首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Interplant communication of stress via volatile signals is a well-known phenomenon. It has been shown that plants undergoing stress caused by pathogenic bacteria or insects generate volatile signals that elicit defense response in neighboring naïve plants.1 Similarly, we have recently shown that naïve plants sharing the same gaseous environment with UVC-exposed plants exhibit similar changes in genome instability as UVC-exposed plants.2 We found that methyl salicylate (MeSA) and methyl jasmonate (MeJA) serve as volatile signals communicating genome instability (as measured by an increase in the homologous recombination frequency). UVC-exposed plants produce high levels of MeSA and MeJA, a response that is missing in an npr1 mutant. Concomitantly, npr1 mutants are impaired in communicating the signal leading to genome instability, presumably because this mutant does not develop new necrotic lesion after UVC irradiation as observed in wt plants.2 To analyze the potential biological significance of such plant-plant communication, we have now determined whether bystander plants that receive volatile signals from UVC-irradiated plants, become more resistant to UVC irradiation or infection with oilseed rape mosaic virus (ORMV). Specifically, we analyzed the number of UVC-elicited necrotic lesions, the level of anthocyanin pigments, and the mRNA levels corresponding to ORMV coat protein and the NPR1-regulated pathogenesis-related protein PR1 in the irradiated or virus-infected bystander plants that have been previously exposed to volatiles produced by UVC-irradiated plants. These experiments showed that the bystander plants responded similarly to control plants following UVC irradiation. Interestingly, however, the bystander plants appeared to be more susceptible to ORMV infection, even though PR1 mRNA levels in systemic tissue were significantly higher than in the control plants, which indicates that bystander plants could be primed to strongly respond to bacterial infection.  相似文献   

4.
5.
The vacuole is a unique plant organelle that plays an important role in maintaining cellular homeostasis under various environmental stress conditions. However, the effects of biotic stress on vacuole structure has not been examined using three‐dimensional (3D) visualization. Here, we performed 3D electron tomography to compare the ultrastructural changes in the vacuole during infection with different viruses. The 3D models revealed that vacuoles are remodeled in cells infected with cucumber mosaic virus (CMV) or tobacco necrosis virus A Chinese isolate (TNV‐AC), resulting in the formation of spherules at the periphery of the vacuole. These spherules contain neck‐like channels that connect their interior with the cytosol. Confocal microscopy of CMV replication proteins 1a and 2a and TNV‐AC auxiliary replication protein p23 showed that all of these proteins localize to the tonoplast. Electron microscopy revealed that the expression of these replication proteins alone is sufficient to induce spherule formation on the tonoplast, suggesting that these proteins play prominent roles in inducing vacuolar membrane remodeling. This is the first report of the 3D structures of viral replication factories built on the tonoplasts. These findings contribute to our understanding of vacuole biogenesis under normal conditions and during assembly of plant (+) RNA virus replication complexes.  相似文献   

6.
Pathogenic microbes have evolved countless sophisticated mechanisms to subvert host immune responses and cause disease. Understanding evasion strategies employed by pathogens has led to numerous discoveries on specific host cell processes that are critical for controlling infection. Programmed cell death (PCD) is a key host defence to microbial infection, as well as being critical for organ development and cellular homeostasis in multicellular organisms. Much of our current understanding of PCD as a host response to infection has stemmed from the discovery and study of viral inhibitors of apoptosis, and more recently viral inhibition of the newly characterised from of PCD termed necroptosis, the mechanisms of which are still under intense investigation. Many bacterial pathogens also encode inhibitors of PCD, yet these discoveries are relatively more recent and thus the biological significance of such mechanisms is still under debate. In this viewpoint article, we will argue the concept that necroptosis is merely a “back‐up” mechanism in the event that apoptosis is inhibited, or whether it is a true host innate response to infection that has evolved in response to a growing arsenal of microbial evasion strategies.  相似文献   

7.
Previous studies argue that salicylic acid (SA) plays an important role in the plant signal transduction pathway(s) leading to disease resistance. It has been proposed that one of its modes of action is inhibition of catalase and elevation of H2O2 level in the tissue. To verify the role of SA and H2O2 during pathogenesis, transgenic tobacco plants expressing Saccharomyces cerevisiae CTA1 gene coding for peroxisomal catalase were constructed. These plants possess 2-4-fold higher total catalase activity under normal growth conditions. No symptoms of chlorosis and/or necrosis were observed. Levels of pathogenesis-related proteins (PR) and their respective mRNAs were significantly reduced in the infected leaves of the transgenic plants. No change in PR expression was detected in uninfected leaves of both CTA1 and control plants challenged with TMV. These results suggest that elevation in catalase activity and resulting reduction of H2O2 level results in more severe local disease symptoms, apparently due to alteration of the hypersensitive response mechanism and does not influence systemic acquired resistance after viral infection. This research was supported by a grant from Komitet Badań Naukowych (project no. 6P20302006).  相似文献   

8.
The Orchidaceae are one of the most species-rich plant families and their floral diversity and pollination biology have long intrigued evolutionary biologists. About one-third of the estimated 18,500 species are thought to be pollinated by deceit. To date, the focus has been on how such pollination evolved, how the different types of deception work, and how it is maintained, but little progress has been made in understanding its evolutionary consequences. To address this issue, we discuss here how deception affects orchid mating systems, the evolution of reproductive isolation, speciation processes and neutral genetic divergence among species. We argue that pollination by deceit is one of the keys to orchid floral and species diversity. A better understanding of its evolutionary consequences could help evolutionary biologists to unravel the reasons for the evolutionary success of orchids.  相似文献   

9.
10.
The activation and charging of amino acids onto the acceptor stems of their cognate tRNAs are the housekeeping functions of aminoacyl-tRNA synthetases. The availability of whole genome sequences has revealed the existence of synthetase-like proteins that have other functions linked to different aspects of cell metabolism and physiology. In eubacteria, a paralog of glutamyl-tRNA synthetase, which lacks the tRNA-binding domain, was found to aminoacylate tRNA(Asp) not on the 3'-hydroxyl group of the acceptor stem but on a cyclopentene diol of the modified nucleoside queuosine present at the wobble position of anticodon loop. This modified nucleoside might be a relic of an ancient code.  相似文献   

11.
12.
13.
In cucumber mosaic virus infections of tobacco where disease attenuation is observed, viral RNA synthesis is quickly overtaken by the synthesis of cucumber mosaic virus-associated RNA 5, a satellite-like RNA dependent upon the virus for its replication, and that of its double-stranded form. A disease regulatory mechanism is proposed in which the sequestration of rapidly synthesized cucumber mosaic virus-associated RNA 5 molecules of complementary nucleotide sequence enables their successful competition with and suppression of, viral RNA synthesis.  相似文献   

14.
15.
Standard quantitative genetic theory predicts that when a trait is exposed to selection, the between-generation change in the phenotypic mean, Δz?i, will be equal to the product of the trait's heritability and the selection differential, h2S. By extension, this theory implies that if a number of replicate populations are exposed to varying intensities of selection, the between-generation changes in means should covary with the selection differential applied. This relationship offers an opportunity for a statistical test to detect evolutionary change when selection is measured in replicate populations. If an evolutionary response to phenotypic selection occurs, the regression of over Si, where i indicates population, will have a positive slope. This statistical test was applied to data on the insect Eurosta solidaginis (Diptera: Tephritidae). The larvae of this fly induce galls on the stems of the host plant, Solidago altissima (Asteraceae). Previous work has shown that gall size is a heritable trait of the insect. Further, size-dependent attack on Eurosta larvae by parasitoids selects for larger gall size (Weis and Abrahamson, 1986). Long-term data on phenotypic selection in 16 populations across 5 generations were analyzed for selection response. Apparent upward evolutionary responses were seen in 2 of the 4 between-generation transitions. However, no response was seen when the analysis was applied to the cumulative change in gall size. Examination of the data suggested that some of the change in mean gall size was a developmental response to spatial and temporal variation in the environment. Non-linear developmental effects of environment, when combined with non-linear fitness functions, can induce a spurious selection response; these non-linear relationships can account for the apparent evolutionary change gall size found in the by-generation analysis. Thus, there is no reliable evidence for evolutionary change in Eurosta's gall size over the generations studied. Stasis of gall size in the face of ongoing selection may be due to counterbalancing selection on the gallmaker imposed by host plant resistance.  相似文献   

16.
17.
Is G2-arrest an active cellular response to irradiation?   总被引:4,自引:0,他引:4  
Protein synthesis is normally required for G2-cell progression and for recovery from radiation-induced G2-arrest. In the presence of 5 mM caffeine this requirement is alleviated, indicating that the mechanism responsible for G2 cell progression actually remains intact in irradiated or protein synthesis inhibitor-treated cells. It is suggested that both radiation and cycloheximide-induced G2-arrest are not, therefore, passive consequences of cellular defects, but are rather, active cellular responses to the state of cellular integrity, implying the existence of G2 cell progression controls.  相似文献   

18.
The radical shift in human reproduction in the late 19th century, known as the demographic transition, constitutes a major challenge to evolutionary approaches to human behaviour. Why would people ever choose to limit their reproduction voluntarily when, at the peak of the Industrial Revolution, resources were apparently so plentiful? Can the transition be attributed to standard life history tradeoffs, is it a consequence of cultural evolutionary processes, or is it simply a maladaptive outcome of novel and environmental social conditions? Empirical analyses and new models suggest that reproductive decision making might be driven by a human psychology designed by natural selection to maximize material wealth. If this is the case, the mechanisms governing fertility and parental investment are likely to respond to modern conditions with a fertility level much lower than that that would maximize fitness.  相似文献   

19.
Two major hurdles remain before xenotransplantation can enter the clinic. The first is the more technical issue of being able to overcome the human immune response that leads to rejection of transplanted organs/cells from other species. The second, reviewed here, concerns the potential risk of inadvertent transfer of animal viruses present in the xenotransplant that are able to infect the human recipient. The threat from viruses is a particularly contentious topic because it poses a risk not only to those individuals who receive xenotransplants, but also to healthy individuals who come into contact, either directly or indirectly, with the xenotransplant recipient. In this review, we describe some of the virus types, in addition to the much discussed porcine endogenous retroviruses that might cross the species barrier, and assess the risk of such viruses causing disease in human hosts.  相似文献   

20.
Signal-dependent targeting of proteins into and out of the nucleus is mediated by members of the importin (IMP) family of transport receptors, which recognise targeting signals within a cargo protein and mediate passage through the nuclear envelope-embedded nuclear pore complexes. Regulation of this process is paramount to processes such as cell division and differentiation, but is also critically important for viral replication and pathogenesis; phosphorylation appears to play a major role in regulating viral protein nucleocytoplasmic trafficking, along with other posttranslational modifications. This review focuses on viral proteins that utilise the host cell IMP machinery in order to traffic into/out of the nucleus, and in particular those where trafficking is critical to viral replication and/or pathogenesis, such as simian virus SV40 large tumour antigen (T-ag), human papilloma virus E1 protein, human cytomegalovirus processivity factor ppUL44, and various gene products from RNA viruses such as Rabies. Understanding of the mechanisms regulating viral protein nucleocytoplasmic trafficking is paramount to the future development of urgently needed specific and effective anti-viral therapeutics. This article was originally intended for the special issue "Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import". The Publisher apologizes for any inconvenience caused.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号