首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 911 毫秒
1.
采用扩增片段长度多态性(AFLP)和甲基化敏感扩增多态性(MSAP)技术分析红豆杉脱分化前后基因组DNA和DNA甲基化状态的变化。选用32个AFLP引物组合从红豆杉植株及其愈伤组织分别扩增出1834个片段,无多态性片段产生。这说明红豆杉植株在诱导形成愈伤组织的过程中基因组DNA保持高度的遗传稳定性。另用32个MSAP引物组合从红豆杉植株及其愈伤组织分别扩增出1197个片段,总扩增位点的甲基化水平由脱分化前的12.4%上升为16.2%,表明红豆杉在脱分化过程中的某些位点发生了甲基化。红豆杉脱分化前后的DNA甲基化模式也存在较大差异,说明DNA甲基化对愈伤组织形成有调控作用。  相似文献   

2.
Yields of paclitaxel decreased with repeated subculturing of Taxus media cells. We used minimal growth conservation and manipulation of genome methylation to sustain paclitaxel production by Taxus media cell cultures. The subculture period of Taxus cells can be prolonged to 180 d by incubating them at a low temperature (5 °C). Paclitaxel levels increased in the cells after conservation and during the first recovery subculture cycle, and then decreased during the subsequent recovery subculture cycle. Analysis of genetic variations in these cultures using amplified fragment-length polymorphism (AFLP) technology identified only two polymorphic bands associated with the second and sixth recovery cycle cultures. However, the results of high-performance liquid chromatography indicated that DNA methylation increased during the course of repeated subculturing. A decrease in DNA methylation level caused by treatment with 5-Aza-2′-deoxycytidine coincided with an increase in paclitaxel levels. Simultaneous exposure to both methyl jasmonate and 5-Aza-2′-deoxycytidine increased paclitaxel levels to 320.43 μg g?1 (dry weight), which is more than six times the paclitaxel content before conservation. To our knowledge, this is the first report about improving paclitaxel production by ensuring sustainable use of Taxus cells.  相似文献   

3.
We analyzed genetic diversity and population genetic structure of four artificial populations of wild barley (Hordeum brevisubulatum); 96 plants collected from the Songnen Prairie in northeastern China were analyzed using amplified fragment length polymorphism (AFLP), specific-sequence amplified polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) markers. Indices of (epi-)genetic diversity, (epi-)genetic distance, gene flow, genotype frequency, cluster analysis, PCA analysis and AMOVA analysis generated from MSAP, AFLP and SSAP markers had the same trend. We found a high level of correlation in the artificial populations between MSAP, SSAP and AFLP markers by the Mantel test (r > 0.8). This is incongruent with previous findings showing that there is virtually no correlation between DNA methylation polymorphism and classical genetic variation; the high level of genetic polymorphism could be a result of epigenetic regulation. We compared our results with data from natural populations. The population diversity of the artificial populations was lower. However, different from what was found using AFLP and SSAP, based on MSAP results the methylation polymorphism of the artificial populations was not significantly reduced. This leads us to suggest that the DNA methylation pattern change in H. brevisubulatum populations is not only related to DNA sequence variation, but is also regulated by other controlling systems.  相似文献   

4.
猕猴桃倍性混合居群基因组遗传和表观遗传变异   总被引:1,自引:0,他引:1  
颜菱  刘义飞  黄宏文 《植物学报》2012,47(5):454-461
植物倍性混合居群的形成和维系常伴随着明显的基因组遗传及表观遗传变异。利用AFLP和MSAP两种分子标记探讨了中华猕猴桃复合体(Actinidia chinensis)倍性混合居群的遗传变异和结构及其基因组甲基化变异方式。结果表明, 该倍性混合居群具有较高的遗传和表观遗传多样性, 但两者之间没有明显的相关性。种群的遗传多样性与海拔呈显著的负相关(P<0.05), 但表观遗传多样性与海拔不具显著相关性。AMOVA分析显示, 主要的遗传和表观遗传分化出现在倍性小种内部(97.65% vs 99.84%, P<0.05); 同时, AFLP邻接聚类分析显示二者存在一定程度的倍性相关性, MSAP分析则未显示有明显的倍性相关性。进一步研究发现, 中华猕猴桃居群的总甲基化程度为24.86%, 且多倍体具有更多的甲基化位点变异。该研究结果为深入探讨猕猴桃倍性混合居群的形成和维系机制奠定了基础。  相似文献   

5.
Methylation of DNA cytosines affects whether transposons are silenced and genes are expressed, and is a major epigenetic mechanism whereby plants respond to environmental change. Analyses of methylation‐sensitive amplification polymorphism (MS‐AFLP or MSAP) have been often used to assess methyl‐cytosine changes in response to stress treatments and, more recently, in ecological studies of wild plant populations. MSAP technique does not require a sequenced reference genome and provides many anonymous loci randomly distributed over the genome for which the methylation status can be ascertained. Scoring of MSAP data, however, is not straightforward, and efforts are still required to standardize this step to make use of the potential to distinguish between methylation at different nucleotide contexts. Furthermore, it is not known how accurately MSAP infers genome‐wide cytosine methylation levels in plants. Here, we analyse the relationship between MSAP results and the percentage of global cytosine methylation in genomic DNA obtained by HPLC analysis. A screening of literature revealed that methylation of cytosines at cleavage sites assayed by MSAP was greater than genome‐wide estimates obtained by HPLC, and percentages of methylation at different nucleotide contexts varied within and across species. Concurrent HPLC and MSAP analyses of DNA from 200 individuals of the perennial herb Helleborus foetidus confirmed that methyl‐cytosine was more frequent in CCGG contexts than in the genome as a whole. In this species, global methylation was unrelated to methylation at the inner CG site. We suggest that global HPLC and context‐specific MSAP methylation estimates provide complementary information whose combination can improve our current understanding of methylation‐based epigenetic processes in nonmodel plants.  相似文献   

6.
Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP), sequence-specific amplification polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4–39.8%) and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed.  相似文献   

7.
In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.  相似文献   

8.
We report here that by using a modified scoring criterion, the methylation-sensitive amplified polymorphism or MSAP marker can be used effectively to detect polymorphism in DNA methylation patterns within and among populations of a perennial wild barley species, Hordeum brevisubulatum. Twenty-four selected individual genotypes representing four natural populations of H. brevisubulatum distributed in the Songnen Prairie in northeastern China were studied. The utility of MSAP was evidenced by its detection of high levels of polymorphism in DNA methylation patterns between individuals within a given population, and the clear inter-population differentiation in methylation patterns (methylation-based epigenetic population structure) revealed among the four populations. The resolving power of MSAP to detect DNA methylation polymorphism was found to be comparable with that of a retrotransposon-based sequence-specific amplified polymorphism marker, or SSAP, to detect genetic polymorphism in the same set of plants, suggesting that MSAP with a modified scoring criterion can be used efficiently to detect DNA methylation polymorphism and assess epigenetic population structure in natural plant populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
MSAP技术及其在植物上的应用   总被引:1,自引:0,他引:1  
DNA甲基化在植物的很多生命过程中具有重要作用,检测DNA甲基化的技术应运而生。依据对DNA甲基化敏感程度不同的同裂酶,在AFLP技术的基础上发展而来的MSAP技术可以方便的检测全基因组范围内胞嘧啶甲基化模式及程度。该文对MSAP技术的原理、特点、基本程序及应用进行了阐述。  相似文献   

10.
Genetic analysis of 56 samples of Jatropha curcas L. collected from Thailand and other countries was performed using the methylation-sensitive amplification polymorphism (MSAP) technique. Nine primer combinations were used to generate MSAP fingerprints. When the data were interpreted as amplified fragment length polymorphism (AFLP) markers, 471 markers were scored. All 56 samples were classified into three major groups: γ-irradiated, non-toxic and toxic accessions. Genetic similarity among the samples was extremely high, ranging from 0.95 to 1.00, which indicated very low genetic diversity in this species. The MSAP fingerprint was further analyzed for DNA methylation polymorphisms. The results revealed differences in the DNA methylation level among the samples. However, the samples collected from saline areas and some species hybrids showed specific DNA methylation patterns. AFLP data were used, together with methylation-sensitive AFLP (MS-AFLP) data, to construct a phylogenetic tree, resulting in higher efficiency to distinguish the samples. This combined analysis separated samples previously grouped in the AFLP analysis. This analysis also distinguished some hybrids. Principal component analysis was also performed; the results confirmed the separation in the phylogenetic tree. Some polymorphic bands, involving both nucleotide and DNA methylation polymorphism, that differed between toxic and non-toxic samples were identified, cloned and sequenced. BLAST analysis of these fragments revealed differences in DNA methylation in some known genes and nucleotide polymorphism in chloroplast DNA. We conclude that MSAP is a powerful technique for the study of genetic diversity for organisms that have a narrow genetic base.  相似文献   

11.
Genetically stable regeneration of apple plants from slow growth   总被引:4,自引:0,他引:4  
Shoot-tips of apple cultivar `Gala' were stored in vitrousing a low temperature slow-growth culture method. All shoot-tips survived 1-year storage, with a significant height increment over that period. Eight `Gala' single-bud sibling lines were established for genetic analysis. Although cytological examination detected chromosomal variation in plants recovered from slow growth culture, the ploidy remained genetically stable relative to the before-storage cultures. An amplified fragment length polymorphism (AFLP) assay was performed to detect DNA sequence variation. No differences in the DNA fragment patterns were observed using 20 primer combinations between the before-storage and the stored samples. In addition, a methylation sensitive amplified polymorphism (MSAP) assay was performed to investigate the DNA methylation status in both the before-storage and stored samples. It was found that the slow-growth storage resulted in a significant DNA methylation change in the stored shoots compared with the before-storage samples.  相似文献   

12.
Epigenetic modifications are considered to have an important role in evolution. DNA methylation is one of the best studied epigenetic mechanisms and methylation variability is crucial for promoting phenotypic diversification of organisms in response to environmental variation. A critical first step in the assessment of the potential role of epigenetic variation in evolution is the identification of DNA methylation polymorphisms and their relationship with genetic variations in natural populations. However, empirical data is scant in animals, and particularly so in wild mammals. Bats are considered as bioindicators because of their sensitivity to environmental perturbations and they may present an opportunity to explore epigenetic variance in wild mammalian populations. Our study is the first to explore these questions in the female great roundleaf bat (Hipposideros armiger) populations using the methylation-sensitive amplified polymorphism (MSAP) technique. We obtained 868 MSAP sites using 18 primer combinations and found (1) a low genomic methylation level (21.3?% on average), but extensive DNA methylation polymorphism (90.2?%) at 5'-CCGG-3' sites; (2) epigenetic variation that is structured into distinct between- (29.8?%) and within- (71.2?%) population components, as does genetic variation; and (3) a significant correlation between epigenetic and genetic variations (P?相似文献   

13.
Salinity is an important limiting environmental factor for rapeseed production worldwide. In this study, we assessed the extent and pattern of DNA damages caused by salt stress in rapeseed plants. Amplified fragment length polymorphism (AFLP) analysis revealed dose-related increases in sequence alterations in plantlets exposed to 10-1000 mmol/L sodium chloride. In addition, individual plantlets exposed to the same salt concentration showed different AFLP and selected region amplified polymorphism banding patterns. These observations suggested that DNA mutation in response to salt stress was random in the genome and the effect was dose-dependant. DNA methylation changes in response to salt stress were also evaluated by methylation sensitive amplified polymorphism (MSAP). Three types of MSAP bands were recovered. Type Ⅰ bands were observed with both isoschizomers Hpa Ⅱ and Msp Ⅰ, while type Ⅱ and type Ⅲ bands were observed only with Hpa Ⅱ and Msp Ⅰ, respectively. Extensive changes in types of MSAP bands after NaCI treatments were observed, including appearance and disappearance of type Ⅰ, Ⅱ and Ⅲ bands, as well as exchanges between either type Ⅰand type Ⅱ or type Ⅰ and type Ⅲ bands. An increase of 0.2-17.6% cytosine methylated CCGG sites were detected in plantlets exposed to 10- 200 mmol/L salt compared to the control, and these changes included both de novo methylation and demethylation events. Nine methylation related fragments were also recovered and sequenced, and one sharing a high sequence homology with the ethylene responsive element binding factor was identified. These results demonstrated clear DNA genetic and epigenetic alterations in planUets as a response to salt stress, and these changes may suggest a mechanism for plants adaptation under salt stress.  相似文献   

14.
Individual variation in ecologically important features of organisms is a crucial element in ecology and evolution, yet disentangling its underlying causes is difficult in natural populations. We applied a genomic scan approach using amplified fragment length polymorphism (AFLP) markers to quantify the genetic basis of long‐term individual differences in herbivory by mammals at a wild population of the violet Viola cazorlensis monitored for two decades. In addition, methylation‐sensitive amplified polymorphism (MSAP) analyses were used to investigate the association between browsing damage and epigenetic characteristics of individuals, an aspect that has been not previously explored for any wild plant. Structural equation modelling was used to identify likely causal structures linking genotypes, epigenotypes and herbivory. Individuals of V. cazorlensis differed widely in the incidence of browsing mammals over the 20‐year study period. Six AFLP markers (1.6% of total) were significantly related to herbivory, accounting altogether for 44% of population‐wide variance in herbivory levels. MSAP analyses revealed considerable epigenetic variation among individuals, and differential browsing damage was significantly related to variation in multilocus epigenotypes. In addition, variation across plants in epigenetic characteristics was related to variation in several herbivory‐related AFLP markers. Statistical comparison of alternative causal models suggested that individual differences in herbivory are the outcome of a complex causal structure where genotypes and epigenotypes are interconnected and have direct and indirect effects on herbivory. Insofar as methylation states of MSAP markers influential on herbivory are transgenerationally heritable, herbivore‐driven evolutionary changes at the study population will involve correlated changes in genotypic and epigenotypic distributions.  相似文献   

15.
Gardenia jasminoides Ellis is an evergreen tropical plant and favorite to gardeners throughout the world. Several studies have documented that in vitro micropropagation can be used for clonal propagation of G. jasminoides Ellis, the efficiency remained low. In addition, no information is available on the genetic and epigenetic fidelity of the micropropagated plants. Here, we report on a simplified protocol for high efficient micropropagation of G. jasminoides Ellis cv. “Kinberly” based on enhanced branching of shoot-tips as explants. The protocol consisted of sequential use of three media, namely, bud-induction, elongation and root-induction. By using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation sensitive amplified polymorphism (MSAP), we analyzed the genetic and DNA methylation pattern stability of 23 morphologically normal plants randomly taken from a sub-population (>100) of micropropagated plants originated from a single shoot-tip. We found that of >1,000 scored AFLP bands across the 23 micropropagated plants, no incident of genetic variation was detected. In contrast, of 750 scored MSAP bands, moderate but clear alteration in several DNA methylation patterns occurred in the majority of the 23 micropropagated plants. The changed methylation patterns involved both CG and CHG sites representing either hyper- or hypo-methylation, which occurred without altering the total methylation levels partly due to concomitant hyper- and hypo-methylation alterations. Our results indicated that epigenetic instability in the form of DNA methylation patterns can be susceptible to the in vitro micropropagation process for G. jasminoides Ellis, and needs to be taken into account in the process of large-scale commercial propagation of this plant.  相似文献   

16.
Organogenic calli induced from internodal segments were subcultured three times. Regenerated plants obtained from each subculture were analysed by molecular methods. No major genetic rearrangements were detected in the callus-derived plants since none of the amplified fragment-length polymorphism (AFLP) loci were found to be polymorphic. However, epigenetic changes due to a demethylation process were detected by methylation-sensitive amplified polymorphism (MSAP) technique. The results allowed inference of the possible relationship among the plants derived from different calli subcultures and the in vitro control. The plants recovered from the first and second callus subcultures clustered with the in vitro control pools in the phenogram while the regenerants from the third callus subculture showed the highest genetic distance with the controls. This is the first study reporting data about the genetic stability of callus-derived Humulus lupulus L. plants.  相似文献   

17.
Introgression lines are some of the most important germplasm for breeding applications and other research conducted on cotton crops. The DNA methylation level among 10 introgression lines of cotton (Gossypium hirsutum) and three exotic parental species (G. arboreum, G. thurberi and G. barbadense) were assessed by methylation-sensitive amplified polymorphism (MSAP) technology. The methylation level in the introgression lines ranged from 33.3 to 51.5%. However, the lines PD0111 and PD0113 had the lowest methylation level (34.6 and 33.3%, respectively) due to demethylation of most non-coding sequences. Amplified fragment length polymorphism (AFLP) was used to evaluate the genetic polymorphism in the cotton introgression lines. A high degree of polymorphism was observed in all introgression lines (mean 47.2%) based on AFLP and MSAP analyses. This confirmed the effects of genetic improvement on cotton introgression lines. The low methylation varieties, PD0111 and PD0113 (introgression lines), clustered outside of the introgression lines based on MSAP data, which was incongruent with an AFLP-based dendrogram. This phenomenon could be caused by environmental changes or introgression of exotic DNA fragments.  相似文献   

18.
Pilar Bazaga 《Molecular ecology》2014,23(20):4926-4938
The ecological significance of epigenetic variation has been generally inferred from studies on model plants under artificial conditions, but the importance of epigenetic differences between individuals as a source of intraspecific diversity in natural plant populations remains essentially unknown. This study investigates the relationship between epigenetic variation and functional plant diversity by conducting epigenetic (methylation‐sensitive amplified fragment length polymorphisms, MSAP) and genetic (amplified fragment length polymorphisms, AFLP) marker–trait association analyses for 20 whole‐plant, leaf and regenerative functional traits in a large sample of wild‐growing plants of the perennial herb Helleborus foetidus from ten sampling sites in south‐eastern Spain. Plants differed widely in functional characteristics, and exhibited greater epigenetic than genetic diversity, as shown by per cent polymorphism of MSAP fragments (92%) or markers (69%) greatly exceeding that for AFLP ones (41%). After controlling for genetic structuring and possible cryptic relatedness, every functional trait considered exhibited a significant association with at least one AFLP or MSAP marker. A total of 27 MSAP (13.0% of total) and 12 AFLP (4.4%) markers were involved in significant associations, which explained on average 8.2% and 8.0% of trait variance, respectively. Individual MSAP markers were more likely to be associated with functional traits than AFLP markers. Between‐site differences in multivariate functional diversity were directly related to variation in multilocus epigenetic diversity after multilocus genetic diversity was statistically accounted for. Results suggest that epigenetic variation can be an important source of intraspecific functional diversity in H. foetidus, possibly endowing this species with the capacity to exploit a broad range of ecological conditions despite its modest genetic diversity.  相似文献   

19.
Citrus somatic hybrids produced in the past years provide a novel opportunity to study the immediate effects of allopolyploidization on genome structure and methylation. Here, we present a first attempt to investigate the alterations in genome structure and methylation in three sets of citrus somatic allotetraploids and their diploid parents using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques. Our results indicate that all the allotetraploids mainly have the AFLP and MSAP banding patterns containing specific bands from both parents plus some alterations. The incidences of the AFLP polymorphic bands in allotetraploids show a range from 4.61 to 7.88 %, while from 12.50 to 15.67 % of the sites are methylated. In addition, the proportions of callus-parent-specific DNA structure and methylation alterations are much greater than those of leaf-parent-specific alterations in the somatic hybrids. Furthermore, we find that the somatic hybrids take on a greater divergence from the callus parent and a closer relationship to leaf parent in all groups of plants by dendrogram analysis based on AFLP or MSAP data. Taken together, our results suggest that somatic hybrids are very useful in elucidating the immediate changes that occur in newly synthesized allotetraploid.  相似文献   

20.
The impact of alien DNA fragments on plant genome has been studied in many species. However, little is known about the introgression lines of Gossypium. To study the consequences of introgression in Gossypium, we investigated 2000 genomic and 800 epigenetic sites in three typical cotton introgression lines, as well as their cultivar (Gossypium hirsutum) and wild parents (Gossypium bickii), by amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP). The results demonstrate that an average of 0.5% of exotic DNA segments from wild cotton is transmitted into the genome of each introgression line, with the addition of other forms of genetic variation. In total, an average of 0.7% of genetic variation sites is identified in introgression lines. Simultaneously, the overall cytosine methylation level in each introgression line is very close to that of the upland cotton parent (an average of 22.6%). Further dividing patterns reveal that both hypomethylation and hypermethylation occurred in introgression lines in comparison with the upland cotton parent. Sequencing of nine methylation polymorphism fragments showed that most (7 of 9) of the methylation alternations occurred in the noncoding sequences. The molecular evidence of introgression from wild cotton into introgression lines in our study is identified by AFLP. Moreover, the causes of petal variation in introgression lines are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号