首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Although being tall is advantageous in light competition, plant height growth is often similar among dominant plants in crowded stands (height convergence). Previous theoretical studies have suggested that plants should not overtop neighbours because greater allocation to supporting tissues is necessary in taller plants, which in turn lowers leaf mass fraction and thus carbon gain. However, this model assumes that a competitor has the same potential of height growth as their neighbours, which does not necessarily account for the fact that height convergence occurs even among individuals with various biomass.

Methods

Stands of individually potted plants of Chenopodium album were established, where target plants were lifted to overtop neighbours or lowered to be overtopped. Lifted plants were expected to keep overtopping because they intercept more light without increased allocation to stems, or to regulate their height to similar levels of neighbours, saving biomass allocation to the supporting organ. Lowered plants were expected to be suppressed due to the low light availability or to increase height growth so as to have similar height to the neighbours.

Key Results

Lifted plants reduced height growth in spite of the fact that they received higher irradiance than others. Lowered plants, on the other hand, increased the rate of stem elongation despite the reduced irradiance. Consequently, lifted and lowered plants converged to the same height. In contrast to the expectation, lifted plants did not increase allocation to leaf mass despite the decreased stem length. Rather, they allocated more biomass to roots, which might contribute to improvement of mechanical stability or water status. It is suggested that decreased leaf mass fraction is not the sole cost of overtopping neighbours. Wind blowing, which may enhance transpiration and drag force, might constrain growth of overtopping plants.

Conclusions

The results show that plants in crowded stands regulate their height growth to maintain similar height to neighbours even when they have potential advantages in height growth. This might contribute to avoidance of stresses caused by wind blowing.  相似文献   

2.

Background and Aims

Plant genotypic mixtures have the potential to increase yield stability in variable, often unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability remains limited. Field studies are constrained by environmental conditions which cannot be fully controlled and thus reproduced. A suitable model system would allow reproducible experiments on processes operating within crop genetic mixtures.

Methods

Phenotypically dissimilar genotypes of Arabidopsis thaliana were grown in monocultures and mixtures under high levels of competition for abiotic resources. Seed production, flowering time and rosette size were recorded.

Key Results

Mixtures achieved high yield stability across environments through compensatory interactions. Compensation was greatest when plants were under high levels of heat and nutrient stress. Competitive ability and mixture performance were predictable from above-ground phenotypic traits even though below-ground competition appeared to be more intense.

Conclusions

This study indicates that the mixing ability of plant genotypes can be predicted from their phenotypes expressed in a range of relevant environments, and implies that a phenotypic screen of genotypes could improve the selection of suitable components of genotypic mixtures in agriculture intended to be resilient to environmental stress.  相似文献   

3.

Background

Discriminating threatening individuals from non-threatening ones allow territory owners to modulate their territorial responses according to the threat posed by each intruder. This ability reduces costs associated with territorial defence. Reduced aggression towards familiar adjacent neighbours, termed the dear-enemy effect, has been shown in numerous species. An important question that has never been investigated is whether territory owners perceive distant neighbours established in the same group as strangers because of their unfamiliarity, or as dear-enemies because of their group membership.

Methodology/Principal Findings

To investigate this question, we played back to male skylarks (Alauda arvensis) songs of adjacent neighbours, distant neighbours established a few territories away in the same microdialect area and strangers. Additionally, we carried out a propagation experiment to investigate how far skylark songs are propagated in their natural habitat and we estimated repertoire similarity between adjacent neighbours, distant neighbours and strangers. We show that skylarks, in the field, respond less aggressively to songs of their distant and likely unfamiliar neighbours, as shown by the propagation experiment, compared to stranger songs. The song analysis revealed that individuals share a high amount of syllables and sequences with both their adjacent and distant neighbours, but only few syllables and no sequences with strangers.

Conclusions

The observed reduction of aggression between distant neighbours thus probably results from their familiarity with the vocal group signature shared by all members of the neighbourhood. Therefore, in skylarks, dear-enemy-like relationships can be established between unfamiliar individuals who share a common acoustic code.  相似文献   

4.

Background and Aims

Phenotypic plasticity is based on the organism''s ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants.

Methods

Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours.

Key Results

In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3–24 h after the beginning of stress induction.

Conclusions

The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.  相似文献   

5.

Background and Aims

A reduction in offspring fitness resulting from mating between neighbours is interpreted as biparental inbreeding depression. However, little is known about the relationship between the parents'' genetic relatedness and biparental inbreeding depression in their progeny in natural populations. This study assesses the effect of kinship between parents on the fitness of their progeny and the extent of spatial genetic structure in a natural population of Rhododendron brachycarpum.

Methods

Kinship coefficients between 11 858 pairs of plants among a natural population of 154 R. brachycarpum plants were estimated a priori using six microsatellite markers. Plants were genotyped, and pairs were selected from among 60 plants to vary the kinship from full-sib to unrelated. After a hand-pollination experiment among the 60 plants, offspring fitness was measured at the stages of seed maturation (i.e. ripening) under natural conditions, and seed germination and seedling survival under greenhouse conditions. In addition, spatial autocorrelation was used to assess the population''s genetic structure.

Key Results

Offspring fitness decreased significantly with increasing kinship between parents. However, the magnitude and timing of this effect differed among the life-cycle stages. Measures of inbreeding depression were 0·891 at seed maturation, 0·122 (but not significant) at seed germination and 0·506 at seedling survival. The local population spatial structure was significant, and the physical distance between parents mediated the level of inbreeding between them.

Conclusions

The level of inbreeding between individuals determines offspring fitness in R. brachycarpum, especially during seed maturation. Genetic relatedness between parents caused inbreeding depression in their progeny. Therefore, biparental inbreeding contributes little to reproduction and instead acts as a selection force that promotes outcrossing, as offspring of more distant (less related) parents survive better.  相似文献   

6.

Background

Genetic relatedness or similarity between individuals is a key concept in population, quantitative and conservation genetics. When the pedigree of a population is available and assuming a founder population from which the genealogical records start, genetic relatedness between individuals can be estimated by the coancestry coefficient. If pedigree data is lacking or incomplete, estimation of the genetic similarity between individuals relies on molecular markers, using either molecular coancestry or molecular covariance. Some relationships between genealogical and molecular coancestries and covariances have already been described in the literature.

Methods

We show how the expected values of the empirical measures of similarity based on molecular marker data are functions of the genealogical coancestry. From these formulas, it is easy to derive estimators of genealogical coancestry from molecular data. We include variation of allelic frequencies in the estimators.

Results

The estimators are illustrated with simulated examples and with a real dataset from dairy cattle. In general, estimators are accurate and only slightly biased. From the real data set, estimators based on covariances are more compatible with genealogical coancestries than those based on molecular coancestries. A frequently used estimator based on the average of estimated coancestries produced inflated coancestries and numerical instability. The consequences of unknown gene frequencies in the founder population are briefly discussed, along with alternatives to overcome this limitation.

Conclusions

Estimators of genealogical coancestry based on molecular data are easy to derive. Estimators based on molecular covariance are more accurate than those based on identity by state. A correction considering the random distribution of allelic frequencies improves accuracy of these estimators, especially for populations with very strong drift.  相似文献   

7.

Background and Aims

Functional traits are indicators of plant interactions with their environment and the resource-use strategies of species can be defined through some key functional traits. The importance of genetic variability and phenotypic plasticity in trait variations in response to a common environmental change was investigated in two subalpine species.

Methods

Two species with contrasted resource-use strategies, Dactylis glomerata and Festuca paniculata, were grown along a productivity gradient in a greenhouse experiment. Functional traits of different genotypes were measured to estimate the relative roles of phenotypic plasticity and genetic variability, and to compare their levels of phenotypic plasticity.

Key Results

Trait variability in the field for the two species is more likely to be the result of phenotypic plasticity rather than of genetic differentiation between populations. The exploitative species D. glomerata expressed an overall higher level of phenotypic plasticity compared with the conservative species F. paniculata. In addition to different amplitudes of phenotypic plasticity, the two species differed in their pattern of response for three functional traits relevant to resource use (specific leaf area, leaf dry matter content and leaf nitrogen content).

Conclusions

Functional trait variability was mainly the result of phenotypic plasticity, with the exploitative species showing greater variability. In addition to average trait values, two species with different resource-use strategies differed in their plastic responses to productivity.  相似文献   

8.

Background and Aims

The coexistence of forest tree species has often been linked to differences among species in terms of their response to light availability during the regeneration stage. From this perspective, species coexistence results from growth–growth or mortality–growth trade-offs along spatial light gradients. Experimental evidence of growth–growth trade-offs in natural conditions is sparse due to various confounding factors that potentially hinder the relationship. This study examined growth hierarchies along light gradients between two tree species with contrasting shade tolerance by controlling potential confounding factors such as seedling size, seedling status, seedling density and species composition.

Methods

Natural regenerated shade-tolerant Fagus sylvatica and shade-intermediate Quercus petraea seedlings were used, and growth rankings over a 4-year period were compared in 8- to 10-year-old tree seedlings.

Key results

No rank reversal occurs between the two species along the light gradient, or along the density, mixture or seedling size gradients. The shade-tolerant species was always the more competitive of the two. Pronounced effects of initial size on seedling growth were observed, whereas the effects of light and competition by neighbours were of secondary importance. The paramount effect of size, which results from the asymmetric nature of interseedling competition, gives a strong advantage to tall seedlings over the long term.

Conclusions

This study extends previous efforts to identify potential drivers of rank reversals in young tree mixtures. It does not support the classical assumption that spatial heterogeneity in canopy opening explains the coexistence of the two species studied. It suggests that spatial variation in local size hierarchies among seedlings that may be caused by seedling emergence time or seedling initial performance is the main driver of the dynamics of these mixed stands.  相似文献   

9.

Background

Genomic evaluations are rapidly replacing traditional evaluation systems used for dairy cattle selection. Higher reliabilities from larger genotype files promote cooperation across country borders. Genomic information can be exchanged across countries using simple conversion equations, by modifying multi-trait across-country evaluation (MACE) to account for correlated residuals originating from the use of foreign evaluations, or by multi-trait analysis of genotypes for countries that use the same reference animals.

Methods

Traditional MACE assumes independent residuals because each daughter is measured in only one country. Genomic MACE could account for residual correlations using daughter equivalents from genomic data as a fraction of the total in each country and proportions of bulls shared. MACE methods developed to combine separate within-country genomic evaluations were compared to direct, multi-country analysis of combined genotypes using simulated genomic and phenotypic data for 8,193 bulls in nine countries.

Results

Reliabilities for young bulls were much higher for across-country than within-country genomic evaluations as measured by squared correlations of estimated with true breeding values. Gains in reliability from genomic MACE were similar to those of multi-trait evaluation of genotypes but required less computation. Sharing of reference genotypes among countries created large residual correlations, especially for young bulls, that are accounted for in genomic MACE.

Conclusions

International genomic evaluations can be computed either by modifying MACE to account for residual correlations across countries or by multi-trait evaluation of combined genotype files. The gains in reliability justify the increased computation but require more cooperation than in previous breeding programs.  相似文献   

10.

Background

Phenotypes are variable within species, with high phenotypic variation in the fitness and cell morphology of natural yeast strains due to genetic variation. A gene deletion collection of yeast laboratory strains also contains phenotypic variations, demonstrating the involvement of each gene and its specific function. However, to date, no study has compared the phenotypic variations between natural strains and gene deletion mutants in yeast.

Results

The morphological variance was compared between 110 most distinct gene deletion strains and 36 typical natural yeast strains using a generalized linear model. The gene deletion strains had higher morphological variance than the natural strains. Thirty-six gene deletion mutants conferred significant morphological changes beyond that of the natural strains, revealing the importance of the genes with high genetic interaction and specific cellular functions for species conservation.

Conclusion

Based on the morphological analysis, we discovered gene deletion mutants whose morphologies were not seen in nature. Our multivariate approach to the morphological diversity provided a new insight into the evolution and species conservation of yeast.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-932) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background and Aims

Differences in competitive ability between the sexes of dioecious plants are expected as a result of allocation trade-offs associated with sex-differential reproductive costs. However, the available data on competitive ability in dioecious plants are scarce and contradictory. In this study sexual competition was evaluated using the dioecious plant Antennaria dioica in a common garden transplantation experiment.

Methods

Male and female plants were grown for 3 years either in isolation, or in competition with a plant of the same sex or the opposite sex. Flowering phenology, sexual and asexual reproduction, plant growth, nutrient content and arbuscular mycorrhizal colonization in the roots were assessed.

Key Results

Our results showed little evidence of sexual differences in competitive ability. Both sexes suffered similarly from competition, and competitive effects were manifested in some traits related to fitness but not in others. Survival was unaffected by competition, but competing plants reduced their vegetative growth and reproductive investment compared with non-competing plants. In addition, differences in sexual competitive ability were observed in relation to flowering frequency, an important life history trait not reported in previous studies.

Conclusions

The findings indicate that female and male A. dioica plants possess similar intersexual competitive abilities which may be related to the similar costs of reproduction between sexes in this species. Nevertheless, intrasexual competition is higher in females, giving support for asymmetric niche segregation between the sexes.  相似文献   

12.

Background

The stability of cooperative interactions among different species can be compromised by cheating. In the plant-mycorrhizal fungi symbiosis, a single mycorrhizal network may interact with many plants, providing the opportunity for individual plants to cheat by obtaining nutrients from the fungi without donating carbon. Here we determine whether kin selection may favour plant investment in the mycorrhizal network, reducing the incentive to cheat when relatives interact with a single network.

Methodology/Principal Findings

We show that mycorrhizal network size and root colonization were greater when Ambrosia artemisiifolia L. was grown with siblings compared to strangers. Soil fungal abundance was positively correlated with group leaf nitrogen, and increased root colonization was associated with a reduced number of pathogen-induced root lesions, indicating greater benefit to plants grown with siblings.

Conclusions/Significance

Plants can benefit their relatives through investment in mycorrhizal fungi, and kin selection in plants could promote the persistence of the mycorrhizal symbiosis.  相似文献   

13.

Background and Aims

The epidermis of an expanding dicot leaf is a mosaic of cells differing in identity, size and differentiation stage. Here hypotheses are tested that in such a cell mosaic growth is heterogeneous and changes with time, and that this heterogeneity is not dependent on the cell cycle regulation per se.

Methods

Shape, size and growth of individual cells were followed with the aid of sequential replicas in expanding leaves of wild-type Arabidopsis thaliana and triple cyclinD3 mutant plants, and combined with ploidy estimation using epi-fluorescence microscopy.

Key Results

Relative growth rates in area of individual epidermal cells or small cell groups differ several fold from those of adjacent cells, and change in time. This spatial and temporal variation is not related to the size of either the cell or the nucleus. Shape changes and growth within an individual cell are also heterogeneous: anticlinal wall waviness appears at different times in different wall portions; portions of the cell periphery in contact with different neighbours grow with different rates. This variation is not related to cell growth anisotropy. The heterogeneity is typical for both the wild type and cycD3.

Conclusions

Growth of leaf epidermis exhibits spatiotemporal variability.  相似文献   

14.

Background and Aims

The successful spread of invasive plants in new environments is often linked to multiple introductions and a diverse gene pool that facilitates local adaptation to variable environmental conditions. For clonal plants, however, phenotypic plasticity may be equally important. Here the primary adaptive strategy in three non-native, clonally reproducing macrophytes (Egeria densa, Elodea canadensis and Lagarosiphon major) in New Zealand freshwaters were examined and an attempt was made to link observed differences in plant morphology to local variation in habitat conditions.

Methods

Field populations with a large phenotypic variety were sampled in a range of lakes and streams with different chemical and physical properties. The phenotypic plasticity of the species before and after cultivation was studied in a common garden growth experiment, and the genetic diversity of these same populations was also quantified.

Key Results

For all three species, greater variation in plant characteristics was found before they were grown in standardized conditions. Moreover, field populations displayed remarkably little genetic variation and there was little interaction between habitat conditions and plant morphological characteristics.

Conclusions

The results indicate that at the current stage of spread into New Zealand, the primary adaptive strategy of these three invasive macrophytes is phenotypic plasticity. However, while limited, the possibility that genetic diversity between populations may facilitate ecotypic differentiation in the future cannot be excluded. These results thus indicate that invasive clonal aquatic plants adapt to new introduced areas by phenotypic plasticity. Inorganic carbon, nitrogen and phosphorous were important in controlling plant size of E. canadensis and L. major, but no other relationships between plant characteristics and habitat conditions were apparent. This implies that within-species differences in plant size can be explained by local nutrient conditions. All together this strongly suggests that invasive clonal aquatic plants adapt to a wide range of habitats in introduced areas by phenotypic plasticity rather than local adaptation.  相似文献   

15.

Background

Sudden death syndrome (SDS) is a serious threat to soybean production that can be managed with host plant resistance. To dissect the genetic architecture of quantitative resistance to the disease in soybean, two independent association panels of elite soybean cultivars, consisting of 392 and 300 unique accessions, respectively, were evaluated for SDS resistance in multiple environments and years. The two association panels were genotyped with 52,041 and 5,361 single nucleotide polymorphisms (SNPs), respectively. Genome-wide association mapping was carried out using a mixed linear model that accounted for population structure and cryptic relatedness.

Result

A total of 20 loci underlying SDS resistance were identified in the two independent studies, including 7 loci localized in previously mapped QTL intervals and 13 novel loci. One strong peak of association on chromosome 18, associated with all disease assessment criteria across the two panels, spanned a physical region of 1.2 Mb around a previously cloned SDS resistance gene (GmRLK18-1) in locus Rfs2. An additional variant independently associated with SDS resistance was also found in this genomic region. Other peaks were within, or close to, sequences annotated as homologous to genes previously shown to be involved in plant disease resistance. The identified loci explained an average of 54.5% of the phenotypic variance measured by different disease assessment criteria.

Conclusions

This study identified multiple novel loci and refined the map locations of known loci related to SDS resistance. These insights into the genetic basis of SDS resistance can now be used to further enhance durable resistance to SDS in soybean. Additionally, the associations identified here provide a basis for further efforts to pinpoint causal variants and to clarify how the implicated genes affect SDS resistance in soybean.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-809) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background and Aims

Plants respond to the spatial and temporal heterogeneity of a resource supply. However, their responses will depend on intraspecific competition for resource acquisition. Although plants are subject to various intensities of intraspecific competition, most studies of resource heterogeneity have been carried out under a single density so that the effects of intraspecific competition on plant responses to resource heterogeneity are largely unknown.

Methods

A growth experiment was performed to investigate plant responses to the temporal heterogeneity of water supply and nutrient levels under multiple plant densities. The annual plant Perilla frutescens was grown using different combinations of frequency of water supply, nutrient level and density, while providing the same total amount of water under all conditions. The effects of the treatments on biomass, allocation to roots and intensity of competition were analysed after 48 d.

Key Results

Biomass and allocation to roots were larger under homogeneous than under heterogeneous water supply, and the effects of water heterogeneity were greater at high density than at low density. The effects of water heterogeneity were greater at high nutrient level than at low level for biomass, while the effects were greater at low nutrient level than high level for allocation to roots. Competition was severer under homogeneous than under heterogeneous water supply.

Conclusions

Competition for water probably makes plants more sensitive to the water heterogeneity. In addition, the intensity of intraspecific competition can be affected by the temporal patterns of water supply. Because both resource heterogeneity and intraspecific competition affect resource acquisition and growth of plants, their interactive effects should be evaluated more carefully under future studies.  相似文献   

17.

Background and Aims

Hybrid proline-rich proteins (HyPRPs) represent a large family of putative cell-wall proteins characterized by the presence of a variable N-terminal domain and a conserved C-terminal domain that is related to non-specific lipid transfer proteins. The function of HyPRPs remains unclear, but their widespread occurrence and abundant expression patterns indicate that they may be involved in a basic cellular process.

Methods

To elucidate the cellular function of HyPRPs, we modulated the expression of three HyPRP genes in tobacco (Nicotiana tabacum) BY-2 cell lines and in potato (Solanum tuberosum) plants.

Key Results

In BY-2 lines, over-expression of the three HyPRP genes with different types of N-terminal domains resulted in similar phenotypic changes, namely increased cell elongation, both in suspension culture and on solid media where the over-expression resulted in enhanced calli size. The over-expressing cells showed increased plasmolysis in a hypertonic mannitol solution and accelerated rate of protoplast release, suggesting loosening of the cell walls. In contrast to BY-2 lines, no phenotypic changes were observed in potato plants over-expressing the same or analogous HyPRP genes, presumably due to more complex compensatory mechanisms in planta.

Conclusions

Based on the results from BY-2 lines, we propose that HyPRPs, more specifically their C-terminal domains, represent a novel group of proteins involved in cell expansion.  相似文献   

18.

Background and Aims

There is currently much speculation about the role of epigenetic variation as a determinant of heritable variation in ecologically important plant traits. However, we still know very little about the phenotypic consequences of epigenetic variation, in particular with regard to more complex traits related to biotic interactions.

Methods

Here, a test was carried out to determine whether variation in DNA methylation alone can cause heritable variation in plant growth responses to jasmonic acid and salicylic acid, two key hormones involved in induction of plant defences against herbivores and pathogens. In order to be able to ascribe phenotypic differences to epigenetic variation, the hormone responses were studied of epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana – lines that are highly variable at the level of DNA methylation but nearly identical at the level of DNA sequence.

Key Results

Significant heritable variation was found among epiRILs both in the means of phenotypic traits, including growth rate, and in the degree to which these responded to treatment with jasmonic acid and salicylic acid. Moreover, there was a positive epigenetic correlation between the responses of different epiRILs to the two hormones, suggesting that plant responses to herbivore and pathogen attack may have a similar molecular epigenetic basis.

Conclusions

This study demonstrates that epigenetic variation alone can cause heritable variation in, and thus potentially microevolution of, plant responses to defence hormones. This suggests that part of the variation of plant defences observed in natural populations may be due to underlying epigenetic, rather than entirely genetic, variation.  相似文献   

19.
Cao G  Xue L  Li Y  Pan K 《Annals of botany》2011,107(8):1413-1419

Background and Aims

Allocation of resources to floral traits often declines distally within inflorescences in flowering plants. Architecture and resource competition have been proposed as underlying mechanisms. The aim of the present study is to assess the relative importance of resource competition and architectural effects in pollen and ovule production on racemes of Hosta ventricosa, an apomictic perennial herb.

Methods

Combinations of two defoliation treatments (intact and defoliated) and two fruit-set treatments (no-fruit and fruit) were created, and the roles of architecture and resource competition at each resource level were assessed.

Key Results

Pollen and ovule number per flower increased after defoliation, but pollen to ovule ratio per flower did not change. Pollen, ovules and the pollen to ovule ratio per flower declined distally on racemes at each resource level. In the intact treatment, fruit development of early flowers did not affect either pollen or ovule number of late flowers. In the defoliated treatment, fruit development of early flowers reduced both pollen and ovule numbers of late flowers due to over-compensation caused by defoliation. Late flowers on defoliated fruit racemes produced less pollen than intact fruit racemes but the same number of ovules; therefore, the reduction in pollen number was not caused by over-compensation. In addition, the fruit-set rate of early flowers during flowering was higher in intact racemes than in defoliated racemes.

Conclusions

In flowering plants, the relative importance of architecture and resource competition in allocation to pollen and ovules may vary with the resource pools or the overall resource availability of maternal plants.  相似文献   

20.
Zhou J  Dong BC  Alpert P  Li HL  Zhang MX  Lei GC  Yu FH 《Annals of botany》2012,109(4):813-818

Background and Aims

Fine-scale, spatial heterogeneity in soil nutrient availability can increase the growth of individual plants, the productivity of plant communities and interspecific competition. If this is due to the ability of plants to concentrate their roots where nutrient levels are high, then nutrient heterogeneity should have little effect on intraspecific competition, especially when there are no genotypic differences between individuals in root plasticity. We tested this hypothesis in a widespread, clonal species in which individual plants are known to respond to nutrient heterogeneity.

Methods

Plants derived from a single clone of Alternanthera philoxeroides were grown in the greenhouse at low or high density (four or 16 plants per 27·5 × 27·5-cm container) with homogeneous or heterogeneous availability of soil nutrients, keeping total nutrient availability per container constant. After 9 weeks, measurements of size, dry mass and morphology were taken.

Key Results

Plants grew more in the heterogeneous than in the homogeneous treatment, showing that heterogeneity promoted performance; they grew less in the high- than in the low-density treatment, showing that plants competed. There was no interactive effect of nutrient heterogeneity and plant density, supporting the hypothesis that heterogeneity does not affect intraspecific competition in the absence of genotypic differences in plasticity. Treatments did not affect morphological characteristics such as specific leaf area or root/shoot ratio.

Conclusions

Results indicate that fine-scale, spatial heterogeneity in the availability of soil nutrients does not increase competition when plants are genetically identical, consistent with the suggestion that effects of heterogeneity on competition depend upon differences in plasticity between individuals. Heterogeneity is only likely to increase the spread of monoclonal, invasive populations such as that of A. philoxeroides in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号