首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Survival after heat stress was examined in adult Drosophila buzzatii from seven localities. Males and females were conditioned by a non-lethal high temperature before exposure to a severe thermal stress. Variable times elapsed between conditioning, either as adults or pupae, and exposure to the stress were used, and experimental times to the stress ranged from 2 to 96 hours. Survival after stress varied among populations, and differences generally were consistent across conditioning treatments and across experiments. Resistance to thermal stress was much higher following one conditioning bout 2–4 hours before exposure to a severe stress than when the time elapsed between conditioning and exposure was increased to 24 or more hours. Significantly more adults survived the stress if conditioned 4 days before exposure to the thermal stress, either as adults or as pupae, than if not conditioned. The rank order of resistance roughly followed that predicted from the climatic conditions of the localities of origin.  相似文献   

2.
3.
通过本地Blast筛选转录组数据库方法,首次克隆了环链棒束孢热休克蛋白90基因全长cDNA序列,命名为Ichsp90(GenBank登录号KT944289)。克隆结果表明,该序列含有2 284个碱基,包括一个含2 097个碱基的开放阅读框,编码699个氨基酸,推测蛋白的分子量为79.23kDa,等电点(pI)为4.86,且含有5个Hsp90家族特征基序和胞质特征序列MEEVD,推导的氨基酸序列与其他丝状真菌相似性在92%-96%之间。用qRT-PCR方法分析了冷热胁迫下,该基因在环链棒束孢中的相对表达情况,结果表明:在4℃冷胁迫下15min检测到Ichsp90表达量下降到最低点,为对照的-1.8倍;随后表达量开始上升,至120min表达量是对照的1.07倍。在39℃高温胁迫下,60min Ichsp90表达量达到最高峰,为对照样品的5.02倍;随后表达量开始下降,至110min为对照样品的2.46倍。因此推测,Ichsp90基因在环链棒束孢抵抗外界温度胁迫中发挥重要的作用。  相似文献   

4.
5.
Spatial variation in disease risk in wild populations can depend both on environmental and genetic factors. Understanding the various contributions of each factor requires experimental manipulation of both the environment and genetic composition of populations under natural field conditions. We first examined natural patterns of oomycete composition and infection in the eggs of 13 populations of the spotted salamander Ambystoma maculatum. We then performed a fully factorial field transplant of the eggs of six populations to separate the contributions from population of origin and the environment on oomycete resistance in spotted salamanders. Among wild ponds, we found strong variation in oomycete infections in spotted salamander populations and differences in the composition of oomycete communities. In transplant experiments, salamander populations differed in their resistance to oomycete infections via a significant interaction between population of origin and environment. However, not all populations were locally adapted to local conditions. One population was significantly adapted to its home environment, and another one was significantly maladapted. These population effects could originate from differential adaptation of salamander populations to local oomycete communities or environmental conditions that mediate resistance, local adaptation and maladaptation of oomycetes to hosts, or from maternal transmission. Accounting for both environment and population of origin will often be necessary to understand disease dynamics in wild populations.  相似文献   

6.
Resistance to thermal stress in desert Drosophila   总被引:1,自引:0,他引:1  
1. Four species of Drosophila are endemic to the Sonoran Desert of North America where daily and seasonal high temperatures exceed those experienced by other species in this genus. The close association between these species and their cactus hosts means that they reside only in the desert and raises the question as to whether they are better able to survive heat stress than are non-desert species of Drosophila . The tolerance of adult flies of the four desert species D. mojavensis, D. nigrospiracula, D. pachea and D. mettleri and the cosmopolitan D. simulans to acute heat stress was tested.
2. There was considerable variability among the desert endemic species with respect to survival following heat exposure. Two species, D. mojavensis and D. pachea , were more resistant at 44 °C and 46 °C than the others, with D. mettleri exhibiting similar heat stress resistance to D. simulans .
3. While there was no consistent influence of gender on heat resistance, younger flies (1-day-old) showed significantly greater survival than did older flies (7- or 14-days old).  相似文献   

7.
8.
Sitodiplosis mosellana Géhin, one of the most important pests of wheat, undergoes obligatory diapause as a larva to survive unfavorable temperature extremes during hot summers and cold winters. To explore the potential roles of heat shock proteins (hsp) in this process, we cloned full-length cDNAs of hsp70, hsc70 and hsp90 from S. mosellana larvae, and examined their expression in response to diapause and short-term temperature stresses. Three hsps included all signature sequences of corresponding protein family and EEVD motifs. They showed high homology to their counterparts in other species, and the phylogenetic analysis of hsp90 was consistent with the known classification of insects. Expression of hsp70 and hsp90 were highly induced by diapause, particularly pronounced during summer and winter. Interestingly, hsp70 was more strongly expressed in summer than in winter whereas hsp90 displayed the opposite pattern. Abundance of hsc70 mRNA was comparable prior to and during diapauses and was highly up-regulated when insects began to enter the stage of post-diapause quiescence. Heat-stressed over-summering larvae (⩾30 °C) or cold-stressed over-wintering larvae (⩽0 °C) could further elevate expression of these three genes, but temperature extremes i.e. as high as 45 °C or as low as −15 °C failed to trigger such expression patterns. Notably, hsp70 was most sensitive to heat stress and hsp90 was most sensitive to cold stress. These results suggested that hsp70 and hsp90 play key roles in diapause maintenance and thermal stress; the former may be more prominent contributor to heat tolerance and the latter for cold tolerance. In contrast, hsc70 most likely is involved in developmental transition from diapause to post-diapause quiescence, and thus may serve as a molecular marker to predict diapause termination.  相似文献   

9.
1. Whether Drosophila larvae and pupae naturally experience temperatures that can cause heat damage or death is poorly understood, but bears directly on numerous investigations of the thermal biology and heat-shock response in Drosophila . Accordingly, the temperatures of necrotic fruit, which Drosophila larvae and pupae inhabit, the temperatures of larvae and pupae outside the laboratory, and the levels of the heat-shock protein hsp 70 expressed by larvae in nature were examined.
2. When necrotic fruit was sunlit, internal temperatures rose to levels that can harm indwelling insects. Fruit size and evaporative water loss affected these temperatures. Temperatures of larvae and pupae in the field commonly exceeded 35 °C, with living larvae recorded at >44°C and pupae at >41°C. Natural mortality was evident, presumably because of heat.
3. In the laboratory, these temperatures kill larvae rapidly, with LT50s (time taken for half the sample to be killed) of 30 min at 39 °C, 15 min at 40 °C and 8·5 min at 41 °C. Gradual transfer from 25°C to these temperatures resulted in no lesser mortality than did direct transfer.
4. Hsp 70 levels in lysates of whole larvae were measured by ELISA (enzyme-link immunosorbent assay) with an hsp 70-specific antibody. For larvae within necrotic apples experimentally transferred from shade to sun and within necrotic fruit in situ , hsp 70 levels equalled or exceeded levels detected in parallel laboratory studies of whole larvae or cells in culture.
5. These data provide an ecological context for studies of thermal stress and the heat-shock response in Drosophila that has heretofore been lacking.  相似文献   

10.
Genetic variation for resistance to a high temperature stress under saturated humidity was examined within and among three Drosophila buzzatii populations from Australia. Further, the acclimation of this species to high temperatures was tested by prelreating flies for a shorter, sublethal, time period under conditions that lead to expression of heat shock proteins. Genetic variation for temperature resistance was present among lines for flies either pretreated to high temperature or not. Pro-treating increased survival, with the benefit significantly higher if pretreating was performed 24 h rather than 96 h before exposure to the potentially lethal stress. For (lies pretreated at both times, resistance to heat stress was even greater. The lack of a significant treatment by line interaction term suggested that all lines were similarly plastic for acclimation following previous exposure(s) to a high temperature. Significantly more males survived the heat stress than females, and, within each sex, larger flies were generally more heat resistant than smaller ones. Additionally, the lines from the population that naturally encounters the highest temperatures were generally more resistant to high temperature stress.  相似文献   

11.
Gene expression profiles in human cells submitted to genotoxic stress   总被引:3,自引:0,他引:3  
Cell response to genotoxic agents is complex and involves the participation of different classes of genes (DNA repair, cell cycle control, signal transduction, apoptosis and oncogenesis). In this report, we present three approaches to document gene expression profiles, dealing with the evaluation of cellular responses to genotoxic agents (gamma-rays from 60Cobalt and cyclophosphamide). We used the method of cDNA arrays to analyze the differential gene expression profiles that were displayed by lymphocytes from radiation-exposed individuals, a human fibroblast cell line, and T lymphocytes from systemic lupus erythematosus (SLE) patients who were treated with cyclophosphamide. A preliminary analysis performed in lymphocytes from three radiation-workers showed that several induced genes can be associated with cell response to ionizing radiation: TRRAP (cell cycle regulation), Ligase IV (DNA repair), MAPK8IP1 and MAPK10 (signal transduction), RASSF2 (apoptosis induction/tumorigenesis), p53 (damage response/maintenance of genetic stability). The in vitro irradiated normal VH16 cell line (primary) showed a complex response to the genotoxic stress at the molecular level. Many apoptotic pathways were concomitantly induced. In addition, several genes involved in signaling and cell cycle arrest/control were significantly modulated after irradiation. Many genes involved in oxidative damage were also induced, indicating that this mechanism seems to be an important component of cell response. After treatment of the SLE patients with cyclophosphamide, 154 genes were differentially and significantly induced. Among them, we identified those associated with drug detoxification, cell cycle control, apoptosis, and tumor-suppressor. These findings indicate that at least two apoptotic pathways were induced after cyclophosphamide treatment. The induction of APAF1 and two genes coding for two subunits of cytochrome c supports a previous report showing increased apoptosis in lymphocytes from SLE patients. The present study provides new information on the molecular mechanism underlying the cell response to genotoxic stress, with relevance to basic and clinical research.  相似文献   

12.
13.
14.
In the present work we reported a semiquantitative detection of messenger ribonucleic acids (mRNAs) encoding the human heat shock proteins Hsp70-1, the stress inducible member of the HSP70 family, and hsp90alpha, the inducible member of the HSP90 family. We investigated the change in the expression of these mRNAs in tissue samples taken from the right atrium of 48 pediatric patients, soon after the ischemic period during surgery to correct congenital heart diseases, in which a crystalloid cold cardioplegic solution was used. No significant variations were found for either hsp70-1 or hsp90alpha expressions. Moreover, we searched for an association between the hsp70-1 promoter region polymorphism and the expression of the hsp70-1 in a smaller group of these patients (n = 27). The -110AA genotype was on average significantly associated with a decrease in the hsp70-1 mRNA level (P < 0.05), whereas the other genotypes -110AC or -110CC did not seem to be associated with the hsp70-1 expression level. The lack of any observed increase in the hsp70-1 expression level may be due to the high basal level of the Hsp70 protein in the tissues examined.  相似文献   

15.
To determine differences in the patterns of expression of Drosophila small heat shock proteins (shsp) during normal development in the absence of stress, proteins obtained from head, thorax and gonads of young (0–12 h, 3 days), middle-aged (3–6 days) and 15- to 20-day-old adult flies were separated on SDS-PAGE gels and blotted with monoclonal antibodies against hsp23 and hsp26. hsp23 was found in the heads and gonads of young males and females. In contrast, the maximum expression of hsp26 was seen in gonads of young flies, and it was only lightly detected in the brain. The expression of both proteins decreased as flies aged. This age-related decrease was particularly striking for hsp23 in females. The immunoblot results obtained were complemented by immunostaining of thin parasagittal sections of whole fly bodies Hsp23 was found to be expressed in the brain, thoracic ganglion, fat body and gonads of young (0-12 h) males and females. On the other hand, hsp26 was essentially detected in ovaries and testes of these young flies. The analysis of the tissue expression of both proteins demonstrate that each shsp has a distinct cellular localization. In the central nervous system, hsp23 and hsp26 were present in the neurocytes of the brain and the thoracic ganglion. In addition, hsp23 (but not hsp26) was also detected in the central neuropile of these two organs. In testis, hsp26 was localized in the cytoplasm of spermatocytes and, probably, in the spermatid bundles. In contrast, hsp23 was detected at the periphery of cells (membranes). In ovorioles of newborn females the expression of hsp26 was stronger, and the maximum expression of hsp23 was only reached in older (2 days and more) flies. These results demonstrate that each shsp possesses a specific spatial and temporal pattern of expression in adults of Drosophila. The distinct tissue-specific and age-dependent expression of hsp23 and hsp26 suggests that these two proteins may have different functions in crucial organs of Drosophila. © 1993Wiley-Liss, Inc.  相似文献   

16.
Recently a heat shock protein (Hsp90) has been implicated as controlling the expression of cryptic genetic variation through buffering developmental processes. The release of variability in canalized characters following Hsp90 inhibition has been established in model species including Drosophila melanogaster and Arabidopsis thaliana , but has not yet been examined in species with limited distributions. To test if Hsp90 has a role in releasing phenotypic variation in rainforest Drosophila species, developing larvae from a large (> 1000 individuals) outbred population of Drosophila birchii were treated with the Hsp90 inhibitors geldanamycin and radicicol, and morphological traits, desiccation resistance, and life-history traits were measured. The means of all traits were influenced by inhibition. Although only the phenotypic variances of two canalized bristle traits were affected consistently, variability for two of the continuously varying traits (fecundity and development time) were also affected, albeit inconsistently. There was also no effect of Hsp90 inhibition on the developmental stability of the morphological traits as measured by fluctuating asymmetry. Hsp90 inhibition did not increase phenotypic variability in desiccation resistance, a trait previously shown to represent an evolutionary limit in this species. These results question the extent to which Hsp90 buffers variation for both quantitative and discrete traits, and highlight the need for further empirical studies to determine the involvement of Hsp90 in canalization and developmental stability. Nevertheless the results demonstrated increased variability in canalized traits, consistent with observations in model systems. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 457–465.  相似文献   

17.

Key message

The study determined the tolerance of Aloe vera to high temperature, focusing on the expression of hsp70 , hsp100 and ubiquitin genes. These were highly expressed in plants acclimated at 35 °C prior to a heat shock of 45 °C.

Abstract

Aloe barbadensis Miller (Aloe vera), a CAM plant, was introduced into Chile in the semiarid IV and III Regions, which has summer diurnal temperature fluctuations of 25 to 40 °C and annual precipitation of 40 mm (dry years) to 170 mm (rainy years). The aim of this study was to investigate how Aloe vera responds to water and heat stress, focusing on the expression of heat shock genes (hsp70, hsp100) and ubiquitin, which not studied before in Aloe vera. The LT50 of Aloe vera was determined as 53.2 °C. To study gene expression by semi-quantitative RT-PCR, primers were designed against conserved regions of these genes. Sequencing the cDNA fragments for hsp70 and ubiquitin showed a high identity, over 95 %, with the genes from cereals. The protein sequence of hsp70 deduced from the sequence of the cDNA encloses partial domains for binding ATP and the substrate. The protein sequence of ubiquitin deduced from the cDNA encloses a domain for interaction with the enzymes E2, UCH and CUE. The expression increased with temperature and water deficit. Hsp70 expression at 40–45 °C increased 50 % over the controls, while the expression increased by 150 % over the controls under a water deficit of 50 % FC. The expression of all three genes was also studied under 2 h of acclimation at 35 or 40 °C prior to a heat shock at 45 °C. Under these conditions, the plants showed greater expression of all genes than when they were subjected to direct heat stress.  相似文献   

18.
19.
Variation in cold resistance was examined in cold acclimated and non-acclimated Drosophila melanogaster from three geographical strains representing Morocco, France and Finland. Resistance was estimated as survival of adults at 0°C; the acclimation treatment involved a long-term exposure to 11°C starting from the late pupal stage and continuing with adults. After the cold stress, two fitness traits, percentage of fertile individuals and the number of adult progeny, were scored in both acclimated and non-acclimated flies. Acclimation dramatically increased survival in all strains, but did not affect the pattern of geographic variation in cold resistance. The European flies tended to be more resistant than the African ones and the ranking from most to least resistant strain was France>Finland>Morocco. In the absence of acclimation, females showed a higher survival than males. Percentage of fertile males in all strains and the number of progeny in the Finnish and French strains were decreased after acclimation. Without cold acclimation, the number of progeny was higher in the European flies as compared with the African ones. The results suggest that populations of D. melanogaster from cold climates are better adapted to low stressful temperatures and among-population variation in cold resistance may be due to non-plastic rather than plastic genetic changes. The deleterious effects of cold pretreatment on the life-history parameters indicate a possibility for acclimation costs in reproduction.  相似文献   

20.
To establish whether family origin affects the response of the threespine stickleback (Gasterosteus aculeatus) to thermal acclimation, we examined the rates of feeding, growth, and food conversion, relative tissue and organ masses and activities of a mitochondrial and a glycolytic enzyme in pectoral and axial muscle of individually housed fish from six families during acclimation to 8 degrees C and 23 degrees C. Feeding rates differed among families but were consistently higher in warm-acclimated than cold-acclimated fish. Growth rates differed among families. In four families growth was greater at 8 degrees C; these families generally had higher conversion efficiencies at 8 degrees C than 23 degrees C. For two families, growth was greater at 23 degrees C than 8 degrees C and conversion efficiencies did not differ between 8 degrees C and 23 degrees C. Relative tissue and organ masses (percent axial muscle, hepatosomatic, gut and kidney indices) differed with gender and among families (hepatosomatic, gut and kidney indices) but little with acclimation status. In all families and in both muscles, activities of the mitochondrial enzyme, citrate synthase (CS), were increased by cold acclimation. Axial muscle levels of the glycolytic enzyme, lactate dehydrogenase (LDH), were not affected by thermal acclimation or family origin, but were strongly correlated with the hepatosomatic index and axial muscle protein content. Pectoral muscle levels of LDH were affected by family origin which also influenced the response to thermal acclimation. Similar patterns were observed for specific activities and total muscle contents of these enzymes. Stickleback family origin influenced rates of feeding and growth and the thermal sensitivity of growth rates but not the compensatory increase in muscle CS levels with cold acclimation. The differing thermal sensitivities of growth could reflect distinct strategies for the timing of juvenile growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号