首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maternal effects can be adaptive and because of their intrinsic time delays may have important effects on population dynamics. In vertebrates, and increasingly invertebrates, it is well established that offspring defence is in part determined by maternal parasite exposure. It has also been suggested that there may be indirect maternal effects on immunity mediated by other components of the maternal environment, including density and resource availability. Here, we examine the effect maternal resource availability has on the immunity of offspring in an insect-virus system. We use five different maternal resource levels and examine immunity in the offspring both directly, by challenge with a virus, and by measuring a major component of the immune system, across three offspring environments. Both the direct infection assay and the measure of immunocompetence show clearly that offspring from mothers in poor environments are more resistant to parasites. This may result from life-history optimization of mothers in poor environments, or because the poor environment acts as a cue for higher disease risk in the next generation. This emphasizes the importance of maternal effects on disease resistance, mediated through indirect environmental factors that will have important implications to both the ecological and evolutionary dynamics of host-parasite interactions.  相似文献   

2.
Maternal effects have wide-ranging effects on life-history traits. Here, using the crustacean Daphnia magna, we document a new effect: maternal food quantity affects offspring feeding rate, with low quantities of food triggering mothers to produce slow-feeding offspring. Such a change in the rate of resource acquisition has broad implications for population growth or dynamics and for interactions with, for instance, predators and parasites. This maternal effect can also explain the previously puzzling situation that the offspring of well-fed mothers, despite being smaller, grow and reproduce better than the offspring of food-starved mothers. As an additional source of variation in resource acquisition, this maternal effect may also influence relationships between life-history traits, i.e. trade-offs, and thus constraints on adaptation. Maternal nutrition has long-lasting effects on health and particularly diet-related traits in humans; finding an effect of maternal nutrition on offspring feeding rate in Daphnia highlights the utility of this organism as a powerful experimental model for exploring the relationship between maternal diet and offspring fitness.  相似文献   

3.
It is well established that circulating maternal stress hormones (glucocorticoids, GCs) can alter offspring phenotype. There is also a growing body of empirical work, within ecology and evolution, indicating that maternal GCs link the environment experienced by the mother during gestation with changes in offspring phenotype. These changes are considered to be adaptive if the maternal environment matches the offspring's environment and maladaptive if it does not. While these ideas are conceptually sound, we lack a testable framework that can be used to investigate the fitness costs and benefits of altered offspring phenotypes across relevant future environments. We present error management theory as the foundation for a framework that can be used to assess the adaptive potential of maternal stress hormones on offspring phenotype across relevant postnatal scenarios. To encourage rigorous testing of our framework, we provide field‐testable hypotheses regarding the potential adaptive role of maternal stress across a diverse array of taxa and life histories, as well as suggestions regarding how our framework might provide insight into past, present, and future research. This perspective provides an informed lens through which to design and interpret experiments on the effects of maternal stress, provides a framework for predicting and testing variation in maternal stress across and within taxa, and also highlights how rapid environmental change that induces maternal stress may lead to evolutionary traps.  相似文献   

4.
Existing insight suggests that maternal effects have a substantial impact on evolution, yet these predictions assume that maternal effects themselves are evolutionarily constant. Hence, it is poorly understood how natural selection shapes maternal effects in different ecological circumstances. To overcome this, the current study derives an evolutionary model of maternal effects in a quantitative genetics context. In constant environments, we show that maternal effects evolve to slight negative values that result in a reduction of the phenotypic variance (canalization). By contrast, in populations experiencing abrupt change, maternal effects transiently evolve to positive values for many generations, facilitating the transmission of beneficial maternal phenotypes to offspring. In periodically fluctuating environments, maternal effects evolve according to the autocorrelation between maternal and offspring environments, favoring positive maternal effects when change is slow, and negative maternal effects when change is rapid. Generally, the strongest maternal effects occur for traits that experience very strong selection and for which plasticity is severely constrained. By contrast, for traits experiencing weak selection, phenotypic plasticity enhances the evolutionary scope of maternal effects, although maternal effects attain much smaller values throughout. As weak selection is common, finding substantial maternal influences on offspring phenotypes may be more challenging than anticipated.  相似文献   

5.
Alekseev  Victor  Lampert  Winfried 《Hydrobiologia》2004,526(1):225-230
The response of various life-history characteristics of Daphnia pulicaria to photoperiod and food concentration was measured in 16 combinations of maternal and offspring environments (long vs. short day, high vs. low food) in flow-through experiments. Response variables in offspring were time and survival to release of first offspring, clutch size and neonate mass in the first brood, mass of adult females after 30days and somatic growth rate during the course of the experiment. Most of these parameters were directly controlled by food concentration in the offspring environment, but maternal effects frequently modified the response. A long day length in the maternal environment resulted in a prolongation of the time to first clutch release in offspring similar to the direct effect of low food. Likewise, survival to maturation and female mass were affected by maternal photoperiod. Somatic growth rate and clutch size responded to combined effects of maternal food conditions and photoperiod. The laboratory results were used to predict the seasonal change of fecundity of Daphnia in the field. When data on clutch size are ordered in a sequence as the different combinations of maternal and offspring environment occur during the seasonal succession in a temperate lake, they show a bimodal distribution with a high peak in spring and a lower peak in fall. This pattern is consistent with field observations. We conclude that photoperiod and maternal effects are important factors influencing life history and population dynamics of Daphnia.  相似文献   

6.
In a wide range of taxa, there is evidence that mothers adaptively shape the development of offspring behaviour by exposing them to steroids. These maternal effects have major implications for fitness because, by shaping early development, they can permanently alter how offspring interact with their environment. However, theory on parent–offspring conflict and recent physiological studies showing that embryos rapidly metabolize maternal steroids have placed doubt on the adaptive significance of these hormone-mediated maternal effects. Reconciling these disparate perspectives requires a mechanistic understanding of the pathways by which maternal steroids can influence neural development. Here, we highlight recent advances in developmental neurobiology and psychiatric pharmacology to show that maternal steroid metabolites can have direct neuro-modulatory effects potentially shaping the development of neural circuitry underlying ecologically relevant behavioural traits. The recognition that maternal steroids can act through a neurosteroid pathway has critical implications for our understanding of the ecology and evolution of steroid-based maternal effects. Overall, compared to the classic view, a neurosteroid mechanism may reduce the evolutionary lability of hormone-mediated maternal effects owing to increased pleiotropic constraints and frequently influence long-term behavioural phenotypes in offspring.  相似文献   

7.
It is suggested that maternal parent and offspring have conflicting interests over the extent of resource allocation to developing seeds. While maternal parent would be selected to allocate her resources optimally among her offspring, the latter would be selected to demand more. In animals, offspring are known to demand additional resources either visibly (through intense vocal calls) or subtly through the production of hormones. In plants though parent offspring conflict over resource allocation has been invoked, the mechanism through which the parent and offspring interact in regulating resource allocation into developing seeds is not yet clear. In this paper, we propose that the strategies and counter-strategies of the offspring and mother during the development of seeds might be manifested through the production of appropriate growth hormones. Accordingly, we predict (i) hormones that mobilize resources into seeds (e.g. auxins and gibberellic acid) shall be synthesized exclusively by the offspring tissue and (ii) hormones that inhibit resource flow in to seeds (e.g. abscisic acid) be produced exclusively by the maternal tissue. We show that these predictions are supported by existing literature on the temporal dynamics and source of production of growth hormones during seed development. Finally, we suggest that such analysis viewing the production of different hormones during early seed development, as strategies and counter-strategies of mother and offspring tissue, helps ofer a meaningful interpretation of the otherwise complex dynamics of hormone fluxes  相似文献   

8.
Liu W  Deng RF  Liu WP  Wang ZM  Ye WH  Wang LY  Cao HL  Shen H 《PloS one》2011,6(11):e27238
Phenotypic plasticity is common in many taxa, and it may increase an organism's fitness in heterogeneous environments. However, in some cases, the frequency of environmental changes can be faster than the ability of the individual to produce new adaptive phenotypes. The importance of such a time delay in terms of individual fitness and species adaptability has not been well studied. Here, we studied gender plasticity of Alternanthera philoxeroides to address this issue through a reciprocal transplant experiment. We observed that the genders of A. philoxeroides were plastic and reversible between monoclinous and pistillody depending on habitats, the offspring maintained the maternal genders in the first year but changed from year 2 to 5, and there was a cubic relationship between the rate of population gender changes and environmental variations. This relationship indicates that the species must overcome a threshold of environmental variations to switch its developmental path ways between the two genders. This threshold and the maternal gender stability cause a significant delay of gender changes in new environments. At the same time, they result in and maintain the two distinct habitat dependent gender phenotypes. We also observed that there was a significant and adaptive life-history differentiation between monoclinous and pistillody individuals and the gender phenotypes were developmentally linked with the life-history traits. Therefore, the gender phenotypes are adaptive. Low seed production, seed germination failure and matching phenotypes to habitats by gender plasticity indicate that the adaptive phenotypic diversity in A. philoxeroides may not be the result of ecological selection, but of gender plasticity. The delay of the adaptive gender phenotype realization in changing environments can maintain the differentiation between gender systems and their associated life-history traits, which may be an important component in evolution of novel traits and taxonomic diversity.  相似文献   

9.
Maternal effects can provide offspring with reliable information about the environment they are likely to experience, but also offer scope for maternal manipulation of young when interests diverge between parents and offspring. To predict the impact of parent–offspring conflict, we model the evolution of maternal effects on local adaptation of young. We find that parent–offspring conflict strongly influences the stability of maternal effects; moreover, the nature of the disagreement between parents and young predicts how conflict is resolved: when mothers favor less extreme mixtures of phenotypes relative to offspring (i.e., when mothers stand to gain by hedging their bets), mothers win the conflict by providing offspring with limited amounts of information. When offspring favor overproduction of one and the same phenotype across all environments compared to mothers (e.g., when offspring favor a larger body size), neither side wins the conflict and signaling breaks down. Only when offspring favor less extreme mixtures relative to their mothers (something no current model predicts), offspring win the conflict and obtain full information about the environment. We conclude that a partial or complete breakdown of informative maternal effects will be the norm rather than the exception in the presence of parent–offspring conflict.  相似文献   

10.
植物表型受自身基因型、所处环境及其亲体所经历环境的共同影响;其中,亲体环境对子代表型的影响被称为亲体效应。亲体效应不仅可通过有性繁殖产生的种子传递给后代(即有性亲体效应),也可以通过克隆生长等无性繁殖产生的分株传递给后代(即克隆亲体效应)。亲体效应对植物种群,特别是对有性繁殖受限、缺乏遗传变异的克隆植物种群的长期进化可能发挥着极其重要的作用,因此,对亲体效应研究进展的梳理非常必要。对克隆亲体效应和有性亲体效应的内涵进行了阐释,并论述了克隆和有性亲体效应对子代表型、适合度、种内/种间竞争能力以及种群/群落结构和功能的潜在影响;阐述了亲体效应的潜在调控机制,包括供给机制、代谢物质调控机制、表观遗传机制等;论述了克隆亲体效应在克隆植物适应进化中的作用。未来可以就克隆亲体效应的遗传稳定性及其对克隆生活史性状变异的贡献程度,以及克隆和有性亲体效应引起的表型多样性对种内/种间关系、种群/群落多样性及生态系统结构、功能和稳定性的影响开展深入研究。  相似文献   

11.
Li Y  Yang H  Xia J  Zhang W  Wan S  Li L 《PloS one》2011,6(12):e28601

Background

The responses of plant seeds and seedlings to changing atmospheric nitrogen (N) deposition and precipitation regimes determine plant population dynamics and community composition under global change.

Methodology/Principal Findings

In a temperate steppe in northern China, seeds of P. tanacetifolia were collected from a field-based experiment with N addition and increased precipitation to measure changes in their traits (production, mass, germination). Seedlings germinated from those seeds were grown in a greenhouse to examine the effects of improved N and water availability in maternal and offspring environments on seedling growth. Maternal N-addition stimulated seed production, but it suppressed seed mass, germination rate and seedling biomass of P. tanacetifolia. Maternal N-addition also enhanced responses of seedlings to N and water addition in the offspring environment. Maternal increased-precipitation stimulated seed production, but it had no effect on seed mass and germination rate. Maternal increased-precipitation enhanced seedling growth when grown under similar conditions, whereas seedling responses to offspring N- and water-addition were suppressed by maternal increased-precipitation. Both offspring N-addition and increased-precipitation stimulated growth of seedlings germinated from seeds collected from the maternal control environment without either N or water addition. Our observations indicate that both maternal and offspring environments can influence seedling growth of P. tanacetifolia with consequent impacts on the future population dynamics of this species in the study area.

Conclusion/Significance

The findings highlight the importance of the maternal effects on seed and seedling production as well as responses of offspring to changing environmental drivers in mechanistic understanding and projecting of plant population dynamics under global change.  相似文献   

12.
Warner DA  Shine R 《Oecologia》2007,154(1):65-73
To understand how selection shapes life-history traits, we need information on the manner in which offspring phenotypes influence fitness. Life-history allocation models typically assume that “bigger offspring are better”, but field data paint a more complex picture: larger offspring size sometimes enhances fitness, and sometimes not. Additionally, higher survival and faster growth of larger offspring might be due to indirect maternal effects (e.g., mothers allocate hormones or nutrients differently to different-sized eggs), and not to offspring size per se. Alternative factors, such as seasonal timing of hatching, may be more important. We examined these issues using 419 eggs from captive jacky dragon lizards (Amphibolurus muricatus). The mothers were maintained under standardized conditions to minimize variance in thermal and nutritional history, and the eggs were incubated under controlled conditions to minimize variance in offspring phenotypes due to incubation temperature and moisture. We reduced the size of half the eggs (and, thus, the size of the resultant hatchlings) from each clutch by yolk extraction. The hatchlings were marked and released at a field site over a 3-month period, with regular recapture surveys to measure growth and survival under natural conditions. Growth rates and survival were strongly enhanced by early-season hatching, but were not affected by hatchling body size.  相似文献   

13.
M. Jennions  S. Telford 《Oecologia》2002,132(1):44-50
Variation among populations in extrinsic mortality schedules selects for different patterns of investment in key life-history traits. We compared life-history phenotypes among 12 populations of the live-bearing fish Brachyrhaphis episcopi. Five populations co-occurred with predatory fish large enough to prey upon adults, while the other seven populations lacked these predators. At sites with large predatory fish, both sexes reached maturity at a smaller size. Females of small to average length that co-occurred with predators had higher fecundity and greater reproductive allotment than those from populations that lacked predators, but the fecundity and reproductive allotment of females one standard deviation larger than mean body length did not differ among sites. In populations with large predatory fish, offspring mass was significantly reduced. In each population, fecundity, offspring size and reproductive allotment increased with female body size. When controlling for maternal size, offspring mass and number were significantly negatively correlated, indicating a phenotypic trade-off. This trade-off was non-linear, however, because reproductive allotment still increased with brood size after controlling for maternal size. Similar differences in life-history phenotypes among populations with and without large aquatic predators have been reported for Brachyrhaphis rhabdophora in Costa Rica and Poecilia reticulata (a guppy) in Trinidad. This may represent a convergent adaptation in life-history strategies attributable to predator-mediated effects or environmental correlates of predator presence.  相似文献   

14.
A major problem in the evolution of maternal effects is explaining the origin and persistence of maternally induced phenotypes that lower offspring fitness. Recent work focuses on the relative importance of maternal and offspring selective environments and the mismatch between them. However, an alternative approach is to directly study the origin and performance of offspring phenotypes resulting from mismatch. Here, we capitalize on a detailed understanding of the ecological contexts that provide both the cue and the functional context for expression of maternally induced offspring phenotypes to investigate the consequences of environmental mismatch. In western bluebirds, adaptive integration of offspring dispersal and aggression is induced by maternal competition over nest cavities. When nest cavities are locally abundant, mothers produce nonaggressive offspring that remain in their natal population, and when nest cavities are scarce, mothers produce aggressive dispersers. However, a few offspring neither disperse nor breed locally, instead helping at their parent’s nest, and as a result these offspring have unusually low fitness. Here, we investigate whether females produce helpers to increase their own fitness, or whether helpers result from a mismatch between the cues mothers experience during offspring production and the breeding environment that helpers later encounter. We found that producing helpers does not enhance maternal fitness. Instead, we show that helpers, which were the least aggressive of all returning sons in the population, were most common when population density increased from the time sons were produced to the time of their reproductive maturity, suggesting that the helper phenotype emerges when cues of resource competition during offspring development do not match the actual level of competition that offspring experience. Thus, environmental mismatch might explain the puzzling persistence of maternally induced phenotypes that decrease offspring fitness.  相似文献   

15.
Over the past decade, birds have proven to be excellent models to study hormone-mediated maternal effects in an evolutionary framework. Almost all these studies focus on the function of maternal steroid hormones for offspring development, but lack of knowledge about the underlying mechanisms hampers further progress. We discuss several hypotheses concerning these mechanisms, point out their relevance for ecological and evolutionary interpretations, and review the relevant data. We first examine whether maternal hormones can accumulate in the egg independently of changes in hormone concentrations in the maternal circulation. This is important for Darwinian selection and female physiological trade-offs, and possible mechanisms for hormone accumulation in the egg, which may differ among hormones, are reviewed. Although independent regulation of plasma and yolk concentrations of hormones is conceivable, the data are as yet inconclusive for ovarian hormones. Next, we discuss embryonic utilization of maternal steroids, since enzyme and receptor systems in the embryo may have coevolved with maternal effect mechanisms in the mother. We consider dose-response relationships and action pathways of androgens and argue that these considerations may help to explain the apparent lack of interference of maternal steroids with sexual differentiation. Finally, we discuss mechanisms underlying the pleiotropic actions of maternal steroids, since linked effects may influence the coevolution of parent and offspring traits, owing to their role in the mediation of physiological trade-offs. Possible mechanisms here are interactions with other hormonal systems in the embryo. We urge endocrinologists to embark on suggested mechanistic studies and behavioural ecologists to adjust their interpretations to accommodate the current knowledge of mechanisms.  相似文献   

16.
First summer growth predetermined in anadromous and resident brook charr   总被引:1,自引:0,他引:1  
Early growth of wild, anadromous and non-anadromous (resident) brook charr Salvelinus fontinalis was compared under controlled laboratory conditions. Offspring were collected as they emerged from natural redds in the Miramichi River, New Brunswick, Canada. Anadromous offspring were initially longer and heavier than residents. Anadromous offspring had lower specific growth rates during their first 2 months post-emergence, but surpassed residents by the third month. Consequently, anadromous offspring remained larger at the end of 3 months and it is concluded that they had a predetermined, maternal and genetic advantage related to body size, rather than an environmentally determined advantage during their first summer of growth. Other studies hypothesize that juvenile development affects life-history strategy adopted as adults, which suggests anadromy in this population may be, at least in part, predetermined by maternal and genetic effects.  相似文献   

17.
18.
Exposure to maternally derived glucocorticoids during embryonic development impacts offspring phenotype. Although many of these effects appear to be transiently 'negative', embryonic exposure to maternally derived stress hormones is hypothesized to induce preparative responses that increase survival prospects for offspring in low-quality environments; however, little is known about how maternal stress influences longer-term survival-related performance traits in free-living individuals. Using an experimental elevation of yolk corticosterone (embryonic signal of low maternal quality), we examined potential impacts of embryonic exposure to maternally derived stress on flight performance, wing loading, muscle morphology and muscle physiology in juvenile European starlings (Sturnus vulgaris). Here we report that fledglings exposed to experimentally increased corticosterone in ovo performed better during flight performance trials than control fledglings. Consistent with differences in performance, individuals exposed to elevated embryonic corticosterone fledged with lower wing loading and had heavier and more functionally mature flight muscles compared with control fledglings. Our results indicate that the positive effects on a survival-related trait in response to embryonic exposure to maternally derived stress hormones may balance some of the associated negative developmental costs that have recently been reported. Moreover, if embryonic experience is a good predictor of the quality or risk of future environments, a preparative phenotype associated with exposure to apparently negative stimuli during development may be adaptive.  相似文献   

19.
Maternal hormones can be transferred to offspring during prenatal development in response to the maternal social environment, and may adaptively alter offspring phenotype. For example, numerous avian studies show that aggressive competition with conspecifics tends to result in females allocating more testosterone to their egg yolks, and this may cause offspring to have more competitive phenotypes. However, deviations from this pattern of maternal testosterone allocation are found, largely in studies of colonial species, and have yet to be explained. Colonial species may have different life‐history constraints causing different yolk testosterone allocation strategies in response to conspecific competition, but few studies have experimentally tested whether colonial species do indeed differ from that of solitary species. To test this, we collected eggs from zebra finches Taeniopygia guttata, a colonial species, in the presence and absence of conspecific intrusions. Females did not alter the concentration of testosterone deposited in eggs laid during intrusions despite becoming more aggressive. These results suggest that maternal effects are not characterized by a uniform response to the social environment, but rather need to be contextualized with life‐history traits.  相似文献   

20.
Recent studies in plant populations have found that environmental heterogeneity and phenotypic selection vary at local spatial scales. In this study, I ask if there is evolutionary change in response to environmental heterogeneity and, if so, whether the response occurs for characters or character plasticities. I used vegetative clones of Mimulus guttatus to create replicate populations of 75 genotypes. These populations were planted into the natural habitat where they differed in mean growth, flowering phenology, and life span. This phenotypic variation was used to define selective environments. There was variation in fitness (flower production) among genotypes across all planting sites and in genotype response to the selective environment. Offspring from each site were grown in the greenhouse in two water treatments. Because each population initially had the same genetic composition, variation in the progeny between selective environments reveals either evolutionary change in response to environmental heterogeneity or environmental maternal effects. Plants from experimental sites that flowered earlier, had shorter life spans and were less productive, produced offspring that had more flowers, on average, and were less plastic in vegetative allocation than offspring of longer-lived plants from high-productivity areas. However, environmental maternal effects masked phenotypic differences in flower production. Therefore, although there was evidence of genetic differentiation in both life-history characters and their plasticities in response to small-scale environmental heterogeneity, environmental maternal effects may slow evolutionary change. Response to local-scale selective regimes suggests that environmental heterogeneity and local variation in phenotypic selection may act to maintain genetic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号