首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Determining how species' geographic ranges are governed by current climates and how they will respond to rapid climatic change poses a major biological challenge. Geographic ranges are often spatially fragmented and composed of genetically differentiated populations that are locally adapted to different thermal regimes. Tradeoffs between different aspects of thermal performance, such as between tolerance to high temperature and tolerance to low temperature or between maximal performance and breadth of performance, suggest that the performance of a given population will be a subset of that of the species. Therefore, species-level projections of distribution might overestimate the species' ability to persist at any given location. However, current approaches to modeling distributions often do not consider variation among populations. Here, we estimated genetically-based differences in thermal performance curves for growth among 12 populations of the scarlet monkeyflower, Mimulus cardinalis, a perennial herb of western North America. We inferred the maximum relative growth rate (RGR(max)), temperature optimum (T(opt)), and temperature breadth (T(breadth)) for each population. We used these data to test for tradeoffs in thermal performance, generate mechanistic population-level projections of distribution under current and future climates, and examine how variation in aspects of thermal performance influences forecasts of range shifts. Populations differed significantly in RGR(max) and had variable, but overlapping, estimates of T(opt) and T(breadth). T(opt) declined with latitude and increased with temperature of origin, consistent with tradeoffs between performances at low temperatures versus those at high temperatures. Further, T(breadth) was negatively related to RGR(max), as expected for a specialist-generalist tradeoff. Parameters of the thermal performance curve influenced properties of projected distributions. For both current and future climates, T(opt) was negatively related to latitudinal position, while T(breadth) was positively related to projected range size. The magnitude and direction of range shifts also varied with T(opt) and T(breadth), but sometimes in unexpected ways. For example, the fraction of habitat remaining suitable increased with T(opt) but decreased with T(breadth). Northern limits of all populations were projected to shift north, but the magnitude of shift decreased with T(opt) and increased with T(breadth). Median latitude was projected to shift north for populations with high T(breadth) and low T(opt), but south for populations with low T(breadth) and high T(opt). Distributions inferred by integrating population-level projections did not differ from a species-level projection that ignored variation among populations. However, the species-level approach masked the potential array of divergent responses by populations that might lead to genotypic sorting within the species' range. Thermal performance tradeoffs among populations within the species' range had important, but sometimes counterintuitive, effects on projected responses to climatic change.  相似文献   

3.
Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site‐level (<1 ha) temperature data from the literature to quantify impacts of land‐use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human‐impacted land‐use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest‐dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.  相似文献   

4.
Thermal performance curves (TPCs) provide a powerful framework for studying the evolution of continuous reaction norms and for testing hypotheses of thermal adaptation. Although featured heavily in comparative studies, the framework has been comparatively underutilized for quantitative genetic tests of thermal adaptation. We assayed the distribution of genetic (co)variance for TPC (locomotor activity) within and among three natural populations of Drosophila serrata and performed replicated tests of two hypotheses of thermal adaptation--that 'hotter is better' and that a generalist-specialist trade-off underpins the evolution of thermal sensitivity. We detected significant genetic variance within, and divergence among, populations. The 'hotter is better' hypothesis was not supported as the genetic correlations between optimal temperature (T(opt)) and maximum performance (z(max)) were consistently negative. A pattern of variation consistent with a generalist-specialist trade-off was detected within populations and divergence among populations indicated that performance curves were narrower and had higher optimal temperatures in the warmer, but less variable tropical population.  相似文献   

5.
Critical thermal limits provide an indication of the range of temperatures across which organisms may survive, and the extent of the lability of these limits offers insights into the likely impacts of changing thermal environments on such survival. However, investigations of these limits may be affected by the circumstances under which trials are undertaken. Only a few studies have examined these effects, and typically not for beetles. This group has also not been considered in the context of the time courses of acclimation and its reversal, both of which are important for estimating the responses of species to transient temperature changes. Here we therefore examine the effects of rate of temperature change on critical thermal maxima (CT(max)) and minima (CT(min)), as well as the time course of the acclimation response and its reversal in two beetle species, Tenebrio molitor and Cyrtobagous salviniae. Increasing rates of temperature change had opposite effects on T. molitor and C. salviniae. In T. molitor, faster rates of change reduced both CT(max) (c. 2°C) and CT(min) (c. 3°C), while in C. salviniae faster rates of change increased both CT(max) (c. 6°C) and CT(min) (c. 4°C). CT(max) in T. molitor showed little response to acclimation, while the response to acclimation of CT(min) was most pronounced following exposure to 35°C (from 25°C) and was complete within 24 h. The time course of acclimation of CT(max) in C. salviniae was 2 days when exposed to 36°C (from c. 26°C), while that of CT(min) was less than 3 days when exposed to 18°C. In T. molitor, the time course of reacclimation to 25°C after treatments at 15°C and 35°C at 75% RH was longer than the time course of acclimation, and varied from 3-6 days for CT(max) and 6 days for CT(min). In C. salviniae, little change in CT(max) and CT(min) (<0.5°C) took place in all treatments suggesting that reacclimation may only occur after the 7 day period used in this study. These results indicate that both T. molitor and C. salviniae may be restricted in their ability to respond to transient temperature changes at short-time scales, and instead may have to rely on behavioral adjustments to avoid deleterious effects at high temperatures.  相似文献   

6.
Climatic warming is altering the behavior of individuals and the composition of communities. However, recent studies have shown that the impact of warming on ectotherms varies geographically: species at warmer sites where environmental temperatures are closer to their upper critical thermal limits are more likely to be negatively impacted by warming than are species inhabiting relatively cooler sites. We used a large‐scale experimental temperature manipulation to warm intact forest ant assemblages in the field and examine the impacts of chronic warming on foraging at a southern (North Carolina) and northern (Massachusetts) site in eastern North America. We examined the influence of temperature on the abundance and recruitment of foragers as well as the number of different species observed foraging. Finally, we examined the relationship between the mean temperature at which a species was found foraging and the critical thermal maximum temperature of that species, relating functional traits to behavior. We found that forager abundance and richness were related to the experimental increase in temperature at the southern site, but not the northern site. Additionally, individual species responded differently to temperature: some species foraged more under warmer conditions, whereas others foraged less. Importantly, these species‐specific responses were related to functional traits of species (at least at the Duke Forest site). Species with higher critical thermal maxima had greater forager densities at higher temperatures than did species with lower critical thermal maxima. Our results indicate that while climatic warming may alter patterns of foraging activity in predictable ways, these shifts vary among species and between sites. More southerly sites and species with lower critical thermal maxima are likely to be at greater risk to ongoing climatic warming.  相似文献   

7.
Predicting the biodiversity impacts of global warming implies that we know where and with what magnitude these impacts will be encountered. Amphibians are currently the most threatened vertebrates, mainly due to habitat loss and to emerging infectious diseases. Global warming may further exacerbate their decline in the near future, although the impact might vary geographically. We predicted that subtropical amphibians should be relatively susceptible to warming‐induced extinctions because their upper critical thermal limits (CTmax) might be only slightly higher than maximum pond temperatures (Tmax). We tested this prediction by measuring CTmax and Tmax for 47 larval amphibian species from two thermally distinct subtropical communities (the warm community of the Gran Chaco and the cool community of Atlantic Forest, northern Argentina), as well as from one European temperate community. Upper thermal tolerances of tadpoles were positively correlated (controlling for phylogeny) with maximum pond temperatures, although the slope was steeper in subtropical than in temperate species. CTmax values were lowest in temperate species and highest in the subtropical warm community, which paradoxically, had very low warming tolerance (CTmaxTmax) and therefore may be prone to future local extinction from acute thermal stress if rising pond Tmax soon exceeds their CTmax. Canopy‐protected subtropical cool species have larger warming tolerance and thus should be less impacted by peak temperatures. Temperate species are relatively secure to warming impacts, except for late breeders with low thermal tolerance, which may be exposed to physiological thermal stress in the coming years.  相似文献   

8.
Climate warming is predicted to cause large-scale extinctions, particularly of ectothermic species. A striking difference between tropical and temperate ectotherms is that tropical species experience a mean habitat temperature that is closer to the temperature at which fitness is maximized (T(opt)) and an upper temperature limit for survival (T(max)) that is closer to T(opt) than do temperate species. Thus, even a small increase in environmental temperature could put tropical ectotherms at high risk of extinction, whereas temperate ectotherms have a wider temperature cushion. Although this pattern is widely observed, the mechanisms that produce it are not well understood. Here we develop a mathematical framework to partition the temperature response of fitness into its components (fecundity, mortality, and development) and test model predictions with data for insects. We find that fitness declines at high temperatures because the temperature responses of fecundity and mortality act in opposite ways: fecundity decreases with temperature when temperatures exceed the optimal range, whereas mortality continues to increase. The proximity of T(opt) to T(max) depends on how the temperature response of development mediates the interaction between fecundity and mortality. When development is highly temperature sensitive, mortality exceeds reproduction only after fecundity has started to decline with temperature, which causes fitness to decline rapidly to zero when temperatures exceed T(opt). The model correctly predicts empirically observed fitness-temperature relationships in insects from different latitudes. It also suggests explanations for the widely reported phenological shifts in many ectotherms and the latitudinal differences in fitness responses.  相似文献   

9.
The capercaillie inhabits a continuous range in large parts of the Palearctic boreal forest, but is patchily distributed in temperate Europe. An ongoing population decline, largely related to human land use changes, has been most pronounced in central and western Europe, where some local populations have become extinct. In this study, we document the genetic differentiation of capercaillie populations at different stages along a gradient of spatial structuring from high connectivity (continuous range in the boreal forest) to a metapopulation systems (Alps) and recent (central Europe) and historic (Pyrenees) isolation. Four hundred and sixty individuals from 14 sample sites were genotyped at 10 polymorphic microsatellite loci to assess genetic structure and variation of capercaillie populations across its European range. As expected, differentiation was least pronounced within the continuous range in the boreal forest. Within the metapopulation system of the Alps, differentiation was less than among the isolated populations of central Europe (Black Forest, Fichtelgebirge, Thuringia, Vosges). In the long-isolated population of the Pyrenees, and the recently isolated populations of central Europe, genetic diversity was significantly reduced compared with the Alps and boreal forest. Our results agree with the concept of a gradual increase in genetic differentiation from connectivity to isolation, and from recent to historic isolation. Anthropogenic habitat deterioration and fragmentation thus not only leads to range contractions and extinctions, but may also have significant genetic and evolutionary consequences for surviving populations. To maintain high levels of genetic variation in species in fragmented habitats, conservation should aim at securing connectivity between spatially distinct populations.  相似文献   

10.
Coffea arabica occurs naturally in the montane rainforests of Ethiopia, but large areas of these unique forests have been converted to other land-uses. In the remaining forest, wild coffee is managed and harvested with increasing intensity because of rising coffee prices in the world market. This study evaluated the impact of coffee management on wild coffee populations and the forest vegetation as a basis for conservation planning in southwestern Ethiopia. Vegetation surveys and yield assessments were carried out in unmanaged natural forest and in managed semi-forest coffee (SFC) systems. Analyses show that wild coffee density and coffee yields were low in natural forest (max. 15 kg ha−1 year−1). In SFC systems, 30% of the canopy trees and most undergrowth vegetation were removed. This stimulated wild coffee growth and strongly enhanced yields (max. 54 kg ha−1 year−1), but severely disturbed forest structure. Species richness increased by 26% because of an increase in species of ruderal and secondary vegetation; however, species richness and abundance of typical forest species declined. Conservation of the natural forest therefore requires the control of wild coffee management. Wild coffee certification is discussed as one tool to reconcile conservation measures and the interests of local farmers.  相似文献   

11.
Ecological theory suggests that demographic responses by populations to environmental change vary depending on whether individuals inhabit central or peripheral regions within the species’ geographic range. Here, we tested this prediction by comparing a population of ringed seals Pusa hispida located at high latitudes as part of their core range (core) with a population located at the southern extremity of their range (peripheral). First, we compared the two regions’ environmental trends in timing of sea-ice breakup and freeze-up, open-water duration and the North Atlantic Oscillation (NAO). We found that the core region shifted to progressively warmer conditions in the early 1990s; whereas, in the peripheral region, the warming trend shifted in 1999 to one with no warming trend but high inter-annual variability. Next, we examined how body condition, inferred from blubber depth, responded to temporal changes in sea-ice and climatic variables – variables that have been shown to influence ringed seal demography. Core seals displayed minimal seasonal changes in body condition; whereas peripheral seals displayed a 20–60% amplitude seasonal change in body condition with a phase shift to earlier initiation of fat accumulation and loss. Finally, we tested for interannual differences and found that both core and peripheral seals responded similarly with decreased body condition following more positive NAO. Environmental variables influenced body condition in opposite directions between the two regions with core seals declining in body condition with later spring breakup and shorter open-water duration, whereas peripheral seals showed opposite relationships. Seals living at the core likely benefit from an evolved match between adaptation and environmental variation resulting in dampened seasonal and interannual fluctuations in body condition. Knowledge of how different populations respond to environmental change depending on geographic location within a species range can assist in anticipating population specific responses to climate warming.  相似文献   

12.
Climate change (first of all the rise in temperature) is currently considered one of the most serious global challenges facing mankind. Here we review the diversity of insect responses to the current climate warming, with particular focus on true bugs (Heteroptera). Insects as ectotherms are bound to respond to the temperature change, and different species respond differently depending on their specific physiological and ecological traits, seasonal cycle, trophic relations, etc. Insect responses to climate warming can be divided into six categories: changes in (1) ranges, (2) abundance, (3) phenology, (4) voltinism, (5) morphology, physiology, and behavior, and (6) relationships with other species and in the structure of communities. Changes in ranges and phenology are easier to notice and record than other responses. Range shifts have been reported more often in Lepidoptera and Odonata than in other insect orders. We briefly outline the history and eco-physiological background of the recent range limit changes in the Southern green stink bug Nezara viridula (Heteroptera, Pentatomidae) in central Japan. Range expansion in individual species can lead to enrichment of local faunas, especially at high latitudes. Phenological changes include not only advances in development in spring but also shifts in phenology later in the season. The phenophases related to the end of activity usually shift to later dates, thus prolonging the period of active development. This may have both positive and negative consequences for the species and populations. As with any other response, the tendencies in phenological changes may vary among species and climatic zones. The proven cases of change in voltinism are rare, but such examples do exist. Application of models based on thermal parameters of development suggests that a rise in temperature by 2°C will result in an increased number of annual generations in many species from different arthropod taxa (up to three or four additional generations in Thysanoptera, Aphidoidea, and Acarina). The warming-mediated changes in physiology, morphology, or behavior are difficult to detect and prove, first of all because of the absence of reliable comparative data. Nevertheless, there are examples of changes in photoperiodic responses of diapause induction and behavioral responses related to search of shelters for summer diapause (aestivation). Since (1) individual species do not exist in isolation and (2) the direction and magnitude of responses even to the same environmental changes vary between species, it may be expected that in many cases the current stable relationships between species will be affected. Thus, unequal range shifts in insects and their host plants may disrupt their trophic interactions near the species?? range boundaries. Studies of responses to climate warming in more than one interrelated species or in entire communities are extremely rare. The loss of synchronism in seasonal development of community members may indicate inability of the higher trophic levels to adapt fully to climate warming or an attempt of the lower trophic level to escape from the pressure of the higher trophic levels. It is generally supposed that many insect species in the Temperate Climate Zone will benefit in some way from the current climate warming. However, there is some experimental evidence of an opposite or at least much more complex response; the influence of warming might be deleterious for some species or populations. It is suggested that species or populations from the cold or temperate climate have sufficient phenotypic plasticity to survive under the conditions of climate warming, whereas species and populations which already suffer from stress under extreme seasonal temperatures in warmer regions may have a limited ??maneuver space?? since the current temperatures are close to their upper thermal limits. Without genetic changes, even moderate warming will put these species or populations under serious physiological stress. The accumulated data suggest that responses of insects and the entire biota to climate warming will be complex and will vary depending on the rate of warming and ecological peculiarities of species and regions. Physiological responses will vary in their nature, direction, and magnitude even within one species or population, and especially between seasons. The responses will also differ in different seasons. For example, warming may negatively affect nymphal development during the hot season but at the same time accelerate growth and development during the cold season and/or ensure milder and more favorable overwintering conditions for adults. All these factors will affect population dynamics of particular species and relationships among the members of ecosystems. We should keep in mind that (1) not only selected insect species but almost all the species will be affected, (2) temperature is not the only component of the climatic system that is changing, and (3) responses will be different in different seasons. Host plants, phytophagous insects, their competitors, symbionts, predators, parasites, and pathogens will not only respond separately to climate changes; individual responses will further affect the responses of other species, thus making reliable prediction extremely complicated. Responses are expected to (1) be species- or population-specific, (2) concern basically all the aspects of organism/ species biology and ecology (individual physiology, population structure, abundance, local adaptations, phenology, voltinism, and distribution), and (3) occur at scales ranging from an undetectable cellular level to major distribution range shifts or regional extinctions. The scale of insect responses will depend on the extent and rate of climate warming. Slight to moderate warming may cause responses only in a limited number of species with more flexible life cycles, whereas a substantial increase in temperature may affect a greater number of different species and ecological groups.  相似文献   

13.
Global climate fluctuated considerably throughout the Pliocene-Pleistocene period, influencing the evolutionary history of a wide array of species. Using the phylogeographic patterns within the hartebeest (Alcelaphus buselaphus (Pallas, 1766)) complex, we evaluated the evolutionary consequences of such environmental change for a typical large mammal ranging on the African savannah. Our results, as generated from two mitochondrial DNA markers (the D-loop and cytochrome b), suggest an origin of the hartebeest in eastern Africa from where the species has colonized other parts of the continent. Phylogenetic analyses revealed an early diversification into southern and northern hartebeest lineages, an event that may be related to the formation of the Rift Valley lakes. The northern lineage has further diverged into eastern and western lineages, most probably as a result of the expanding central African rainforest belt and subsequent contraction of savannah habitats during a period of global warming. The diversification events appear to have coincided with major climatic changes and are highly correlated in time. These observations strongly suggest that large-scale climatic fluctuations have been a major determinant for the species' evolutionary history and that hartebeest evolution has mainly taken place in isolated yet environmentally favourable refugia during periods of global warming. Indications of sudden population expansion for two putative ancestral hartebeest populations provide further support for a refugia-based explanation of the diversification events. Reciprocal monophyly between southern and northern lineages may suggest that reproductive barriers exist and that the hartebeest complex comprises two different species.  相似文献   

14.
Tropical rainforests are subject to extensive degradation by commercial selective logging. Despite pervasive changes to forest structure, selectively logged forests represent vital refugia for global biodiversity. The ability of these forests to buffer temperature‐sensitive species from climate warming will be an important determinant of their future conservation value, although this topic remains largely unexplored. Thermal buffering potential is broadly determined by: (i) the difference between the “macroclimate” (climate at a local scale, m to ha) and the “microclimate” (climate at a fine‐scale, mm to m, that is distinct from the macroclimate); (ii) thermal stability of microclimates (e.g. variation in daily temperatures); and (iii) the availability of microclimates to organisms. We compared these metrics in undisturbed primary forest and intensively logged forest on Borneo, using thermal images to capture cool microclimates on the surface of the forest floor, and information from dataloggers placed inside deadwood, tree holes and leaf litter. Although major differences in forest structure remained 9–12 years after repeated selective logging, we found that logging activity had very little effect on thermal buffering, in terms of macroclimate and microclimate temperatures, and the overall availability of microclimates. For 1°C warming in the macroclimate, temperature inside deadwood, tree holes and leaf litter warmed slightly more in primary forest than in logged forest, but the effect amounted to <0.1°C difference between forest types. We therefore conclude that selectively logged forests are similar to primary forests in their potential for thermal buffering, and subsequent ability to retain temperature‐sensitive species under climate change. Selectively logged forests can play a crucial role in the long‐term maintenance of global biodiversity.  相似文献   

15.
The upper thermal tolerance (CT(max)) of beachfleas Orchestia gammarellus (Pallas) collected from a number of different locations in Iceland was determined. Differences were recorded between field populations associated with thermal springs and those from non-thermal sites. A number of reciprocal acclimation experiments (where animals from thermal and non-thermal sites were acclimated to the measured ambient temperatures of thermal (17 and 22 degrees C) and non-thermal (11 degrees C) sites) were performed. Differences between at least one thermal population and a non-thermal population were maintained following this reciprocal acclimation, supporting the hypothesis that population differences were due to non-reversible genetic differences and not local acclimatisation. Animals from one thermal site (Reykjanes) had a mean CT(max)=37.1+/-0.5 degrees C when acclimated at 11 degrees C and 38.6+/-0.3 degrees C when acclimated at 22 degrees C, whereas animals from a non-thermal site (Hvassahraun) had CT(max) values of 35.9+/-0.5 and 37.9+/-0.3 degrees C, respectively. In other cases, differences are best explained by local acclimatisation. Results are discussed in relation to ambient local conditions and the degree of isolation of the different populations.  相似文献   

16.
Determining the biogeographical histories of rainforests is central to our understanding of the present distribution of tropical biodiversity. Ice age fragmentation of central African rainforests strongly influenced species distributions. Elevated areas characterized by higher species richness and endemism have been postulated to be Pleistocene forest refugia. However, it is often difficult to separate the effects of history and of present-day ecological conditions on diversity patterns at the interspecific level. Intraspecific genetic variation could yield new insights into history, because refugia hypotheses predict patterns not expected on the basis of contemporary environmental dynamics. Here, we test geographically explicit hypotheses of vicariance associated with the presence of putative refugia and provide clues about their location. We intensively sampled populations of Aucoumea klaineana, a forest tree sensitive to forest fragmentation, throughout its geographical range. Characterizing variation at 10 nuclear microsatellite loci, we were able to obtain phylogeographic data of unprecedented detail for this region. Using Bayesian clustering approaches, we demonstrated the presence of four differentiated genetic units. Their distribution matched that of forest refugia postulated from patterns of species richness and endemism. Our data also show differences in diversity dynamics at leading and trailing edges of the species' shifting distribution. Our results confirm predictions based on refugia hypotheses and cannot be explained on the basis of present-day ecological conditions.  相似文献   

17.
Much attention has been given to recent predictions that widespread extinctions of tropical ectotherms, and tropical forest lizards in particular, will result from anthropogenic climate change. Most of these predictions, however, are based on environmental temperature data measured at a maximum resolution of 1 km2, whereas individuals of most species experience thermal variation on a much finer scale. To address this disconnect, we combined thermal performance curves for five populations of Anolis lizard from the Bay Islands of Honduras with high‐resolution temperature distributions generated from physical models. Previous research has suggested that open‐habitat species are likely to invade forest habitat and drive forest species to extinction. We test this hypothesis, and compare the vulnerabilities of closely related, but allopatric, forest species. Our data suggest that the open‐habitat populations we studied will not invade forest habitat and may actually benefit from predicted warming for many decades. Conversely, one of the forest species we studied should experience reduced activity time as a result of warming, while two others are unlikely to experience a significant decline in performance. Our results suggest that global‐scale predictions generated using low‐resolution temperature data may overestimate the vulnerability of many tropical ectotherms to climate change.  相似文献   

18.
Abstract Current estimates of the total biomass in tropical rainforests vary considerably; this is due in large part to the different approaches that are used to calculate biomass. In this study we have used a canopy crane to measure the tree architectures in a 1 ha plot of complex mesophyll vine forest at Cape Tribulation, Australia. Methods were developed to measure and calculate the crown and stem biomass of six major species of tree and palm (Alstonia scholaris (Apocynaceae), Cleistanthus myrianthus (Euphorbiaceae), Endiandra microneura (Lauraceae), Myristica insipida (Myristicaceae), Acmena graveolens (Myrtaceae), Normanbya normanbyi (Arecaceae)) using the unique access provided by the crane. This has allowed the first non‐destructive biomass estimate to be carried out for a forest of this type. Allometric equations which relate tree biomass to the measured variable ‘diameter at breast height’ were developed for the six species, and a general equation was also developed for trees on the plot. The general equation was similar in form to equations developed for tropical rainforests in Brazil and New Guinea. The species equations were applied at the level of families, the generalized equation was applied to the remaining species which allowed the biomass of a total of 680 trees to be calculated. This has provided a current estimate of 270 t ha−1 above‐ground biomass at the Australian Canopy Crane site; a value comparable to lowland rainforests in Panama and French Guiana. Using the same tree database seven alternative allometric equations (literature equations for tropical rainforests) were used to calculate the site biomass, the range was large (252–446 t ha−1) with only three equations providing estimates within 34 t ha−1 (12.5%) of the site value. Our use of multiple species‐specific allometric equations has provided a site estimate only slightly larger (1%) than that obtained using allometric equations developed specifically for tropical wet rainforests. We have demonstrated that it is possible to non‐destructively measure the biomass in a complex forest using an on‐site canopy crane. In conjunction the development of crown maps and a detailed tree architecture database allows changes in forest structure to be followed quantitatively.  相似文献   

19.
Understanding how and why species respond to land‐use change is one of the central challenges in conservation biology, yet the causes of variation in the responses of species to land‐use change remain unclear. We tested whether adaptation to different abiotic environments influenced the vulnerability of bird communities to agricultural expansion in the Himalayan mountain range, which exhibits a strong east–west gradient in annual temperature variation. We did so by surveying bird communities in forest and agriculture at opposite ends of that gradient. We contrasted metrics of species richness, diversity, community composition and forest dependency across land‐use types and regions, and tested whether species’ thermal sensitivity influenced their response to the replacement of forest with agriculture. Agricultural land in the relatively aseasonal east harboured significantly fewer bird species than did forests, a pattern that is starkly reversed in the highly seasonal west. For species common to both regions, eastern populations used forest ~35% more than did western populations. While western species were less constrained by temperature than eastern species, western species with narrow thermal tolerances were also more forest dependent. Selection across a stark environmental gradient on a common species pool appears to have altered the vulnerability of Himalayan birds to forest loss, with communities in the relatively aseasonal east much more sensitive to forest conversion than those in the west. Adaptation to local environmental conditions appears to mediate species’ responses to land use change, with thermal specialists more vulnerable to forest loss than species with greater thermal tolerances. Species’ responses to global change may differ predictably along abiotic gradients even within a single region or biodiversity hotspot, and such variation must be addressed in conservation planning.  相似文献   

20.
Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade‐off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing temperature helps providing more accurate predictions on species vulnerability to warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号