‐eastern Australia (~34,780 km2). Expert elicitation and published literature was used to develop a Bayesian network to model the drivers of B. tryoni habitat suitability, as determined by the ability of populations to persist and increase. The effect of uncertainty was tested through sensitivity analysis. The model was then linked with spatially explicit data (at 10 m resolution) to generate risk maps, using moving windows to capture local foraging movement. Habitat suitability was most strongly influenced by host availability within a distance of 200 m. Climate stress, and soil moisture for pupation, was also limiting. Experts were uncertain regarding the relative importance of drivers of host availability (host preference, host density, fruit seasonality), but this did not greatly affect model outputs. Independent trapping data supported model predictions, but their value was limited as traps were placed almost exclusively in optimal or suitable habitat. Amenability to AWM, when assessed as the ratio of suitable or optimal habitat that was under non‐horticultural versus horticultural land‐uses, differed by region (0.15–1.17). However, risk‐mapping did identify where ratios were locally most favourable (lowest). Also, predominantly local dispersal by B. tryoni suggests AWM for pest suppression could be applied at a landscape‐scale. Results show that a relatively simple model could capture the multi‐scale drivers of population dynamics and the complexity of landscapes sufficiently to guide AWM of a mobile pest.  相似文献   

18.
The host suitability of the oriental fruit fly, Bactrocera dorsalis (Hendel), for development of Biosteres arisanus (Sonan), a braconid parasitoid, was compared with three other fruit fly species, namely, Mediterranean fruit fly, Ceratitis capitata Weidemann, melon fly, Bactrocera cucurbitae Coquilett, and Malaysian fruit fly, Bactrocera latifrons (Hendel). In addition, effects of five different fruit species, namely, Carica papaya L. (solo papaya), Musa sapientum (L.) O. Ktze. (apple banana), Mangifera indica (L.) (Haden mango), Terminalia catappa (L.) (false kamani), and Citrus aurantiifolia (Christman) Swingle (common lime), on the parasitization rate of B. dorsalis and sex ratio of parasitoid progenies were evaluated. Effects of host egg to female B. arisanus ratios on parasitoid progeny yields were likewise determined. The host suitability of fruit flies for development of B. arisanus was ranked as: B. dorsalis>C. capitata=B. latifrons=B. cucurbitae. Based on percent parasitization of B. dorsalis, preference of B. arisanus females for host eggs varied with fruit species, however, preferential oviposition displayed by female parasitoids did not influence sex ratios of subsequent parasitoid progenies. Increases in host egg to female parasitoid ratios of 5:1, 10:1, 20:1, 25:1, and 30:1 corresponded with increases in parasitoid progeny yield reaching a plateau at 20:1.  相似文献   

19.
1. Major global horticultural and food security tephritid fruit fly pests, Bactrocera papayae (papaya fruit fly) and B. invadens (invasive fruit fly), were synonymised with B. dorsalis (Oriental fruit fly) by Schutze et al. (2015a) based on extensive integrative taxonomic evidence from multiple sources. This synonymy was peer reviewed by eight independent experts. 2. Drew & Romig (2016) withdrew B. papayae and B. invadens from synonymy based on opinion drawn primarily from disparate geographical distribution, morphological, and host use information. This reversal was not subjected to peer review. 3. We consider the withdrawal from synonymy as invalid due to significant errors and misrepresentations of the literature provided in the arguments of Drew & Romig (2016) that we propose would not have withstood peer scrutiny. 4. This case reflects a broader issue of individual taxonomic authorities using opinion to challenge extensive evidence generated via scientific hypothesis‐testing methods by discipline specialists. 5. We recommend that taxonomic acts not subjected to peer review, especially of pest species, be actively discouraged by the broader scientific and regulatory community.  相似文献   

20.
Understanding the relationship between incursions of insect pests and established populations is critical to implementing effective control. Studies of genetic variation can provide powerful tools to examine potential invasion pathways and longevity of individual pest outbreaks. The major fruit fly pest in eastern Australia, Queensland fruit fly Bactrocera tryoni (Froggatt), has been subject to significant long‐term quarantine and population reduction control measures in the major horticulture production areas of southeastern Australia, at the species southern range limit. Previous studies have employed microsatellite markers to estimate gene flow between populations across this region. In this study, we used an independent genetic marker, mitochondrial DNA (mtDNA) sequences, to screen genetic variation in established and adjacent outbreak populations in southeastern Australia. During the study period, favorable environmental conditions resulted in multiple outbreaks, which appeared genetically distinctive and relatively geographically localized, implying minimal dispersal between simultaneous outbreaks. Populations in established regions were found to occur over much larger areas. Screening mtDNA (female) lineages proved to be an effective alternative genetic tool to assist in understanding fruit fly population dynamics and provide another possible molecular method that could now be employed for better understanding of the ecology and evolution of this and other pest species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号