首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Batch experiments were designed to characterize a multiple metal resistant bacterium Burkholderia sp. D54 isolated from metal contaminated soils in the Dabaoshan Mine in South China, and a follow-up experiment was conducted to investigate the effects of inoculating the isolate on plant growth and metal uptake by Sedum alfredii Hance grown on soils collected from a heavily contaminated paddy field in Daxing County, Guangxi Zhuang Automounous Region, Southwest China. Our experiments showed that strain D54 produced indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and solubilizing inorganic phosphate and solubilized insoluble metal bearing minerals. Bacterial inoculation significantly enhanced S. alfredii biomass production, and increased both shoot and root Cd concentration, but induced little variation in root/shoot Pb concentration and shoot Zn concentration. Despite this, the total shoot and root uptake of Cd, Pb and Zn in S. alfredii inoculated with D54 increased greatly compared to the non-inoculated controls. It was concluded that inoculation with strain D54 could help S. alfredii grow better on metal contaminated soils, produce more biomass, and remove more metals from soil, which implies improved efficiency of phytoextraction from metal contaminated soil. The knowledge gained from the present experiments constitutes an important advancement in understanding of the interaction between plant growth-promoting bacteria and hyperaccumulators with regard to plant ability to grow and remove the multiple heavy metals from soils.  相似文献   

2.
The heavy metal-resistant bacteria from rhizospheric soils of wild Populus euphratica forest growing in arid and saline area of northwestern China were investigated by cultivation-dependent methods. After screening on medium sparked with zinc, copper, nickel and lead, 146 bacteria strains with different morphology were isolated and most of them were found to be resistant to at least two kinds of heavy metals. Significant increase in fresh weight and leaf surface area of Arabidopsis thaliana seedlings under metal stress were noticed after inoculated with strains especially those having multiple-resistance to heavy metals such as Phyllobacterium sp. strain C65. Investigation on relationship between auxin production and exogenous zinc concentration revealed that Phyllobacterium sp. strain C65 produced auxin, and production decreased as the concentration of zinc in medium increased. For wheat seedlings treated with zinc of 2 mM, zinc contents in roots of inoculated plants decreased by 27% (P < 0.05) compared to the uninoculated control. Meanwhile, zinc accumulation in the above-ground tissues increased by 22% (P < 0.05). The translocation of zinc from root to above-ground tissues induced by Phyllobacterium sp. strain C65 helped host plants extract zinc from contaminated environments more efficiently thus alleviated the growth inhibition caused by heavy metals.  相似文献   

3.
Fungal inoculation and elevated CO2 may mediate plant growth and uptake of heavy metals, but little evidence from Diffusive Gradients in Thin-films (DGT) measurement has been obtained to characterize the process. Lolium mutiforum and Phytolacca americana were grown at ambient and elevated CO2 on naturally Cd and Pb contaminated soils inoculated with and without Trichoderma asperellum strain C3 or Penicillium chrysogenum strain D4, to investigate plant growth, metal uptake, and metal bioavailability responses. Fungal inoculation increased plant biomass and shoot/root Cd and Pb concentrations. Elevated CO2 significantly increased plants biomass, but decreased Cd and Pb concentrations in shoot/root to various extents, leading to a metal dilution phenomenon. Total Cd and Pb uptake by plants, and DGT-measured Cd and Pb concentrations in rhizosphere soils, were higher in all fungal inoculation and elevated CO2 treatments than control treatments, with the combined treatments having more influence than either treatment alone. Metal dilution phenomenon occurred because the increase in DGT-measured bioavailable metal pools in plant rhizosphere due to elevated CO2 was unable to match the increase in requirement for plant uptake of metals due to plant biomass increase.  相似文献   

4.
解磷微生物修复土壤重金属污染研究进展   总被引:6,自引:0,他引:6  
李敏  滕泽栋  朱静  宋明阳 《生态学报》2018,38(10):3393-3402
土壤重金属污染问题日益严重,具有普遍性、隐蔽性、表聚性、不可逆性等特点,已经成为环境污染治理中的热点、难点问题。解磷微生物能够依靠自身的代谢产物或通过与其他生物的协同作用,将土壤中的难溶性磷转化为可供植物吸收利用的磷,具有多重植物促生长功能和重金属解毒能力,可在重金属毒害水平下,促进植物生长、提高植物抗病能力、克服重金属对植物生长的不利影响,从而增强重金属修复植物的生存竞争力。从解磷微生物的研究现状入手,介绍了解磷微生物对土壤重金属污染的修复能力,综述了解磷微生物对土壤重金属污染修复的作用机制,分析了目前解磷微生物在重金属修复过程中存在的问题,并提出了今后研究的方向,为重金属污染土壤的修复提供了新思路。  相似文献   

5.
The genetic structure of populations of the ectomycorrhizal basidiomycete Suillus luteus in heavy metal polluted and nonpolluted areas was studied. Sporocarps were collected at nine different locations and genotyped at four microsatellite loci. Six of the sampling sites were severely contaminated with heavy metals and were dominated by heavy metal-tolerant individuals. Considerable genetic diversity was found within the geographical subpopulations, but no reduction of the genetic diversity, current or historic, was observed in subpopulations inhabiting polluted soils. The genetic differentiation between the geographical subpopulations was low, and no evidence for clustering of subpopulations from polluted soils vs. subpopulations from nonpolluted soils was found. These results indicate that heavy metal pollution has a limited effect on the genetic structure of S. luteus populations, and this may be due to the high frequency of sexual reproduction and extensive gene flow in S. luteus, which allows rapid evolution of the tolerance trait while maintaining high levels of genetic diversity.  相似文献   

6.
In laboratory experiments, the rhizobacteria Azospirillum lipoferum 137, Arthrobacter mysorens7, Agrobacterium radiobacter 10, and Flavobacterium sp. L30 were found to have a relatively high resistance to the toxic heavy metals lead and cadmium (except that strain L30 was found to be sensitive to Cd). When introduced by means of seed bacterization, the heavy metal–resistant strains actively colonized the rhizosphere of barley plants cultivated in uncontaminated and contaminated soils. In both pot and field experiments, seed bacterization improved the growth of barley plants and the uptake of nutrient elements from soil contaminated with Pb and Cd. The bacterization also prevented the accumulation of Pb and Cd in barley plants, thereby mitigating the toxic effect of these heavy metals on the plants.  相似文献   

7.
Plants show enhanced phytoremediation of heavy metal contaminated soils particularly in response to fungal inoculation. Present study was conducted to find out the influence of Nickel (Ni) toxicity on plant biomass, growth, chlorophyll content, proline production and metal accumulation by L. usitatissimum (flax) in the presence of Glomus intraradices. Flax seedlings of both inoculated with G. intraradices and non-inoculated were exposed to different concentrations i.e., 250, 350 and 500 ppm of Ni at different time intervals. Analysis of physiological parameters revealed that Ni depressed the growth and photosynthetic activity of plants. However, the inoculation of plants with arbuscular mycorrhizae (G. intraradices) partially helped in the alleviation of Ni toxicity as indicated by improved plant growth under Ni stress. Ni uptake of non- mycorrhizal flax plants was increased by 98% as compared to control conditions whereas inoculated plants showed 19% more uptake when compared with the non-inoculated plants. Mycorrhizal plants exhibited increasing capacity to remediate contaminated soils along with improved growth. Thus, AM assisted phytoremediation helps in the accumulation of Ni in plants to reclaim Ni toxic soils. Based on our findings, it can be concluded that the role of flax plants and mycorrhizal fungi is extremely important in phytoremediation.  相似文献   

8.
Phytoremediation is considered as a novel environmental friendly technology, which uses plants to remove or immobilize heavy metals. The use of metal-resistant plant growth-promoting bacteria (PGPB) constitutes an important technology for enhancing biomass production as well as tolerance of the plants to heavy metals. In this study, we isolated twenty seven (NF1-NF27) chromium resistant bacteria. The bacteria were tested for heavy metals (Cr, Zn, Cu, Ni, Pb and Co) resistance, Cr(VI) reduction and PGPB characters (phosphate solubilization, production of IAA and siderophores). The results showed that the bacterial isolates resist to heavy metals and reduce Cr(VI), with varying capabilities. 37.14% of the isolates have the capacity of solubilizing phosphate, 28.57% are able to produce siderophores and all isolates have the ability to produce IAA. Isolate NF2 that showed high heavy metal resistance and plant growth promotion characteristics was identified by 16S rDNA sequence analysis as a strain of Cellulosimicrobium sp.. Pot culture experiments conducted under greenhouse conditions showed that this strain was able to promote plant growth of alfalfa in control and in heavy metals (Cr, Zn and Cu) spiked soils and increased metal uptake by the plants. Thus, the potential of Cellulosimicrobium sp. for both bioremediation and plant growth promotion has significance in the management of environmental pollution.  相似文献   

9.
In laboratory experiments, the rhizobacteria Azospirillum lipoferum 137, Arthrobacter mysorens 7, Agrobacterium radiobacter 10, and Flavobacterium sp. L30 were found to have a relatively high resistance to the toxic heavy metals lead and cadmium (except that strain L30 was found to be sensitive to Cd). When introduced by means of seed bacterization, the heavy metal-resistant strains actively colonized the rhizosphere of barley plants cultivated in uncontaminated and contaminated soils. In both pot and field experiments, seed bacterization improved the growth of barley plants and the uptake of nutrient elements from soil contaminated with Pb and Cd. The bacterization also prevented the accumulation of Pb and Cd in barley plants, thereby mitigating the toxic effect of these heavy metals on the plants.  相似文献   

10.
Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.  相似文献   

11.
We examined changes in profiles of isoflavonoids in roots of lupine (Lupinus luteus L. cv. Juno) seedlings in response to treatment with two heavy metals: cadmium (at 10 mg/l) and lead (at 150 mg/l). Overall, 21 flavonoid conjugates were identified in root extracts, some of them with up to six positional isomers. The total amount of all isoflavonoids increased by about 15 % in cadmium-treated plants and by 46 % in lead-treated ones. Heavy metals markedly increased the content of two compounds: 2'-hydroxygenistein glucoside and 2'-hydroxygenistein 7-O-glucoside malonylated. Possible functions of the identified isoflavonoids in yellow lupine exposed to heavy metal stress are discussed.  相似文献   

12.
Zeng  Weimin  Li  Fang  Wu  Chenchen  Yu  Runlan  Wu  Xueling  Shen  Li  Liu  Yuandong  Qiu  Guanzhou  Li  Jiaokun 《Bioprocess and biosystems engineering》2020,43(1):153-167

Heavy metal resistant bacteria are of great interest because of their potential use in bioremediation. Understanding the survival and adaptive strategies of these bacteria under heavy metal stress is important for better utilization of these bacteria in remediation. The objective of this study was to investigate the role of bacterial extracellular polymeric substance (EPS) in detoxifying against different heavy metals in Bacillus sp. S3, a new hyper antimony-oxidizing bacterium previously isolated from contaminated mine soils. The results showed that Bacillus sp. S3 is a multi-metal resistant bacterial strain, especially to Sb(III), Cu(II) and Cr(VI). Toxic Cd(II), Cr(VI) and Cu(II) could stimulate the secretion of EPS in Bacillus sp. S3, significantly enhancing the adsorption and detoxification capacity of heavy metals. Both Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation–emission matrix (3D-EEM) analysis further confirmed that proteins were the main compounds of EPS for metal binding. In contrast, the EPS production was not induced under Sb(III) stress. Furthermore, the TEM–EDX micrograph showed that Bacillus sp. S3 strain preferentially transported the Sb(III) to the inside of the cell rather than adsorbed it on the extracellular surface, indicating intracellular detoxification rather than extracellular EPS precipitation played an important role in microbial resistance towards Sb(III). Together, our study suggests that the toxicity response of EPS to heavy metals is associated with difference in EPS properties, metal types and corresponding environmental conditions, which is likely to contribute to microbial-mediated remediation.

  相似文献   

13.
Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal–contaminated soils.  相似文献   

14.
Cupriavidus metallidurans CH34 and related strains are adapted to metal contaminated environments. A strong resistance to environmental stressors and adaptation make it ideal strains for survival in decreasing biodiversity conditions and for bioaugmentation purposes in environmental applications. The soil bacterium C. metallidurans is able to grow chemolithoautotrophically on hydrogen and carbon dioxide allowing a strong resilience under conditions lacking organic matter. The biofilm growth on soil particles allows coping with starvation or bad conditions of pH, temperature and pollutants. Its genomic capacity of two megaplasmids encoding several heavy metal resistance operons allowed growth in heavy metal contaminated habitats. In addition its specific siderophores seem to play a role in heavy metal sequestration besides their role in the management of bioavailable iron. Efflux ATPases and RND systems pump the metal cations to the membrane surface where polysaccharides serve as heavy metal binding and nucleation sites for crystallisation of metal carbonates. These polysaccharides contribute also to flotation under specific conditions in a soil-heavy metals–bacteria suspension mixture. An inoculated moving bed sand filter was constructed to treat heavy metal contaminated water and to remove the metals in the form of biomass mixed with metal carbonates. A membrane based contactor allowed to use the bacteria as well in a versatile wastewater treatment system and to grow homogeneously formed heavy metal carbonates. Its behaviour toward heavy metal binding and flotation was combined in a biometal sludge reactor to extract and separate heavy metals from metal contaminated soils. Finally its metal-induced heavy metal resistance allowed constructing whole cell heavy metal biosensors which, after contact with contaminated soil, waste, solids, minerals and ashes, were induced in function of the bioavailable concentration (Cd, Zn, Cu, Cr, Co, Ni, Tl, Pb and Hg) in the solids and allowed to investigate the speciation of immobilization of those metals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
In the present study, six arsenic-resistant strains previously isolated were tested for their plant growth promoting characteristics and heavy metal resistance, in order to choose one model strain as an inoculum for sunflower plants in pot experiments. The aim was to investigate the effect of arsenic-resistant strain on sunflower growth and on arsenic uptake from arsenic contaminated soil. Based on plant growth promoting characteristics and heavy metal resistance, Alcaligenes sp. strain Dhal-L was chosen as an inoculum. Beside the ability to reduce arsenate to arsenite via an Ars operon, the strain exhibited 1-amino-cyclopropane-1-carboxylic acid deaminase activity and it was also able to produce siderophore and indole acetic acid. Pot experiments were conducted with an agricultural soil contaminated with arsenic (214 mg kg?1). A real time PCR method was set up based on the quantification of ACR3(2) type of arsenite efflux pump carried by Alcaligenes sp. strain Dhal-L, in order to monitor presence and colonisation of the strain in the bulk and rhizospheric soil. As a result of strain inoculation, arsenic uptake by plants was increased by 53 %, whereas ACR3(2) gene copy number in rhizospheric soil was 100 times higher in inoculated than in control pots, indicating the colonisation of strain. The results indicated that the presence of arsenate reducing strains in the rhizosphere of sunflower influences arsenic mobilization and promotes arsenic uptake by plant.  相似文献   

16.
根际圈在污染土壤修复中的作用与机理分析   总被引:62,自引:9,他引:62  
根际圈以植物根系为中心聚集了大量的生命物质及其分泌物,构成了极为独特的“生态修复单元”。本文叙述了根在根际圈污染土壤修复中的生理生态作用,富集、固定重金属,吸收、降解有机污染物等功能;菌根真菌对根际圈内重金属的吸收、屏障及螯合作用,对有机污染物的降解作用;根际圈内细菌对重金属的吸附与固定,对有机污染物的降解作用以及根际圈真菌和细菌的联合修复作用等,同时对可能存在的机理进行了分析,认为根际圈对污染土壤的修复作用是植物修复的重要组成部分和主要理论基础之一,并指出利用重金属超富集植物修复重金属污染土壤具有广阔的应用前景;筛选对水溶性有机污染物高吸收富集及其根 发泌能力强的特异植物,同时接种利于有机污染物降解的专性或非专性真菌和细菌可能会成为有机污染土壤植物修复研究的重要方向之一。  相似文献   

17.
We describe a transgenic plant-based assay to study the genetic effects of heavy metals. Arabidopsis thaliana plants carrying a beta-glucuronidase (GUS) marker gene either with a point mutation or as a recombination substrate were used to analyze the frequency of somatic point mutations and homologous recombination in whole plants. Transgenic test plants sown on media contaminated by the salts of the heavy metals Cd2+, Pb2+, Ni2+, Zn2+, Cu2+, and As2O3 exhibited a pronounced uptake-dependent increase in the frequencies of both somatic intrachromosomal recombination and point mutation. The test was applied to monitor the genotoxicity of soils sampled in sites contaminated with several heavy metals. Our results indicate that this is a highly sensitive system for monitoring metal contamination in soils and water.  相似文献   

18.
Legume plants, in association with rhizobia, are gaining increasing interest for heavy metal rhizoremediation. This symbiotic interaction combines the advantages of rhizoremediation and soil nitrogen enrichment. In metal polluted soils, Ochrobactrum cytisi can elicit non‐fixing nodules on legumes, including Medicago sativa. Nodulation kinetics was much slower when M. sativa plants were inoculated with O. cytisi Azn6.2 compared with the natural symbiont Ensifer meliloti 1021 and nodules were ineffective in nitrogen fixation. A competition experiment was performed using alfalfa grown on heavy metals, and co‐inoculated with equal amounts of the metal‐sensitive E. meliloti 1021 and the metal‐resistant O. cytisi Azn6.2. When plants were inoculated in non‐polluted substrates, all nodules were formed by E. meliloti 1021. Nevertheless, under increasing metal concentrations, the number of nodules occupied by O. cytisi grew. At the highest metal concentration, all nodules were elicited by O. cytisi, suggesting that the resistant species can take the place of the natural symbiont. This fact has important ecological and environmental implications when proposing legume–rhizobia symbioses for rhizoremediation and highlights the need of selecting highly resistant rhizobia in order to be competitive in polluted soils.  相似文献   

19.
The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.  相似文献   

20.
Phytoextraction is a technique using a hyperaccumulator to remove heavy metals from soil. The efficiency of heavy metal uptake can be enhanced by the inoculation of endophytes. In this study, we isolated and identified 23 endophytes from Chromolaena odorata, a cadmium (Cd) hyperaccumulator that consisted of 19 bacteria, 2 actinomycetes and 2 fungi. All bacteria and fungi could produce at least 1 plant growth promoting factors. However, only 4 bacterial isolates; Paenibacillus sp. SB12, Bacillus sp. SB31, Bacillus sp. LB51, and Alcaligenes sp. RB54 showed the highest minimum inhibitory concentration (MIC) value (2.9 mM), followed by Exiguobacterium sp.RB51 (1.7 mM). Then, these 5 high-MIC bacteria and 1 low-MIC bacterium, Bacillus sp. LB15 were inoculated onto sunflower grown in soil supplemented with 250 mg/kg of Cd. After 60 days, all inoculated plants accumulated significantly higher Cd concentration than the non-inoculated counterparts, and those inoculated with strain LB51 showed the highest Cd accumulation and growth. Interestingly, strain LB15 with low MIC also enhanced Cd accumulation in plants. The results suggest that these bacteria, particularly strain LB51, could be applied to improve Cd accumulation in plants, and that bacteria with low MIC also have the potential to enhance the efficiency of phytoextraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号