首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The experimental study was conducted during the period of 2008–2010 at the experimental field of the Institute of Forage Crops in Pleven. The hybridization scheme included direct and back crosses covering four varieties of forage pea (Pisum sativum L.), namely two spring ones, Usatii 90 and Kamerton from Ukraine, and a winter one from Bulgaria, Pleven 10. There was analyzed the inheritance of quantitative traits such as plant height, height to first pod, pod number per plant, seed number per plant, seed number per pod, seed weight per plant and number of fertile nodes per plant of parental components (P1 and P2) and both first (F1) and second (F2) hybrid generations. The cross Usatii 90 × Pleven 10 showed the highest real heterosis effect for plant height (8.26%), pods per plant (158.79%), seeds per plant (272.16%), seeds per pod (42.09%), seed weight per plant (432.43%) and number of fertile nodes per plant (117.14%). The cross Pleven 10 × Usatii 90 had the highest real heterosis effect height to first pod (11.06%). In F2 plants, the strongest depression for plant height (5.88%), seeds per plant (57.88%), seeds per pod (55.93%) and seed weight per plant (55.99%) was in the cross Usatii 90 × Pleven 10, for height to first pod (1.47%) in the cross Kamerton × Pleven 10 and for number of fertile nodes per plant (15.91%) in the cross Pleven 10 × Usatii 90. The highest positive degree of transgression for number of fertile nodes per plant (165.64%) and seed weight per plant (162.10%) was in the cross Pleven 10 × Kamerton and for pod number per plant (102.54%) and seeds per plant (99.13%) in Kamerton × Pleven 10. The stability of the characters was determined. Low variability in F1 and F2 was found in plant height (3.97–6.85%). Variability of number seeds per plant in F1 was highest (11.86–33.23%). For all other traits, the variability varied from average to high. A lower narrow-sense heritability coefficient was observed for plant height, height to first pod, pods per plant, seeds per plant and seed weight per plant (from 0.001 to 0.230). In few cases, such as in fertile nodes per plant (0.39 and 0.81) and seeds per pod (0.44), the coefficients of broad-sense heritability were higher.  相似文献   

2.
Khattak GS  Haq MA  Ashraf M  McNeilly T 《Hereditas》2001,134(3):211-217
Additive, dominance, and epistasis genetic basis of seed yield per plant, number of pods per plant, number of seeds per pod, and 1000 seed weight in mungbean (Vigna radiata (L.) Wilczek) have been examined, using Triple Test Cross (TTC) analysis. The material for TTC test was evaluated in two seasons i.e., kharif (July-October) and spring/summer (March-June), at the research station of the Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan. Epistasis was present significantly for number of pods per plant and number of seeds per pod when grown in the spring/summer season (March to June). Partition of epistasis showed that additive x additive ('i' type) interaction was an important component of number of pods per plant, and number of seeds per pod was found to be of both types 'i' type, and additive x dominance, and dominance x dominance ('j' and 'l' type) interactions. This indicated that epistasis might be a non-trivial factor in the inheritance of pods per plant, and seeds per pod in mungbean. The expression of epistasis was influenced differentially by particular genotypes, indicating that a limited number of genotypes may not be sufficient to detect non-allelic interactions for a trait in mungbean. Additive and dominance genetic components were significant for all four traits in kharif season (July to October) but only for seed yield and 1000 seed weight in spring/summer season. This suggests that the genes controlling seed yield per plant, and 1000 seed weight are equally sensitive to the environment. The predominance additive gene action in those traits is not significantly influenced by epistasis, suggesting that improvement of the traits can be achieved through standard selection procedures.  相似文献   

3.
HERBERT  S. J. 《Annals of botany》1979,43(1):65-73
Components of seed yield of cv. Ultra (Lupinus albus L.) andcv. Unicrop (L. angustifolius L.) were measured when grown atthree densities. The low density (10 plants m–2) Unicropyield (34 g seed per plant) was 1.8 times that of Ultra as ithad more branches, pods and seeds per pod. Ultra seeds (310mg per seed) were heavier than Unicrop seeds (180 mg). The branchingpattern of Ultra was less dependent on plant density, henceat 93 plants m–2 it gave a higher per plant yield (7.4vs 6.4 g) than Unicrop at lower densities (83 plants m–2).Density had most influence on pod formation and only small effectson seeds per pod and seed weight. Yield components on the main-steminflorescence were influenced less by density than componentson branch inflorescences. Later formed, higher order generationsof inflorescences were most affected by increased inter- andintra-plant competition. Pod numbers on the main-stem were similarfor both species. Pods formed at higher flower nodes in Unicrop,but the lower flower nodes were less fertile than those in Ultra.Node position of flowers had no influence on seed set in main-stemUnicrop pods, but pods from higher nodes in Ultra formed fewerseeds. Seed weights in Unicrop were similar among main-stemnodes but in Ultra seed weights tended to increase at highernodes. Lupinus spp, lupins, seed yield, planting density  相似文献   

4.
We characterized 13 accessions of dry peas of different origins from various growing regions in Argentina, based on three replications of 20 plants cultivated in 2009 and 2010 in a greenhouse, with the objective of selecting those with favorable characteristics for use in breeding programs. Significant differences were found for length and width of stipule and pod, length of the internodes and leaflets, plant height, total number of nodes, number of nodes at the first pod, number of days to flowering and to harvest, number of pods and seeds per pod, 100-seed weight and grain diameter, demonstrating a high degree of genetic variability. Phenotypic correlation analysis demonstrated that large pods produced more seeds per pod, but the seed weight decreased. Plants with smaller number of nodes in the first pod were more productive. Estimates of genotypic correlation coefficients indicated a strong inherent association among the different traits. Clustering methods grouped the accessions into five clusters. Cluster 5 included two accessions and showed the highest values for length and width of stipules (4.9 and 4.5 cm, respectively), length of leaflets (7.43 cm) and days to flowering (122.6), while cluster 3, with one accession, and cluster 4, with two accessions, showed the highest values for number of seeds per pod (3.78 and 4.39), number of pods per plant (5.33 and 5.70), length of pods (5.54 and 5.72 cm), and width of pods (1.21 and 1.20 cm, respectively). We conclude that accessions in clusters 3 and 4 would be useful for crosses with other cultivars in pea breeding programs.  相似文献   

5.
Yellow mite, Polyphagotarsonemus latus [Banks] (Acari: Tarsonemidae) is one of the major pests of jute crops (Corchorus capsularis L.) in Bangladesh. In this study, indigenous varieties of jute were used for treatments, namely, CVL‐1, CVE‐3, BJC‐7370 and BJC‐83. The paired plot treatments (treated and untreated controls) were laid out under field conditions. The effects of yellow mite were studied at three stages of the jute plants: 60 days after sowing (DAS), 90 DAS and 120 DAS. A higher number of mite stages was observed up to 90 DAS and then declined up to 120 DAS in var. BJC‐7370 among two other varieties, Deshi and Tossa. The percentage of infestation and damage indexes (scale 0–5) were measured to relate yellow mite injuries to the number of leaves, leaf area, fresh leaf weight, dry leaf weight, soluble solids, plant height, base diameter, fiber weight, stick weight, number of flowers per plant, number of pods, pod weight per plant, seeds per pod, seed weight and 1000 seeds' weight of plants infested at three different phenological stages. The highest fiber yield loss was found in the variety BJC‐7370 (59.75%), followed by BJC‐83 (55.56%), CVE‐3 (54.30%) and CVL‐1 (50.05). The highest stick yield losses were found in the following order: BJC‐7370 (54.54%) > BJC‐83 (51.17%) > CVL‐1 (43.68%) > CVE‐3 (37.80%) and BJC‐7370 (30.33%) > CVL‐1 (27.83%) > BJC‐83 (24.16%) > CVE‐3 (22.11%) for the highest seed yield under field conditions for Corchorus capsularis. High yellow mite population in untreated checks decreased plant growth and showed significant losses in yield production for the variety BJC‐7370.  相似文献   

6.
The average number of ovules produced per individual of Lupinus texensis is much greater than the average number of seeds per plant. Each plant produces approximately 2,000 ovules but only 2.5% develop into seeds. One fourth of the seeds is lost due to abortion and 0.3% is lost due to predation on the plant. Mature seeds from this population exhibit a five-fold range in weight, from 10 to 56 mg. The distribution of seed weights in the field population is skewed and leptokurtic. Seed wt is positively correlated with both seed germination and seedling survivorship. Heritability of seed wt is 0.09. There is no correlation between average seed wt per plant and total number of seeds per plant, seeds per pod, or legumes per plant.  相似文献   

7.
The heritability, the number of segregating genes and the type of gene interaction of nine agronomic traits were analysed based on F2 populations of synthetic oilseedBrassica napus produced from interspecific hybridization ofB. campestris andB. oleracea through ovary culture. The nine traits—plant height, stem width, number of branches, length of main raceme, number of pods per plant, number of seeds per pod, length of pod, seed weight per plant and 1000-seed weight—had heritabilities of 0.927, 0.215, 0.172, 0.381, 0.360, 0.972, 0.952, 0.516 and 0.987 respectively, while the mean numbers of controlling genes for these characters were 7.4, 10.4, 9.9, 12.9, 11.5, 21.7, 20.5, 19.8 and 6.4 respectively. According to estimated coefficients of skewness and kurtosis of the traits tested, no significant gene interaction was found for plant height, stem width, number of branches, length of main raceme, number of seeds per pod and 1000-seed weight. Seed yield per plant is an important target for oilseed production. In partial correlation analysis, number of pods per plant, number of seeds per pod and 1000-seed weight were positively correlated with seed yield per plant. On the other hand, length of pod was negatively correlated (r = -0.69) with seed yield per plant. Other agronomic characters had no significant correlation to seed yield per plant. In this experiment, the linear regressions of seed yield per plant and other agronomic traits were also analysed. The linear regression equation wasy = 0.074x8 + 1.819x9 + 6.72x12 -60.78 (R 2 = 0.993), wherex 8, x9 and x12 represent number of pods per plant, number of seeds per pod and 1000-seed weight respectively. The experiment also showed that erucic acid and oil contents of seeds from F2 plants were lower than those of their maternal parents. However, glucosinolate content was higher than that of the maternal plants. As for protein content, similar results were found in the F2 plants and their maternal parents. It was shown that the four quality traits, i.e. erucic acid, glucosinolate, oil content, and protein content, had heritability values of 0.614, 0.405, 0.153 and 0.680 respectively.  相似文献   

8.
鹰嘴豆种质资源农艺性状遗传多样性分析   总被引:12,自引:2,他引:10  
以100份鹰嘴豆种质资源为材料,应用聚类分析和主成分分析方法,对15个主要农艺性状的遗传多样性进行分析。结果表明,参试材料存在广泛的遗传多样性。其中,多样性指数最高的是株高,其次是百粒重;性状变异系数最大的是单株荚数,其次是单株粒重;基于各种质间形态标记的遗传差异,将100份鹰嘴豆种质聚类并划分为4大类群。第Ⅰ类群可作为选育丰产中粒型和株高适中的品种,第Ⅱ类群可作为选育矮秆耐密及特异粒色(型)品种,第Ⅲ类群丰产性较差可作为选育子粒球型、光滑的品种,第Ⅳ类群可作为选育大粒型、适宜机械化收获的品种。9个数量性状的主成分分析结果表明,前4个主成分累计贡献率达73.91%,各主成分性状载荷值反映了主要数量性状的育种选择潜力。综合分析种质资源农艺性状,为鹰嘴豆的有效利用提供一定的科学依据。  相似文献   

9.
The reproductive and damage potential of Ditylenchus destructor on peanut, Arachis hypogaea cv. Sellie, was determined in greenhouse tests. Final nematode population densities (Pf) in roots, hulls, and seeds increased (P = 0.01) as a function of increasing initial population (Pi). Final population densities were higher in hulls than in seeds and roots. Final densities in hulls and seeds were positively (P = 0.01) correlated. Fresh root and hull weight and number of pods and seeds per plant were not affected by D. destructor. Second generation germination and pod and seed disease severity increased (P = 0.01), whereas fresh seed weight decreased (P = 0.01) as a function of increasing Pi, and Pf in seeds and Pf in hulls. At Pi 250 and higher, 10-25% of seeds germinated into second generation seedlings before harvest. At Pi 250 and higher, fresh weight of harvested seed was suppressed 20-50%. At Pi 50 or Pf greater than 20 per seed, pod disease severity was 3-7 (on a scale of 1 to 10) and 15-80% of seeds were blemished or unsound.  相似文献   

10.
Pods and seeds of field-collected Baptisia lanceolala plants were analyzed to partition seed weight and seed packaging trait variance among and within plants and to detect relationships between these traits. Packaging traits studied were: pod weight, seed weight per pod, number of seeds per pod, mean weight of seeds per pod, proportion seed weight of total pod weight, and pod weight per seed. Significant among-plant variation was found for seed weight and all packaging traits. Within plants, positive correlations were found between number of seeds per pod and pod dry weight and between the proportion seed weight of total pod weight and number of seeds per pod. Pod weight per seed was negatively correlated with number of seeds per pod. Most plants had a negative correlation between mean seed weight and number of seeds per pod. When compared with an equality of slopes test, slopes of regressions of the above pairs of traits were found to differ among plants. Among plants, the same relationships were found, except for the latter two traits, which were not correlated. These within-plant patterns may represent constraints on seed weight variance imposed by the seed package. This view is supported by a positive correlation between packaging trait variance and seed weight variance. Packaging-related constraints could have an effect on seed weight in this and other species. If these phenotypic constraints have a genetic basis, then selection on seed packaging could change seed weight in a way different from that which might be predicted by considering seed weight alone.  相似文献   

11.
Phenotypic correlation coefficients and heritability of the characters controlling seed yield of long-raceme forms of alfalfa was determined. It was found that seed yield per plant, which was positively correlated with 10 out of 12 analysed characters, depended upon the number of pods per raceme and the number of seeds per pod. Variability of these characters determined about 60% of the variability of seed yield. Multiple linear regression and phenotypic correlations show that simultaneous selection for increased pod number per raceme and increased seed number per pod and raceme length resulted in enhanced seed yield potential. The share of the additive genetic effects in the phenotypic variance for number of pods per raceme was low and about 21-23%, while for number of seeds per pod and per raceme amounted to about 50%. The expected genetic progress in recombination breeding for number of seeds per pod and number of seeds per raceme will be of medium magnitude, while one cannot expect any rapid and considerable progress in the number of pods per raceme. Considering the high positive correlation between raceme length and number of pods and seeds per raceme, one should conclude that raceme length can be an important criterion in selection of plants showing a high seed productivity.  相似文献   

12.
以晋豆23栽培大豆(Glycine max)为母本、灰布支黑豆(ZDD2315,半野生大豆)为父本衍生出447个RIL群体,通过构建SSR遗传图谱及利用混合线性模型分析方法,对2年大豆小区产量及主要植物学性状进行QTL定位,并作加性效应、加性×加性上位互作效应及环境互作效应分析。结果显示,共检测到12个与小区产量、单株粒重、单株茎重、单株粒茎比、有效分枝、主茎节数、株高和结荚高度相关的QTL,分别位于A1、A2、H_1、I、J_2和M连锁群上。其中小区产量、株高、单株粒重、有效分枝和主茎节数均表现为遗传正效应,即增加其性状的等位基因来源于母本晋豆23。同时,检测到11对影响小区产量、单株粒重、单株茎重、株高和结荚高度的加性×加性上位互作效应及环境互作效应的QTL,发现22个QTL与环境存在互作。实验结果表明,上位效应和QE互作效应对大豆小区产量及主要农艺性状的遗传影响很大。进行大豆分子标记辅助育种时,既要考虑效应起主要作用的QTL,又要注重上位性QTL,这样有利于性状的稳定表达和遗传。  相似文献   

13.
大豆种质资源农艺性状和产量的年份间差异及其关系   总被引:1,自引:0,他引:1  
明确大豆种质资源农艺性状的变化及其与产量的关系对大豆遗传育种具有重要的意义。以249份大豆种质资源为材料,应用多元统计方法分析了大田条件下两年间大豆农艺性状与产量的变化。结果表明,大豆种质资源的农艺性状和产量两年变异系数分别为6.2%~78.0%和6.3%~48.5%,变异较大。生育日数因在黄淮海区域生态类型较接近,变异系数较小;而主茎节数变异系数也较小。株高、有效分枝数、底荚高度、单株荚数、单株粒数、每荚粒数、单株粒重、百粒重、单位面积产量则相对变异较大。品种之间农艺性状和产量差异均显著。不同年份间生态因子(温度、降水量及日照时数)对大豆农艺性状和产量的影响较大,年份间不同指标差异亦显著。分别对两年农艺性状采用主成分分析,简化为4个与产量相关的独立指标,并建立了产量与农艺性状之间的方程Y=17.5-1.76x1+1.32x2+0.30x3+2.50x4和Y=198.8-3.12x1+7.71x2+0.08x3+2.71x4以表达其量化关系;采用聚类分析方法将两年中249份大豆种质资源分别聚为5类,并分析了各类品种的特性,为高产稳产大豆新品种的选育以及高产栽培措施的调控提供理论依据。  相似文献   

14.
Pathogenicity tests of twenty-six fungal isolates were tested on peanut plants (Giza 5 cv.) and the results revealed that, Fusarium oxysporum isolate (No. I) followed by F. solani (No. II) then F. moniliforme (No III) significantly caused highest incidence of root rot disease. Also, F. moniliforme (No III) followed by F. solani (No II) then F. oxysporum (No I) gave the highest incidence of pod rot disease. The effectiveness of vescular arbuscular-mycorrhiza (VAM) at different application rates on the incidence of root rot, pod rot diseases and plant growth parameters of peanut was studied. All soil treatments with each rate of VAM significantly reduced root and pod rot diseases compared with control (rate 0%). The best reduction in the severity of both diseases with VAM was found at the rate of 3%. Application of rhizobacterin, microbin and cerialin biofertilisers at the different concentrations decreased the severity of both root rot and pod rot severity diseases compared with non-treated seeds. The greatest reduction in both diseases was achieved at a concentration of 8/100?g seeds. The highest number of pods and fresh weight (g) was achieved in seed supplemented with each biofertiliser at concentration of 8/100?g seed.  相似文献   

15.
In chickpeas (Cicer arietinum L.) flowering and pod developmentproceed acropetally. In plants grown under normal field conditionsat Hyderabad, in peninsular India, and at Hissar in north India,at successively apical nodes of the branches there was a declinein pod number per node, weight per pod, seed number per podand/or weight per seed. The percentage of nitrogen in the seedswas the same in earlier and later-formed pods at Hyderabad;at Hissar the later-formed seeds contained a higher percentage.Earlier- and later-formed flowers contained similar numbersof ovules. The decline in seed number and/or weight per seedin the later-formed pods of 28 out of 29 cultivars indicatedthat pod-filling was limited by the supply of assimilates orother nutrients. By contrast, in one exceptionally small-seededcultivar there was no decline in the number or weight of seedsin later-formed pods, indicating that yield was limited by ‘sink’size. Cicer arietinum L., chickpea, flowering, pod development, seed number, seed weight, nitrogen content  相似文献   

16.
This study examined whether increased K supply in conjunction with BAPcould increase lupin seed yield and harvest index by enlarging sink volume (podnumber), increasing assimilate and improving assimilate partitioning to filltheadditional pods induced by BAP treatment. Narrow-leafed lupin(Lupinusangustifolius, cv. Danja abs mutant) was grown inaglasshouse, in pots containing sandy soil with four K treatments (0, 15, 60 and120 mg K/kg soil). BAP (2 mM) was applied daily toallmain stem flowers throughout the life of each flower from opening to senesced.BAP application did not affect assimilate production (as measured by totalabove-ground biomass), but changed assimilate partitioning. On BAP-treatedplants, there were greater proportions of seed to pod wall dry weight on themain stem but smaller proportions on the branches, and an increased weightratioof seed to pod wall overall which meant more assimilate was used for seedgrowthrather than pod wall growth. BAP increased the number of pods per plant by35% and this more than compensated for the decreases in seeds per podandseed weight. Therefore, there was an increased harvest index (+11%)and seed yield per plant (+13%) in BAP-treated plants. BAP alsoincreased the number of pods with filled seeds (146%) on the main stemand main stem seed K+ concentration (from 0.81% to0.87%). Added K increased biomass but only slightly affected assimilatepartitioning. As applied K increased, relatively more assimilate was used forpod wall growth rather than seed growth. Added K increased seed yield per plantby about 14% due to increases in seed weight and the number of pods onthe main stem. Moreover, K+ concentration in seeds and shootsincreased with increasing level of applied K. Seed yield was enhanced more byBAP when K was supplied at high levels. Increasing K supply interactedpositively with added BAP by increasing narrow-leaf lupin seed yield andharvestindex through increases in assimilate supply and its partitioning into seeds.  相似文献   

17.
Genes that affect plant form and function may be used to enhance the yield of soybean [Glycine max (L.) Merr.]. Most soybean cultivars have broad (ovate) leaflets. A single gene, ln, controls inheritance for the narrow leaflet characteristic. Narrow leaflet cultivars (ln/ln) also tend to have a higher percentage of four-seeded pods than ovate (Ln/Ln) leaflet cultivars. Heterozygous (Ln/ln) plants have a leaflet shape intermediate between narrow and ovate. Determining the agronomic effects of the narrow leaflet allele (ln) in the heterozygous (Ln/ln) condition in soybean may have applications in practical plant breeding. We studied an ovate leaflet and a narrow leaflet cultivar, crosses between them in the F(1) and F(2), and backcrosses to both cultivars. The ratio of leaflet width to leaflet length accurately distinguished among narrow, ovate, and intermediate leaflet plants in the F(2) and backcross generations. In the F(2) generation, differences occurred among plants with different leaflet morphology. Narrow leaflet plants produced more seeds per pod and lower seed weight than ovate leaflet plants. Narrow and ovate leaflet plants produced comparable numbers of pods per plant and plant yield. Compared to ovate leaflet plants, intermediate leaflet plants produced similar numbers of seeds per pod and seed weight. Intermediate leaflet plants produced significantly more pods per plant and plant yield than plants with either ovate or narrow leaflets. The heterozygous condition at the locus for leaflet morphology resulted in heterosis for plant yield and may be of benefit in association with commercialization and development of hybrid soybean.  相似文献   

18.
云南红花种质资源主要农艺性状的遗传多样性分析   总被引:7,自引:0,他引:7  
为加强红花种质资源的研究利用,对筛选出的66份云南红花优异种质资源16个形态性状进行聚类分析与主成分分析。结果表明:云南红花种质资源具有丰富的遗传多样性,多样性指数最高的是果球着粒数,其次是株高、最末分枝高度和千粒重;性状变异系数最大的是分枝总数,其次分别是单株有效果球数和第一分枝高度,最小的为顶果球直径;基于各种质间形态性状的遗传差异,把66份红花种质聚类并划分为6大类群。第Ⅰ类群可作为有增产潜力的亲本材料,第Ⅲ类群可作为高产量目标选育的亲本,第Ⅳ类群可作为大粒型选育亲本,第Ⅴ类群可作为高含油量选育目标亲本,第Ⅵ类群既是大粒型又是高含油量双重选育目标亲本。11个数量性状的主成分分析结果表明,前4个主成分累计贡献率达82.59%,第一主成分反映植株高度,第二主成分反映产量构成因子,第三、第四主成分分别反映千粒重和果球着粒数。研究结果表明云南红花地方种质资源的变异较大,遗传较丰富。  相似文献   

19.
The composition of the translocates reaching the seeds of pea plants having various nitrogen (N) nutrition regimes was investigated under field situations. Sucrose flow in the phloem sap increased with the node number, but was not significantly different between N nutrition levels. Because N deficiency reduced the number of flowering nodes and the number of seeds per pod, the sucrose flow bleeding from cut peduncles was divided by the number of seeds to give the amount of assimilates available per seed. The sucrose concentration in phloem sap supplied to seeds at the upper nodes was higher than that at the lower nodes. The flow of sucrose delivered to the seeds during the cell division period was correlated with seed growth potential. Seeds from the more N-stressed plants had both the highest seed growth rate and received a higher sucrose flux per seed during the cell division period. As seed growth rate is highly correlated with the number of cotyledonary cells produced during the cell division period, sucrose flow in phloem sap is proposed to be an important determinant of mitotic activity in seed embryos. The carbon (C)/N ratio of the flow of translocates towards seeds was higher under conditions of N-deficiency than with optimal N nutrition, indicating that N flux towards seeds, in itself, is not the main determinant of seed growth potential.  相似文献   

20.
利用绿豆(Vigna radiata)品种苏绿16-10和潍绿11杂交构建的F2和F3群体发掘调控绿豆产量相关性状的遗传位点。同时对绿豆产量相关性状进行表型鉴定和相关性分析,并利用构建的遗传连锁图谱进行QTL定位。结果表明,单株产量与单株荚数、单荚粒数、百粒重和分枝数均呈正相关。单株产量与单株荚数的相关性最高,这2个性状在F2和F3群体中的相关系数分别为0.950和0.914。在F2群体中,共检测到8个与产量性状相关的QTL位点,其中与单株荚数、单荚粒数和单株产量相关的QTL位点各1个,分别解释11.09%(qNPP3)、17.93%(qNSP3)和14.18%(qYP3)的表型变异;2个与分枝数相关的QTL位点qBMS3和qBMS11,分别解释18.51%和7.06%的表型变异;3个与百粒重相关的QTL位点qHSW3、qHSW7和qHSW10,分别解释5.33%、46.07%和4.24%的表型变异。在F3群体中,qNSP3和qHSW7再次被检测到,表明这2个QTLs有较好的遗传稳定性。同时,开发了1个与百粒重主效QTLqHSW7紧密连锁的InDel标记R7-13.4,并利用自然群体对...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号