共查询到20条相似文献,搜索用时 15 毫秒
1.
Kouamé Kouamé Victor Yapoga Séka Kouadio Kouakou Norbert Tidou Abiba Sanogo Atsé Boua Celestin 《International journal of phytoremediation》2016,18(10):949-955
This paper elucidates the phytoremediation potential of water hyacinth and water lettuce on the reduction of wastewater toxicity. Acute toxicity tests were performed in an aquarium with a population of Sarotherodon melanotheron, contaminated by different concentrations of wastewaters before and after phytoremediation with Eichhornia crassipes and Pistia stratiotes. Lethal concentrations (LC50) of the fish's population obtained during 24 hours of exposures were determined. COD, BOD, ammonium, TKN and PO43? concentrations in wastewaters were of 1850.29, 973.33, 38.34, 61.49 and 39.23 mg L?1, respectively, for each plant. Phytoremediation reduced 58.87% of ammonium content, 50.04% of PO43?, 82.45% of COD and 84.91% of BOD. After 15 days of the experiment, metal contents in treated wastewaters decreased from 6.65 to 97.56% for water hyacinth and 3.51 to 93.51% for water lettuce tanks. Toxicity tests showed that the mortality of fish exposed increased with increase in concentration of pollutants in wastewaters and the time of exposure. Therefore, the highest value of LC50 was recorded for fish subjected to 3 hours of exposure (16.37%). The lowest rate was obtained after an exposure of 20 to 24 hours (5.85%). After phytoremediation, the effluents purified by Eichhornia crassipes can maintain the fish life beyond 24 hours of exposure. 相似文献
2.
Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.) 总被引:1,自引:0,他引:1
Fermentation modes and microorganisms related to two typical free-floating aquatic plants, water hyacinth and water lettuce, were investigated for their use in ethanol production. Except for arabinose, sugar contents in water lettuce resembled those in water hyacinth leaves. Water lettuce had slightly higher starch contents and lower contents of cellulose and hemicellulose. A traditional strain, Saccharomyces cerevisiae NBRC 2346, produced 14.4 and 14.9 g l(-1) ethanol, respectively, from water hyacinth and water lettuce. Moreover, a recombinant strain, Escherichia coli KO11, produced 16.9 and 16.2 g l(-1) ethanol in the simultaneous saccharification and fermentation mode (SSF), which was more effective than the separated hydrolysis and fermentation mode (SHF). The ethanol yield per unit biomass was comparable to those reported for other agricultural biomasses: 0.14-0.17 g g-dry(-1) for water hyacinth and 0.15-0.16 g g-dry(-1) for water lettuce. 相似文献
3.
Treatment of textile effluents with Pistia stratiotes,Eichhornia crassipes and Oedogonium sp. 总被引:1,自引:0,他引:1
Amtul Bari Tabinda Rai Anum Arif Abdullah Yasar Mujtaba Baqir Rizwan Rasheed Adeel Mahmood 《International journal of phytoremediation》2019,21(10):939-943
AbstractPhytoremediation by aquatic macrophytes is a promising technology with higher efficiency and no energy consumption. For this purpose, two macrophytes (Pistia stratiotes, Eichhornia crassipes), and an alga (Oedogonium sp.) were used to treat textile effluents rich in COD, BOD, dyes, and heavy metals (Pb, Fe, Cd, Cu). The aim of the study was to focus on comparative phytoremediation potential of these species by their metal removal capability. During 7?days experiment (day 0–day 6), the results showed that Oedogonium sp. was the best for COD removal and decolorization. Eichhornia crassipes was the best for BOD and heavy metal removal and proves more efficient than Pistia stratiotes and Oedogonium sp. However, Pistia stratiotes was found to accumulate more concentrations of Pb and Fe than Eichhornia stratiotes. 相似文献
4.
植物在水产养殖废水处理中的研究进展 总被引:4,自引:0,他引:4
植物在生长繁殖过程中能吸收利用、富集、吸附和固定水产养殖水体中的有机物、无机物和重金属,降低养殖水体中的TP、TN、TSS、COD和BOD。同时,植物在水体中可通过其发达的通气组织和根系传输氧气,为微生物和其他生物的代谢活动提供适宜的条件。选择合适的植物构建人工湿地,通过人工湿地中植物、微生物和基质的物理作用、化学作用和生物作用处理水产养殖废水,可建立循环的水产养殖模式。将植物应用于水产养殖废水的处理,是实现可持续发展的生态型水产养殖的基础。本文综述了近年来藻类和高等植物在水产养殖废水处理中的研究进展。 相似文献
5.
Shahabaldin Rezania Mohd Fadhil Md Din Shazwin Mat Taib Farrah Aini Dahalan Ahmad Rahman Songip Lakhweer Singh 《International journal of phytoremediation》2016,18(7):679-685
In this study, water hyacinth (Eichhornia crassipes) was used to treat domestic wastewater. Ten organic and inorganic parameters were monitored in three weeks for water purification. The six chemical, biological and physical parameters included Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Ammoniacal Nitrogen (NH3-N), Total Suspended Solids (TSS), and pH were compared with the Interim National Water Quality Standards, Malaysia River classification (INWQS) and Water Quality Index (WQI). Between 38% to 96% of reduction was observed and water quality has been improved from class III and IV to class II. Analyses for Electricity Conductivity (EC), Salinity, Total Dissolved Solids (TDS) and Ammonium (NH4) were also investigated. In all parameters, removal efficiency was in range of 13–17th day (optimum 14th day) which was higher than 3 weeks except DO. It reveals the optimum growth rate of water hyacinth has great effect on waste water purification efficiency in continuous system and nutrient removal was successfully achieved. 相似文献
6.
R. H. Attionu 《Hydrobiologia》1976,50(3):245-254
Field and laboratory observations show that the growth of Pistia alters markedly the physico-chemical condition of its substrate. The nature of this effect in the field is suggested to depend on the cover of the vegetation. A large and dense mat insulates the water below it against solar radiation and causes stratification and poor oxygenation. The effects of a thin vegetation are the opposite of these. 相似文献
7.
8.
The potential of water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.) to remove chlorpyrifos in water was investigated under laboratory greenhouse conditions. At initial chlorpyrifos concentrations of 0.0, 0.1 and 0.5 mg/L, the relative growth rates (RGR) of L. minor and P. stratiotes were not significantly different. In contrast, in the presence of 1 mg/L chlorpyrifos the RGR was significantly inhibited, giving an observed fresh weight based RGR(FW) for P. stratiotes and L. minor from day 0 to 7 of -0.036 and -0.023 mg/g/day, respectively. The maximum removal of chlorpyrifos by P. stratiotes and L. minor, when chlorpyrifos was at an initial culture concentration of 0.5 mg/L, was 82% and 87%, respectively, with disappearance rate constants under these conditions of 2.94, 10.21 and 12.14 microg h(-1) for the control (no plants), and with P. stratiotes and L. minor, respectively, giving actual corrected plant removal rate constants of 7.27 and 9.20 microg h(-1) for P. stratiotes and L. minor, respectively. The bioconcentration factor (BCF) of L. minor was significantly greater than that for P. stratiotes and therefore, at least under these greenhouse-based conditions, L. minor was more efficient than P. stratiotes for the accelerated removal of chlorpyrifos from water. 相似文献
9.
10.
Zohaib Abbas Fariha Arooj Ihsan Elahi Zaheer Muhammad Rizwan Muhammad Ahsan Riaz 《International journal of phytoremediation》2019,21(13):1356-1367
AbstractIn the present study, the effectiveness of water hyacinth and water lettuce was tested for the phytoremediation of landfill leachate for the period of 15?days. Fifteen plastic containers were used in experimental setup where aquatic plants were fitted as a floating bed with the help of thermo-pole sheet. It was observed that both plants significantly (p?<?0.05/p?<?0.01/p?<?0.001) reduce the physicochemical parameters pH, TDS, BOD, COD and heavy metals like Zn, Pb, Fe, Cu and Ni from landfill leachate. Maximum reduction in these parameters was obtained at 50% and 75% landfill leachate treatment and their removal rate gradually increased from day 3 to day 15 of the experiment. The maximum removal rate for heavy metals such as for Zn (80–90%), Fe (83–87%) and Pb (76–84%) was attained by Eichhornia crassipes and Pistia stratiotes. Value of bioconcentration and translocation factor was less than 1 which indicates the low transport of heavy metals from roots to the above-ground parts of the plants. Both these plants accumulate heavy metals inside their body without showing much reduction in growth and showing tolerance to all the present metals. Therefore, results obtained from the study suggest that these aquatic plants are suitable candidate for the removal of pollution load from landfill leachate. 相似文献
11.
Studies were carried out on extraction and retrieval of potassium from water hyacinth (Eichhornia crassipes). The stem and leaf were subjected to 13 treatments. The highest rate of K removal following HCl treatment was 69.7% K. Most effective removal of suspended organic substances, Ca2+ and Mg2+ were achieved at pH approximately 13, when 88.0% of K remained in filtrate. Maximum K in precipitate following this step was achieved with tartaric acid additions at n(C4H6O6)/n(K+) of 1.72 when precipitating at 4 degrees C for 3h, which resulted in 72.3% of K removal from the solution. Over the entire process, 44.3% of K in the dried stem-leaf sample of water hyacinth was retrieved in the form of KC4H5O6. This process demonstrated the potential for use of water hyacinth as a resource of potassium to produce potassium salts and provide a valuable end use for the plant, which could be highly invasive in aquatic ecosystems. 相似文献
12.
The responses of decomposition to N and P supply were investigated in three leaf types of water hyacinth (Eichhornia crassipes (Mart.) Solms): dead green leaves collected from Donghu Lake; green, and brown leaves collected from outdoor tanks. The ratios of C:N, C:P, lignin:N and lignin:P were lowest in the green leaves collected from Donghu Lake, and highest in the brown leaves collected from outdoor tanks. Decomposition constant (k) of water hyacinth varied greatly, ranged from 0.006 to 0.099 d–1. Leaf litters decayed most quickly within the initial two weeks during the experimental period, but decomposition rate decreased significantly in the following days. Decomposition and nutrient (N and P) release were fastest in the green leaves collected from Donghu Lake, intermediate in the green leaves collected from outdoor tanks, slowest in the brown leaves collected from outdoor tanks. Statistical analyses revealed that the effects of P-availability on decomposition rate and N, P release rate of the three litter types were significant, whereas the impacts of N-availability was insignificant (p > 0.05) except for the brown leaves collected from outdoor tanks. These results suggest that decomposition rate and nutrient content dynamics of water hyacinth differ with their growth habitats, and could partly be regulated by nutrient availability, especially by P-availability, in the environments. 相似文献
13.
The use of water lettuce (Pistia stratiotes L.) for rhizofiltration of a highly polluted solution by cadmium and lead 总被引:1,自引:0,他引:1
The effectiveness of heavy metal uptake from contaminated nutrient solution by four aquatic macrophytes (Pistia stratiotes L., Salvinia auriculata AubL, Salvinia minima Baker, and Azolla filiculoides Lam) was estimated in this study. The influence of cadmium (3.5 mg L(-1) and 10.5 mg L(-1)) and lead (25 mg L(-1) and 125 mg L(-1)) on the stress symptoms was observed through the determination of chlorophyll content and transpiration rate over 14 days of the experiment. The results of the present study showed extreme reductions in Cd and Pb concentrations in solution during the first 4 days. The accumulation of Pb in plant tissues was the highest during the first 4 days and was more than 10 times higher in the roots (42,862 mg kg(-1)) than in the leaves (3867 mg kg(-1)). The accumulation of Cd slowly increased and was the highest at the end of the experiment. Concentrations in roots (3923 mg kg(-1)) were roughly 6 times higher than in the leaves (624 mg kg(-1)). Results showed significant decrease in the transpiration rate at Pb treatment and a significant increase at Cd treatment during 48 hours of exposition. 相似文献
14.
Daniel Schwantes Affonso Celso Gonçalves Jr. Andréia da Paz Schiller Jéssica Manfrin Marcelo Angelo Campagnolo Eduardo Somavilla 《International journal of phytoremediation》2019,21(7):714-723
AbstractThis work aimed to evaluate the potential of phytoremediation using Pistia stratiotes as a plant for post-treatment of wastewater from domestic sewage. The experiment was conducted at Toledo-PR, Brazil, for 42 days, in a pilot scale model. In order to evaluate the efficiency of Pistia as a post-treatment of domestic sewage, parameters such temperature, pH, turbidity, total solids, COD, Ntotal and Ptotal contents were determined in the effluent, as well as the total contents of K, Ca, Mg, Cu, Zn, Fe, Mn, Cd, and Pb. The bioaccumulation of K, Ca, Mg, Cu, Zn, Fe, Mn, Cd, and Pb in the living tissues of P. stratiotes have also been detected. The results demonstrate efficiency removal of turbidity, Ntotal, Ptotal and COD of 98.5, 100, 100, and 79.18%, respectively. The effluent contents of nutrients and toxic metals fluctuated during the study. This can have occurred due to photosynthetic activities of microorganisms and the plant senescence. The evaluation of some parameters in the effluent, such as temperature, DO, and organic matter, influenced these facts. Low levels of DO were observed, in function to the physical barrier of macrophytes in water surface, preventing the entry of air and light. The use of P. stratiotes proved to be a good complement for post-treatment of wastewater from domestic sewage. 相似文献
15.
Chattopadhyay S Fimmen RL Yates BJ Lal V Randall P 《International journal of phytoremediation》2012,14(2):142-161
Phytoremediation has the potential for implementation at mercury- (Hg) and methylHg (MeHg)-contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associated forms, over a 68-day hydroponic study. The suitability of E. crassipes to assimilate both Hg and MeHg was evaluated under differing phosphate (PO4) concentrations, light intensities, and sediment:aqueous phase contamination ratios. Because aquatic rhizospheres have the ability to enhance MeHg formation, the level of MeHg in water, sediment, and water hyacinth was also measured. Hg and MeHg were found to concentrate preferentially in the roots of E. crassipes with little translocation to the shoots or leaves of the plant, a result consistent with studies from similar macrophytes. Sediments were found to be the major sink for Hg as they were able to sequester Hg, making it non-bioavailable for water hyacinth uptake. An optimum PO4 concentration was observed for Hg and MeHg uptake. Increasing light intensity served to enhance the translocation of both Hg and MeHg from roots to shoots. Assimilation of Hg and MeHg into the biomass of water hyacinths represents a potential means for sustainable remediation of contaminated waters and sediments under the appropriate conditions. 相似文献
16.
The use of natural chelates to enhance risk element mobility combined with rhizofiltration by free floating macrophytes have not been thoroughly studied in recent years. The aim of this study was to investigate the efficiency of organic acids in soil by conducting flushing experiments to enhance the mobility of Cd, Pb, and Zn from soil to solution. In addition, the bioaccumulation of Cd, Pb, and Zn, in water lettuce (Pistia stratiotes L.) will be studied as they affect the biomass in the rhizofiltration process. The results revealed that citric and tartaric acids mobilised the highest amount of all risk elements. In comparison to control, citric acid mobilised 71%, 181%, and 112% of Cd, Pb, and Zn while tartaric acid mobilised 70%, 155%, and 135% of Cd, Pb, and Zn respectively. The bioconcentration factor was approximately 2-5 times higher for juvenile plants than mature plants for all treatments as well as for both parts (leaves and roots). The risk element translocation into aerial parts decreased with increased time. Juvenile and mature plants proved a high accumulation potential and a 3 week growth period was observed as a sufficient time period to remove more than 80% of Cd, Pb, and Zn. 相似文献
17.
Summary Water hyacinth (Eichhornia crassipes) harbours Azotobacter chroococcum in large numbers on and in its leaves. This may account for its prolific growth of the plants in water containing only traces of combined nitrogen. re]19721201 相似文献
18.
Density-dependent reproductive and vegetative allocation in the aquatic plant Pistia stratiotes (Araceae) 总被引:1,自引:0,他引:1
Pistia stratiotes is an aquatic macrophyte that grows in temporary-ponds in the southern Pantanal, Brazil. It reproduces both sexually and asexually and is usually observed forming dense mats on the water surface, a condition favored by the plant's vegetative reproduction coupled with an ability for rapid growth. In this study we examined the effect of densely crowded conditions on the production of reproductive and vegetative structures. In addition, we verified whether there is a trade-off between clonal growth and investment in sexual reproductive structures, and whether there is an allocation pattern with plant size. Individual plant biomass and the number of the rosettes producing sexual reproductive structures and vegetative growth structures both increased with density. Increase in plant size resulted in increased proportional allocation to sexual reproductive structures and vegetative growth structures. Allocation of biomass to reproduction did not occur at the expense of clonal growth. Thus, the density response appears as a increase of rosettes producing sexual reproductive structures and vegetative growth structures. Therefore, long leaves and stolons may be adaptive under densely crowded conditions where competition for light is intense. An important aspect in the study of trade-offs is the size-dependency of the allocation patterns .Usually, larger plants produce more biomass. Therefore, larger plants can allocate more biomass to both vegetative and sexual reproduction than smaller plants and thus show a positive correlation between both traits rather than the expected negative one. 相似文献
19.
A two-stage rumen-derived anaerobic digestion process was tested for the conversion of water hyacinth shoots and a mixture of the shoots with cowdung (7:3) into biogas. Under conditions similar to those of the rumen and loading rates (LR) in the range of 11.6–19.3g volatile solids (VS) l–1d–1 in the rumen reactor, the degradation efficiencies were 38% for the shoots and 43% for the mixture. The major fermentation products were volatile fatty acids (VFA) with a maximum yield of 7.92mmolg–1 VS digested, and biogas with a yield of 0.2lg–1 VS digested. The effect of varying LR, solid retention time (SRT) and dilution rates on the extent of degradation of the water hyacinth–cowdung mixture was examined. Overall conversion of the substrate was highest at the loading rate of 15.4gVS.l–1d–1. Varying the retention times between 60 and 120h had no effect on the degradation efficiency, but a decrease was observed at retention times below 60h. The overall performance of the reactor was depressed by changing the dilution rate from 0.5 to 0.34h–1. By applying a LR of 15.4VS. l–1d–1, a SRT of 90h and a dilution rate of 0.5h–1 in the rumen reactor, and connecting it to a methanogenic reactor of the upflow anaerobic sludge blanket type, 100% conversion efficiency of the VFA into biogas with a methane content of 80% was achieved. The average methane gas yield was 0.44lg–1 VS digested. 相似文献
20.
World Journal of Microbiology and Biotechnology - A two-stage rumen-derived anaerobic digestion process was tested for the conversion of water hyacinth shoots and a mixture of the shoots with... 相似文献