首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Joining of tRNA halves during splicing in extracts of Saccharomyces cerevisiae requires each of the three enzymatic activities associated with the tRNA ligase polypeptide. Joining is most efficient for tRNA as opposed to oligonucleotide substrates and is sensitive to single base changes at a distance from splice sites suggesting considerable specificity. To examine the basis for this specificity, binding of ligase to labeled RNA substrates was measured by native gel electrophoresis. Ligase bound tRNA halves with an association constant 1600-fold greater than that for a nonspecific RNA. Comparison of binding of a series of tRNA processing intermediates revealed that tRNA-structure, particularly in the region around the splice sites, contributes to specific binding. Finally, the ligase was shown to form multiple, discrete complexes with tRNA substrates. The basis for recognition by ligase and its role in a tRNA processing pathway are discussed.  相似文献   

2.
3.
The PI-SceI protein from Saccharomyces cerevisiae is a member of the LAGLIDADG family of homing endonucleases that have been used in genomic engineering. To assess the flexibility of the PI-SceI-binding interaction and to make progress towards the directed evolution of homing endonucleases that cleave specified DNA targets, we applied a two-hybrid method to select PI-SceI variants from a randomized expression library that bind to different DNA substrates. In particular, the codon for Arg94, which is located in the protein splicing domain and makes essential contacts to two adjacent base-pairs, and the codons for four proximal residues were randomized. There is little conservation of the wild-type amino acid residues at the five randomized positions in the variants that were selected to bind to the wild-type site, yet one of the purified derivatives displays DNA-binding specificity and DNA endonuclease activity that is similar to that of the wild-type enzyme. A spectrum of DNA-binding behaviors ranging from partial relaxation of specificity to marked shifts in target site recognition are present in variants selected to bind to sites containing mutations at the two base-pairs. Our results illustrate the inherent plasticity of the PI-SceI/DNA interface and demonstrate that selection based on DNA binding is an effective means of altering the DNA cleavage specificity of homing endonucleases. Furthermore, it is apparent that homing endonuclease target specificity derives, in part, from constraints on the flexibility of DNA contacts imposed by hydrogen bonds to proximal residues.  相似文献   

4.
Jin HY  Luo LF  Zhang LR 《Gene》2008,424(1-2):115-120
A crucial part in the gene structure prediction is to identify the accurate splice sites, not only constitutive but also alternative ones. Here, we use the maximum information principle (MIP) to analyze the conservative segments around splice sites. According to the MIP, a reaction free energy (RFE) expression is deduced, which can be employed to estimate the free energy change during splicing reaction involving a donor or acceptor site. The expression contains not only the background probability factors, but also all kinds of dependencies among both adjacent and non-adjacent bases. We apply the RFE expression to recognize splice sites and their flanking competitors in human genes, the results show high sensitivity and specificity, so the RFE expression accords well with the splicing reaction process. Moreover, the RFE expression is better than previous methods for predicting competitors of splice sites, and it outperforms the reaction free energy subtraction (RFES), that implies RFE competition between a given splice site and its flanking competitor may not be an only primary factor for alternative splice site selection. The work is helpful to not only the understanding of splicing reaction from its relation to MIP, but also the research on computational recognition of splicing sites and alternative splice events.  相似文献   

5.
cis-acting sequences of Rous sarcoma virus (RSV) RNA involved in control of the incomplete splicing that is part of the retroviral life cycle have been studied. The 5' and two alternative 3' splice sites, as well as negative regulator of splicing element in the intron, have been introduced into chimeric constructs, and their responsive roles in splicing inhibition have been evaluated by transient transfection experiments. Although the RSV 5' splice site was used efficiently in these assays, substrates containing either the RSV env or the RSV src 3' splice site were not spliced completely, resulting in 40 to 50% unspliced RNA. Addition of the negative regulator of splicing element to substrates containing RSV 3' splice sites resulted in greater inhibition of splicing (70 to 80% unspliced RNA), suggesting that the two elements function independently and additively. Deletion of sequences more than 70 nucleotides upstream of the src 3' splice site resulted in efficient splicing at this site, suggesting that inefficient usage is not inherent in this splice site but is instead due to to sequences upstream of it. Insertion of these upstream sequences into the intron of a heterologous pre-mRNA resulted in partial inhibition of its splicing. In addition, secondary structure interactions were predicted to occur between the src 3' splice site and the inhibitory sequences upstream of it. Thus, RSV splicing control involves both intronic sequences and 3' splice sites, with different mechanisms involved in the underutilization of the env and src splice acceptor sites.  相似文献   

6.
Tryptases are serine proteases that are thought to be uniquely and proteolytically active as tetramers. Crystallographic studies reveal that the active tetramer is a flat ring structure composed of four monomers, with their active sites arranged around a narrow central pore. This model explains why many of the preferred substrates of tryptase are short peptides; however, it does not explain how tryptase cleaves large protein substrates such as fibronectin, although a number of studies have reported in vitro mechanisms for generating active monomers that could digest larger substrates. Here we suggest that alternate mRNA splicing of human tryptase genes generates active tryptase monomers (or dimers). We have identified a conserved pattern of alternate splicing in four tryptase alleles (alphaII, betaI, betaIII, and deltaI), representing three distinct tryptase gene loci. When compared with their full-length counterparts, the splice variants use an alternate acceptor site within exon 4. This results in the deletion of 27 nucleotides within the central coding sequence and 9 amino acids from the translated protein product. Although modeling suggests that the deletion can be easily accommodated by the enzymes structurally, it is predicted to alter the specificity by enlarging the S1' or S2' binding pocket and results in the complete loss of the "47 loop," reported to be critical for the formation of tetramers. Although active monomers can be generated in vitro using a range of artificial conditions, we suggest that alternate splicing is the in vivo mechanism used to generate active tryptase that can cleave large protein substrates.  相似文献   

7.
We have previously demonstrated that an exon splicing silencer (ESS) is present within human immunodeficiency virus type 1 (HIV-1)tat exon 2. This 20 nucleotide (nt) RNA element acts selectively to inhibit splicing at the upstream 3'splice site (3'ss #3) flanking this exon. In this report, we have used in vitro splicing of mutated RNA substrates to determine the sequences necessary and sufficient for the activity of the ESS. The activity of the ESS within tat exon 2 maps to a 10 nt core sequence CUAGACUAGA. This core sequence was sufficient to inhibit splicing when inserted downstream from the 3'ss of the heterologous Rous sarcoma virus src gene. Mutagenesis of the interspersed purines in the polypyrimidine tract of the tat exon 2 3'ss to pyrimidines resulted in a significant increase in splicing efficiency indicating that 3'ss#3 is suboptimal. The ESS acts to inhibit splicing at the optimized 3'splice sites of both the HIV-1 tat and RSV src constructs but with a reduced efficiency compared to its effect on suboptimal 3'splice sites. The results indicate that both the ESS and a suboptimal 3'splice site act together to control splicing at the 3'splice site flanking at exon 2.  相似文献   

8.
Mammalian Clk/Sty is the prototype for a family of dual specificity kinases (termed LAMMER kinases) that have been conserved in evolution, but whose physiological substrates are unknown. In a yeast two-hybrid screen, the Clk/Sty kinase specifically interacted with RNA binding proteins, particularly members of the serine/arginine-rich (SR) family of splicing factors. Clk/Sty itself has an serine/arginine-rich non-catalytic N-terminal region which is important for its association with SR splicing factors. In vitro, Clk/Sty efficiently phosphorylated the SR family member ASF/SF2 on serine residues located within its serine/arginine-rich region (the RS domain). Tryptic phosphopeptide mapping demonstrated that the sites on ASF/SF2 phosphorylated in vitro overlap with those phosphorylated in vivo. Immunofluorescence studies showed that a catalytically inactive form of Clk/Sty co-localized with SR proteins in nuclear speckles. Overexpression of the active Clk/Sty kinase caused a redistribution of SR proteins within the nucleus. These results suggest that Clk/Sty kinase directly regulates the activity and compartmentalization of SR splicing factors.  相似文献   

9.
Specific regulation of mRNA splicing in vitro by a peptide from HIV-1 Rev   总被引:28,自引:0,他引:28  
J Kjems  A D Frankel  P A Sharp 《Cell》1991,67(1):169-178
The Rev protein of HIV-1 regulates the synthesis of partially spliced forms of cytoplasmic viral mRNA by binding to a cis-acting RNA sequence, the Rev response element (RRE). We have investigated the regulation of splicing in vitro and have shown that Rev specifically inhibits splicing of pre-mRNAs containing an RRE by 3- to 4-fold. A synthetic peptide of 17 amino acids containing the RNA-binding domain of Rev is highly functional and specifically inhibits splicing by up to 30-fold. Other peptides that bind to the RRE with high affinity, but with low specificity, do not specifically inhibit splicing. Six repeated monomeric binding sites for the peptide can substitute for the RRE, indicating that regulation by Rev requires interactions with multiple sites. The peptide acts at a step in the assembly of splicing complexes, suggesting that one of the functions of the basic region of Rev is to prevent formation of a functional spliceosome.  相似文献   

10.
11.
Maternal embryonic leucine zipper kinase (MELK) is a protein Ser/Thr kinase that has been implicated in stem cell renewal, cell cycle progression, and pre-mRNA splicing, but its substrates and regulation are not yet known. We show here that MELK has a rather broad substrate specificity and does not appear to require a specific sequence surrounding its (auto)phosphorylation sites. We have mapped no less than 16 autophosphorylation sites including serines, threonines, and a tyrosine residue and show that the phosphorylation of Thr167 and Ser171 is required for the activation of MELK. The expression of MELK activity also requires reducing agents such as dithiothreitol or reduced glutathione. Furthermore, we show that MELK is a Ca2+-binding protein and is inhibited by physiological Ca2+ concentrations. The smallest MELK fragment that was still catalytically active comprises the N-terminal catalytic domain and the flanking ubiquitin-associated domain. A C-terminal fragment of MELK functions as an autoinhibitory domain. Our data show that the activity of MELK is regulated in a complex manner and offer new perspectives for the further elucidation of its biological function.  相似文献   

12.
13.
The RNA splicing endonuclease is responsible for recognition and excision of nuclear tRNA and all archaeal introns. Despite the conserved RNA cleavage chemistry and a similar enzyme assembly, currently known splicing endonuclease families have limited RNA specificity. Different from previously characterized splicing endonucleases in Archaea, the splicing endonuclease from archaeum Sulfolobus solfataricus was found to contain two different subunits and accept a broader range of substrates. Here, we report a crystal structure of the catalytic subunit of the S.solfataricus endonuclease at 3.1 angstroms resolution. The structure, together with analytical ultracentrifugation analysis, identifies the catalytic subunit as an inactive but stable homodimer, thus suggesting the possibility of two modes of functional assembly for the active enzyme.  相似文献   

14.
15.
16.
The role of U2AF35 and U2AF65 in enhancer-dependent splicing.   总被引:6,自引:1,他引:5       下载免费PDF全文
Splicing enhancers are RNA sequence elements that promote the splicing of nearby introns. The mechanism by which these elements act is still unclear. Some experiments support a model in which serine-arginine (SR)-rich proteins function as splicing activators by binding to enhancers and recruiting the splicing factor U2AF to an adjacent weak 3' splice site. In this model, recruitment requires interactions between the SR proteins and the 35-kDa subunit of U2AF (U2AF35). However, more recent experiments have not supported the U2AF recruitment model. Here we provide additional evidence for the recruitment model. First, we confirm that base substitutions that convert weak 3' splice sites to a consensus sequence, and therefore increase U2AF binding, relieve the requirement for a splicing activator. Second, we confirm that splicing activators are required for the formation of early spliceosomal complexes on substrates containing weak 3' splice sites. Most importantly, we find that splicing activators promote the binding of both U2AF65 and U2AF35 to weak 3' splice sites under splicing conditions. Finally, we show that U2AF35 is required for maximum levels of activator-dependent splicing. We conclude that a critical function of splicing activators is to recruit U2AF to the weak 3' splice sites of enhancer-dependent introns, and that efficient enhancer-dependent splicing requires U2AF35.  相似文献   

17.
18.
To precisely regulate critical signaling pathways, two kinases that phosphorylate distinct sites on the same protein substrate must have mutually exclusive specificity. Evolution could assure this by designing families of kinase such as basophilic kinases and proline-directed kinase with distinct peptide specificity; their reciprocal peptide specificity would have to be very complete, since recruitment of substrate allows phosphorylation of even rather poor phosphorylation sites in a protein. Here we report a powerful evolutionary strategy that assures distinct substrates for basophilic kinases (PKA, PKG and PKC (AGC) and calmodulin-dependent protein kinase (CAMK)) and proline-directed kinase, namely by the presence or absence of proline at the P + 1 position in substrates. Analysis of degenerate and non-degenerate peptides by in vitro kinase assays reveals that proline at the P + 1 position in substrates functions as a "veto" residue in substrate recognition by AGC and CAMK kinases. Furthermore, analysis of reported substrates of two typical basophilic kinases, protein kinase C and protein kinase A, shows the lowest occurrence of proline at the P + 1 position. Analysis of crystal structures and sequence conservation provides a molecular basis for this disfavor and illustrate its generality.  相似文献   

19.
As for nuclear pre-mRNA introns, the splicing pathway of group II self-splicing introns proceeds by two successive transesterifications involving substrates with different chemical configurations. These two reactions have been proposed to be catalysed by two active sites, or alternatively by a single active site rearranging its components to accommodate the successive substrates. Here we show that the structural elements specific for the second splicing step are clustered in peripheral structures of domains II and VI. We show that these structures are not required for catalysis of the second chemical step but, instead, take part in a conformational change that occurs between the two catalytic steps. This rearrangement involves the formation of a tertiary contact between part of domain II and a GNRA tetraloop at the tip of domain VI. The fact that domain VI, which carries the branched structure, is involved in this structural rearrangement and the fact that modifications affecting the structures involved have almost no effect when splicing proceeds without branch formation, suggest that the conformational change results in the displacement of the first-step product out of the active site. These observations give further support to the existence of a single active site in group II introns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号