首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two key factors influence the diving and hence foraging ability of marine mammals: increased oxygen stores prolong aerobic metabolism and decreased metabolism slows rate of fuel consumption. In young animals, foraging ability may be physiologically limited due to low total body oxygen stores and high mass specific metabolic rates. To examine the development of dive physiology in Steller sea lions, total body oxygen stores were measured in animals from 1 to 29 months of age and used to estimate aerobic dive limit (ADL). Blood oxygen stores were determined by measuring hematocrit, hemoglobin, and plasma volume, while muscle oxygen stores were determined by measuring myoglobin concentration and total muscle mass. Around 2 years of age, juveniles attained mass specific total body oxygen stores that were similar to those of adult females; however, their estimated ADL remained less than that of adults, most likely due to their smaller size and higher mass specific metabolic rates. These findings indicate that juvenile Steller sea lion oxygen stores remain immature for more than a year, and therefore may constrain dive behavior during the transition to nutritional independence.  相似文献   

2.
Harbor seal pups are highly precocial and can swim and dive at birth. Such behavioral maturity suggests that they may be born with mature body oxygen stores or that stores develop quickly during the nursing period. To test this hypothesis, we compared the blood and muscle oxygen stores of harbor seal pups, yearlings, and adults. We found that pups had smaller oxygen stores than adults (neonates 57%, weaned pups 75%, and yearlings 90% those of adults), largely because neonatal myoglobin concentrations were low (1.6+/-0.2 g% vs. 3.8+/-0.3 g% for adults) and changed little during the nursing period. In contrast, blood oxygen stores were relatively mature, with nursing pups having hematocrit (55%+/-0.2%), hemoglobin (21.7+/-0.4 g%), and blood volume (12.3+/-0.5 mL/kg) only slightly lower than the corresponding values for adults (57%+/-0.2%, 23.8+/-0.3 g %, and 15.0+/-0.5 mL/kg). Because neonatal pups had relatively high metabolic rates (11.0 mL O2/kg min), their calculated aerobic dive limit was less than 50% that of adults. These results suggest that harbor seals' early aquatic activity is primarily supported by rapid development of blood, with immature muscle oxygen stores and elevated use rates limiting aerobic diving ability.  相似文献   

3.
Summary The oxygen storage capacity and partitioning of body oxygen reserves were compared in summer-and winter-acclimatized muskrats (Ondatra zibethicus). Blood volume, blood oxygen capacity, and skeletal muscle myoglobin content were higher in December than in July (P<0.02). Total lung capacity increased only slightly in winter (P>0.05). The oxygen storage capacity of a diving muskrat was calculated at 25.2 ml O2 STPD · kg-1 in July, compared to 35.7 ml O2 STPD · kg-1 in December. Blood comprised the major storage compartment in both seasons, accounting for 57% and 65% of the total oxygen stores in summer and winter, respectively. Based on available oxygen stores and previous estimates of the cost of diving, the aerobic dive limit (ADL) increased from 40.9 s in July to 57.9 s in December. Concurrent behavioral studies suggested that most voluntary diving by muskrats is aerobic. However, the proportion of dives exceeding the calculated ADL of these animals was shown to vary with the context of the dive. Only 3.5% of all dives initiated by muskrats floating in the water exceeded their estimated ADL. Provision of a dry resting site and access to a submerged food source increased this proportion to 18–61%, depending on the underwater distance that foraging muskrats were required to swim. Serial dives exceeding the estimated ADL were not accompanied by extended postdive recovery periods.Abbreviations ADL acrobic dive limit - Hb hemoglobin - Hct hematocrit - Mb myoglobin - PaO2 arterial O2 tension - STPD standard temperature and pressure, dry  相似文献   

4.
The diving capacity of marine mammals is typically defined by the aerobic dive limit (ADL) which, in lieu of direct measurements, can be calculated (cADL) from total body oxygen stores (TBO) and diving metabolic rate (DMR). To estimate cADL, we measured blood oxygen stores, and combined this with diving oxygen consumption rates (VO2) recorded from 4 trained Steller sea lions diving in the open ocean to depths of 10 or 40 m. We also examined the effect of diving exercise on O2 stores by comparing blood O2 stores of our diving animals to non-diving individuals at an aquarium. Mass-specific blood volume of the non-diving individuals was higher in the winter than in summer, but there was no overall difference in blood O2 stores between the diving and non-diving groups. Estimated TBO (35.9 ml O2 kg?1) was slightly lower than previously reported for Steller sea lions and other Otariids. Calculated ADL was 3.0 min (based on an average DMR of 2.24 L O2 min?1) and was significantly shorter than the average 4.4 min dives our study animals performed when making single long dives—but was similar to the times recorded during diving bouts (a series of 4 dives followed by a recovery period on the surface), as well as the dive times of wild animals. Our study is the first to estimate cADL based on direct measures of VO2 and blood oxygen stores for an Otariid and indicates they have a much shorter ADL than previously thought.  相似文献   

5.
The effects of temperature on the mating behavior, gonad development, germ cell maturation, and egg spawning of the predaceous diving beetle Dytiscus sharpi (Coleoptera; Dytiscidae), were investigated. By field observations, we found that mating behavior started in October and occurred more frequently from November to December. Under our laboratory breeding conditions, we observed almost the same seasonal variation in mating behavior. We found that temperatures lower than 20 degrees C were required to trigger mating behavior. We also found the same temperature threshold triggered gonadogenesis as well as spermatogenesis. Furthermore, for females, exposure to lower temperatures (<8 degrees C) during the winter was required for egg maturation and spawning in spring; that is, there was a second threshold for successful female reproduction. We conclude that the termination of summer reproductive diapause of D. sharpi is regulated in a temperature-dependent manner, thus effecting the adaptation of D. sharpi to southern warm habitats.  相似文献   

6.
Apneustic hunters such as diving mammals exploit body oxygen stores while submerged; therefore, any decline in oxygen handling at advanced life stages could critically impair foraging ability. We calculated the aerobic dive limit (cADL = 17.9 ± 4.4 min SD) from blood and muscle oxygen stores and published metabolic rates of Weddell seals within (9-16 years, n = 24) and beyond peak-reproductive age (17-27 years, n = 26), to investigate (1) senescent constraints in apneustic hunting, and (2) whether mass or age primarily determines oxygen stores and ADL in older seals. We compared cADL with behavioral ADL from 5,275 free-ranging dives (bADL = 24.0 ± 5.3 min, n = 18 females). We observed no changes in Weddell seal oxygen stores, its determinants, or in ADLs late in life. Oxygen stores were better predicted by mass than age, consistent with published findings for young adults. Hematological panels (n = 6) were consistent across mass and age, though hematocrit (females > males, 6% elevation) and mean corpuscular hemoglobin content (females < males, 8% reduction) varied by sex. Whole blood viscosity was decreased with increasing mass in females and was higher than in males overall (+18%). This was largely due to elevated hematocrit in females, although plasma viscosity also varied under some conditions. Females had higher blood volume and elevated blood oxygen stores (vol% body mass), which did not translate into significantly higher cADL (18.1 vs. 17.1 min for males). Neither cADL nor bADL were mass- or age-dependent.  相似文献   

7.
Intraspecific variability in body oxygen reserves, muscle buffering capacity, diving metabolic rate, and diving behavior were examined in recently captured juvenile and adult muskrats. Allometric scaling exponents for lung (b=1.04), blood (b=0.91), and total body oxygen storage capacity (b=1.09) did not differ from unity. The concentration of skeletal muscle myoglobin scaled positively with mass in 254-600-g juveniles (b=1.63) but was mass-independent in larger individuals. Scaling exponents for diving metabolic rate and calculated aerobic dive limit (ADL) were 0.74 and 0.37, respectively. Contrary to allometric predictions, we found no evidence that the diving abilities of muskrats increased with age or body size. Juveniles aged 1-2 mo exhibited similar dive times but dove more frequently than summer-caught adults. Average and cumulative dive times and dive&rcolon;surface ratios were highest for fall- and winter-caught muskrats. Total body oxygen reserves were greatest in winter, mainly due to an increase in blood oxygen storage capacity. The buffering capacity of the hind limb swimming muscles also was highest in winter-caught animals. Several behavioral indicators of dive performance, including average and maximum duration of voluntary dives, varied positively with blood hemoglobin and muscle myoglobin concentration of muskrats. However, none of the behavioral measures were strongly correlated with the total body oxygen reserves or ADLs derived for these same individuals.  相似文献   

8.
We assessed the seasonal variations in the effects of hypercarbia (3 or 5% inspired CO2) on cardiorespiratory responses in the bullfrog Rana catesbeiana at different temperatures (10, 20 and 30 degrees C). We measured breathing frequency, blood gases, acid-base status, hematocrit, heart rate, blood pressure and oxygen consumption. At 20 and 30 degrees C, the rate of oxygen consumption had a tendency to be lowest during winter and highest during summer. Hypercarbia-induced changes in breathing frequency were proportional to body temperature during summer and spring, but not during winter (20 and 30 degrees C). Moreover, during winter, the effects of CO2 on breathing frequency at 30 degrees C were smaller than during summer and spring. These facts indicate a decreased ventilatory sensitivity during winter. PaO2 and pHa showed no significant change during the year, but PaCO2 was almost twice as high during winter than in summer and spring, indicating increased plasma bicarbonate levels. The hematocrit values showed no significant changes induced by temperature, hypercarbia or season, indicating that the oxygen carrying capacity of blood is kept constant throughout the year. Decreased body temperature was accompanied by a reduction in heart rate during all four seasons, and a reduction in blood pressure during summer and spring. Blood pressure was higher during winter than during any other seasons whereas no seasonal change was observed in heart rate. This may indicate that peripheral resistance and/or stroke volume may be elevated during this season. Taken together, these results suggest that the decreased ventilatory sensitivity to hypercarbia during winter occurs while cardiovascular parameters are kept constant.  相似文献   

9.
Population decline and a shift in the geographical distribution of some ectothermic animals have been attributed to climatic warming. Here, we show that rises in water temperature of a few degrees, while within the thermal window for locomotor performance, may be detrimental to diving behaviour in air-breathing ectotherms (turtles, crocodilians, marine iguanas, amphibians, snakes and lizards). Submergence times and internal and external body temperature were remotely recorded from freshwater crocodiles (Crocodylus johnstoni) while they free-ranged throughout their natural habitat in summer and winter. During summer, the crocodiles'' mean body temperature was 5.2 ± 0.1°C higher than in winter and the largest proportion of total dive time was composed of dive durations approximately 15 min less than in winter. Diving beyond 40 min during summer required the crocodiles to exponentially increase the time they spent on the surface after the dive, presumably to clear anaerobic debt. The relationship was not as significant in winter, even though a greater proportion of dives were of a longer duration, suggesting that diving lactate threshold (DLT) was reduced in summer compared with winter. Additional evidence for a reduced DLT in summer was derived from the stronger influence body mass exerted upon dive duration, compared to winter. The results demonstrate that the higher summer body temperature increased oxygen demand during the dive, implying that thermal acclimatization of the diving metabolic rate was inadequate. If the study findings are common among air-breathing diving ectotherms, then long-term warming of the aquatic environment may be detrimental to behavioural function and survivorship.  相似文献   

10.
Many estuarine habitats are characterized by episodes of hypoxia, the frequency and severity of which may vary seasonally. Accordingly, resident fish species may show seasonal differences in their capacity to tolerate hypoxia. We have tested this hypothesis in the gulf killifish, Fundulus grandis, sampled from the Lake Pontchartrain estuary (Louisiana) at different times of the year. We measured 2 indicators of hypoxia tolerance, the frequency of aquatic surface respiration (ASR) during gradual reduction in dissolved oxygen (D.O.) and survival time during severe hypoxic stress, and found both to be significantly affected by season. Fish collected during the summer did not engage in ASR until the D.O. concentration dropped to values lower than that required to elicit ASR by fish collected during other seasons. Laboratory acclimation of fish to low oxygen did not change the relationship between ASR behavior and D.O., suggesting that the observed seasonal effect on ASR was not simply due to previous exposure of summer fish to environmental hypoxia. Furthermore, fish collected during the summer and winter had significantly longer survival times during exposure to severe hypoxia than fish collected during the fall. Survival analysis indicated that the condition of fish was positively associated with survival time, and seasonal variation in condition accounted for about half of the observed difference between survival times of fish collected during the summer and fall. Seasonal variation in ASR and survival, when taken together, demonstrate that hypoxia tolerance in F. grandis may be subject to acclimatization. An increase in hypoxia tolerance during the summer could increase survivorship of fish when exposed to elevated temperatures and low oxygen concentrations which prevail during the summer months.  相似文献   

11.
为了研究江苏高邮局地水循环特征,应对气候变化和减缓洪涝灾害.本研究采集江苏高邮自2015年7月—2017年10月的121个大气降水样品及环境因子数据,分析该区大气降水氢氧同位素特征,揭示不同季节水汽来源及影响因素.结果表明: 大气降水δD(δ18O)季节变化明显,冬半年偏正,夏半年偏负;过量氘值亦呈现冬高夏低;年尺度上,大气降水中δD(δ18O)与温度和降水量皆为负相关关系,呈现“反温度效应”和“降水量效应”;季节尺度上,均未呈现出“温度效应”,秋冬两季呈现出“降水量效应”;HYSPLIT气团轨迹模型结果进一步表明,江苏高邮夏季水汽主要来源于我国南海、印度洋及太平洋,而春、秋、冬季水汽主要来源于亚欧大陆、大西洋、北冰洋水汽混合及局地蒸发.大气降水δD(δ18O)值的季节变化主要受到季风活动以及厄尔尼诺-南方涛动(ENSO)的影响,降水中氢氧同位素值清晰地记录了厄尔尼诺向拉尼拉之间的过渡.  相似文献   

12.
Blood pressure measurements recorded during the medical Research Council''s treatment trial for mild hypertension have been analysed according to the calendar month in which the readings were made. For each age, sex, and treatment group systolic and diastolic pressures were higher in winter than in summer. The seasonal variation in blood pressure was greater in older than in younger subjects and was highly significantly related to maximum and minimum daily air temperature measurements but not to rainfall.  相似文献   

13.
In capital breeders, individual differences in body size and condition can impact mating effort and success. In addition to the collateral advantages of large body size in competition, large nutrient reserves may offer advantages in endurance rivalry and enable the high rates of energy expenditure associated with mating success. We examined the impacts of body reserves and dominance rank on energy expenditure, water flux, mating success, and breeding tenure in the adult male northern elephant seal, a polygynous, capital breeder. Adult males expended energy at a rate of 159 ± 49 MJ d (-1), which is equivalent to 3.1 times the standard metabolic rate predicted by Kleiber's equation. Despite high rates of energy expenditure and a long fasting duration, males spared lean tissue effectively, deriving a mean of 7% of their metabolism from protein catabolism. Body composition had a strong impact on the ability to spare lean tissue during breeding. When controlling for body size, energy expenditure, depletion of blubber reserves, and water efflux were significantly greater in alpha males than in subordinate males. Large body size was associated with increased reproductive effort, tenure on shore, dominance rank, and reproductive success. Terrestrial locomotion and topography appeared to strongly influence energy expenditure. Comparisons with conspecific females suggest greater total seasonal reproductive effort in male northern elephant seals when controlling for the effects of body mass. In polygynous capital breeding systems, male effort may be strongly influenced by physiological state and exceed that of females.  相似文献   

14.
Marine mammals exhibit multi-level adaptations, from cellular biochemistry to behavior, that maximize aerobic dive duration. A dive response during aerobic dives enables the efficient use of blood and muscle oxygen stores, but it is exercise modulated to maximize the aerobic dive limit at different levels of exertion. Blood volume and concentrations of blood hemoglobin and muscle myoglobin are elevated and serve as a significant oxygen store that increases aerobic dive duration. However, myoglobin is not homogeneously distributed in the locomotory muscles and is highest in areas that produce greater force and consume more oxygen during aerobic swimming. Muscle fibers are primarily fast and slow twitch oxidative with elevated mitochondrial volume densities and enhanced oxidative enzyme activities that are highest in areas that produce more force generation. Most of the muscle mitochondria are interfibriller and homogeneously distributed. This reduces the diffusion distance between mitochondria and helps maintain aerobic metabolism under hypoxic conditions. Mitochondrial volume densities and oxidative enzyme activities are also elevated in certain organs such as liver, kidneys, and stomach. Hepatic and renal function along with digestion and assimilation continue during aerobic dives to maintain physiological homeostasis. Most ATP production comes from aerobic fat metabolism in carnivorous marine mammals. Glucose is derived mostly from gluconeogenesis and is conserved for tissues such as red blood cells and the central nervous system. Marine mammals minimize the energetic cost of swimming and diving through body streamlining, efficient, lift-based propulsive appendages, and cost-efficient modes of locomotion that reduce drag and take advantage of changes in buoyancy with depth. Most dives are within the animal’s aerobic dive limit, which maximizes time underwater and minimizes recovery time at the surface. The result of these adaptations is increased breath-hold duration and enhanced foraging ability that maximizes energy intake and minimizes energy output while making aerobic dives to depth. These adaptations are the long, evolutionary legacy of an aquatic lifestyle that directly affects the fitness of marine mammal species for different diving abilities and environments.  相似文献   

15.
The balance between energetic acquisition and expenditure depends on the amount of energy allocated to biological functions such as thermoregulation, growth, reproduction and behavior. Ambient temperature has a profound effect on this balance, with species inhabiting colder climates often needing to invest more energy in thermoregulation to maintain body temperature. This leads to local behavioral and physiological adaptations that increase energetic efficiency. In this study, we investigated the role of activity, behavior and thermogenic capacity in the ability of the greater white-toothed shrew, Crocidura russula, to cope with seasonal changes. Individuals were captured in the Sintra-Cascais Natural Park, a Mediterranean region, and separated into three experimental groups: a control group, acclimated to a 12L:12D photoperiod and temperature of 18–20 °C; a winter group, acclimatized to natural winter fluctuations of light and temperature; and a summer group, acclimatized to natural summer fluctuations of light and temperature. No differences were found in resting metabolic rate and nonshivering thermogenesis between the three groups. However, winter shrews significantly reduced their activity, particularly at night, compared to the control and summer groups. Differences in torpor use were also found between groups, with winter shrews entering torpor more frequently and during shorter periods of time than summer and control shrews. Our results indicate C. russula from Sintra relies on the flexibility of energy saving mechanisms, namely daily activity level and torpor use, to cope with seasonal changes in a Mediterranean climate, rather than mechanisms involving body heat production.  相似文献   

16.
东北刺猬非冬眠期体温和内脏器官重量的季节性变化   总被引:1,自引:1,他引:0  
异温动物的体温和内脏器官重量与其所处的环境密切相关,具有一定的可塑性。本文以活捕于鲁西南山区的东北刺猬为对象,比较了其体温和内脏器官的性别差异和季节变化,旨在了解其对环境的适应性特征。结果表明:1)东北刺猬的体温以夏季最高,且与环境温度呈正相关关系,但性别间无差异;2)东北刺猬的肥满度指数以春季最高,秋季最低,亦无性别差异;3)东北刺猬的内脏器官重量与体重呈显著的正相关关系,雌雄脾脏重量以春季最大,夏季最小;4)季节与性别间交互作用对肾上腺重量的影响显著,雄体睾丸和附睾秋季最轻,雌体子宫则秋季最轻;5)雌体心率显著高于雄体,无季节性差异;非冬眠期心电图中各个波持续时间无性别差异,QRS 波群和T 波的持续时间在秋季显著长于夏季和春季,S - T 段相反,秋季最短。本文研究结果提示:东北刺猬非冬眠期的心率与体温变化无关,心脏功能受季节变化影响较小。体温、肥满度、脾脏、睾丸和附睾、子宫、心电等生理指标的可塑性对于东北刺猬适应环境具有重要意义。  相似文献   

17.
Both body size dimorphism and sex differences in the relative costs and benefits associated with acquiring energy for reproduction have been advanced to explain the evolution of sex differences in foraging behaviour. We examined the extent to which these factors influenced sex differences in the diving behaviour of a size-dimorphic, capital breeder, the grey seal, Halichoerus grypus. Using time-depth data loggers, we examined the diving behaviour of 46 male and 49 female grey seals for 7 months before parturition and mating. Males and females showed significantly different seasonal patterns in the characteristics of individual dives and dive effort. Compared with males, females showed significantly higher levels of dive effort immediately following moult and in the 3 months before parturition. Females also had longer dives (5.5 versus 4.9 min) and spent more time at depth (3.4 versus 2.7 min), whereas males dived deeper (57 versus 49 m). Males dived consistently throughout the day, whereas females showed strong diurnal patterns in dive depth, duration and frequency. The diving behaviour and rates of mass gain by females suggested a pattern of foraging consistent with early accumulation of body energy to support pregnancy and the subsequent lactation period during which females fast. Males, on the other hand, showed diving behaviour and rates of mass gain consistent with a more gradual accumulation of energy stores. Our results suggest that sex differences in the seasonal patterns of diving behaviour reflect sex differences in the costs and benefits of stored energy for reproduction rather than the influence of body size dimorphism alone.  相似文献   

18.
We measured the rate of consumption of oxygen by alligators in a dry metabolic chamber and in a tank of water where they were free to dive and surface at will at 10-35 degrees C, a range spanning most of the body temperatures experienced by alligators in nature. Neither the standard metabolic rate nor the rate of oxygen consumption during one hour of sustained, voluntary activity varied with body mass, month of the year, duration of fasting before measurement, or experimental condition (terrestrial vs aquatic). Voluntary diving is not accompanied by any reduction in standard metabolic rate; these results and those of others suggest that the "diving reflex" of alligators is probably employed only in emergencies. Spontaneous activity for one hour is accompanied by a 1.9-4.4 fold rise in oxygen consumption; this factorial increase is less than that for other reptiles induced to maximal activity for brief intervals. Both standard and active oxygen consumption rise significantly with body temperature.  相似文献   

19.
In many ungulates, female fecundity is influenced by weather, population density and body condition. Based on a six-year survey of the reproductive tracts of adult female roe deer (Capreolus capreolus) harvested in the province of Pisa (Tuscany, central Italy), we evaluated the influence of weather, population density and individual characteristics on pregnancy rates. Eighty-five percent of females were pregnant, with a median litter size of two (range one—three). We found that pregnancy rate was positively correlated with summer rainfall and body mass of females, whereas early-winter conditions, spring rainfall, the age of females and density-dependent factors did not appear to influence pregnancy rate. These results reflect the particular seasonal variation in the abundance and quality of resources in Mediterranean habitats and show that heavier females (high-quality mothers) are more productive than lighter females.  相似文献   

20.
The effect of 21 days of starvation, followed by a period of compensatory growth during refeeding, was studied in juvenile roach Rutilus rutilus during winter and summer, at 4, 20 and 27° C acclimation temperature and at a constant photoperiod (12L : 12D). Although light conditions were the same during summer and winter experiments and fish were acclimated to the same temperatures, there were significant differences in a range of variables between summer and winter. Generally winter fish were better prepared to face starvation than summer fish, especially when acclimated at a realistic cold season water temperature of 4° C. In winter, the cold acclimated fish had a two to three‐fold larger relative liver size with an approximately double fractional lipid content, in comparison to summer animals at the same temperature. Their white muscle protein and glycogen concentration, but not their lipid content, were significantly higher. Season, independent of photoperiod or reproductive cycle, was therefore an important factor that determined the physiological status of the animal, and should generally be taken into account when fish are acclimated to different temperature regimes. There were no significant differences between seasons with respect to growth. Juvenile roach showed compensatory growth at all three acclimation temperatures with maximal rates of compensatory growth at 27° C. The replenishment of body energy stores, which were utilized during the starvation period, was responsible for the observed mass gain at 4° C. The contribution of the different energy resources (protein, glycogen and lipid) was dependent on acclimation temperature. In 20 and 27° C acclimated roach, the energetic needs during food deprivation were met by metabolizing white muscle energy stores. While the concentration of white muscle glycogen had decreased after the fasting period, the concentrations of white muscle lipid and protein remained more or less constant. The mobilization of protein and fat was revealed by the reduced size of the muscle after fasting, which was reflected in a decrease in condition factor. At 20° C, liver lipids and glycogen were mobilized, which caused a decrease both in the relative liver size and in the concentration of these substrates. Liver size was also decreased after fasting in the 4° C acclimated fish, but the substrate concentrations remained stable. This experimental group additionally utilized white muscle glycogen during food deprivation. Almost all measured variables were back at the control level within 7 days of refeeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号