首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
Aquaporins (AQPs) are a family of channel proteins, which transport water and/or small solutes across cell membranes. AQPs are present in Bacteria, Eukarya, and Archaea. The classical AQP evolution paradigm explains the inconsistent phylogenetic trees by multiple transfer events and emphasizes that the assignment of orthologous AQPs is not possible, making it difficult to integrate functional information. Recently, a novel phylogenetic framework of eukaryotic AQP evolution showed congruence between eukaryotic AQPs and organismal trees identifying 32 orthologous clusters in plants and animals (Soto et al. Gene 503:165–176, 2012). In this article, we discuss in depth the methodological strength, the ability to predict functionality and the AQP community perception about the different paradigms of AQP evolution. Moreover, we show an updated review of AQPs transport functions in association with phylogenetic analyses. Finally, we discuss the possible effect of AQP data integration in the understanding of water and solute transport in eukaryotic cells.  相似文献   

2.
Aquaporins constitute a large and highly divergent protein family in maize   总被引:54,自引:0,他引:54  
Aquaporins (AQPs) are an ancient family of channel proteins that transport water and neutral solutes through a pore and are found in all eukaryotes and most prokaryotes. A comparison of the amino acid sequences and phylogenetic analysis of 31 full-length cDNAs of maize (Zea mays) AQPs shows that they comprise four different groups of highly divergent proteins. We have classified them as plasma membrane intinsic proteins (PIPs), tonoplast intrinsic proteins, Nod26-like intrinsic proteins, and small and basic intrinsic proteins. Amino acid sequence identities vary from 16% to 100%, but all sequences share structural motifs and conserved amino acids necessary to stabilize the two loops that form the aqueous pore. Most divergent are the small and basic integral proteins in which the first of the two highly conserved Asn-Pro-Ala motifs of the pore is not conserved, but is represented by alanine-proline-threonine or alanine-proline-serine. We present a model of ZmPIP1-2 based on the three-dimensional structure of mammalian AQP1. Tabulation of the number of times that the AQP sequences are found in a collection of databases that comprises about 470,000 maize cDNAs indicates that a few of the maize AQPs are very highly expressed and many are not abundantly expressed. The phylogenetic analysis supports the interpretation that the divergence of PIPs through gene duplication occurred more recently than the divergence of the members of the other three subfamilies. This study opens the way to analyze the function of the proteins in Xenopus laevis oocytes, determine the tissue specific expression of the genes, recover insertion mutants, and determine the in planta function.  相似文献   

3.
A new subfamily of major intrinsic proteins in plants   总被引:10,自引:0,他引:10  
The major intrinsic proteins (MIPs) form a large protein family of ancient origin and are found in bacteria, fungi, animals, and plants. MIPs act as channels in membranes to facilitate passive transport across the membrane. Some MIPs allow small polar molecules like glycerol or urea to pass through the membrane. However, the majority of MIPs are thought to be aquaporins (AQPs), i.e., they are specific for water transport. Plant MIPs can be subdivided into the plasma membrane intrinsic protein, tonoplast intrinsic protein, and NOD26-like intrinsic protein subfamilies. By database mining and phylogenetic analyses, we have identified a new subfamily in plants, the Small basic Intrinsic Proteins (SIPs). Comparisons of sequences from the new subfamily with conserved amino acid residues in other MIPs reveal characteristic features of SIPs. Possible functional consequences of these features are discussed in relation to the recently solved structures of AQP1 and GlpF. We suggest that substitutions at conserved and structurally important positions imply a different substrate specificity for the new subfamily.  相似文献   

4.
Periplasmic binding protein-dependent transport systems are composed of a periplasmic substrate-binding protein, a set of 2 (sometimes 1) very hydrophobic integral membrane proteins, and 1 (sometimes 2) hydrophilic peripheral membrane protein that binds and hydrolyzes ATP. These systems are members of the superfamily of ABC transporters. We performed a molecular phylogenetic analysis of the sequences of 70 hydrophobic membrane proteins of these transport systems in order to investigate their evolutionary history. Proteins were grouped into 8 clusters. Within each cluster, protein sequences displayed significant similarities, suggesting that they derive from a common ancestor. Most clusters contained proteins from systems transporting analogous substrates such as monosaccharides, oligopeptides, or hydrophobic amino acids, but this was not a general rule. Proteins from diverse bacteria are found within each cluster, suggesting that the ancestors of current clusters were present before the divergence of bacterial groups. The phylogenetic trees computed for hydrophobic membrane proteins of these permeases are similar to those described for the periplasmic substrate-binding proteins. This result suggests that the genetic regions encoding binding protein-dependent permeases evolved as whole units. Based on the results of the classification of the proteins and on the reconstructed phylogenetic trees, we propose an evolutionary scheme for periplasmic permeases. According to this model, it is probable that these transport systems derive from an ancestral system having only 1 hydrophobic membrane protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A water channel protein (WCP) or a water channel can be defined as a transmembrane protein that has a specific three-dimensional structure with a pore that provides a pathway for water permeation across biological membranes. The pore is formed by two highly conserved regions in the amino acid sequence, called NPA boxes (or motifs) with three amino acid residues (asparagine-proline-alanine, NPA) and several surrounding amino acids. The NPA boxes have been called the "signature" sequence of WCPs. WCPs are a family of proteins belonging to the Membrane Intrinsic Proteins (MIPs) superfamily. In addition, in the MIP superfamily (with more than 1000 members) there are also proteins with no channel activity. The WCP family include three subfamilies: aquaporins, aquaglyceroporins and S-aquaporins. (1) The aquaporins (AQPs) are water selective or specific water channels, also named by various authors as "orthodox", "ordinary", "conventional", "classical", "pure", "normal", or "sensu strictu" aquaporins); (2) The aquaglyceroporins are permeable to water, but also to other small uncharged molecules, in particular glycerol; this family includes the glycerol facilitators, abbreviated as GlpFs, from glycerol permease facilitators. The "signature" sequence for aquaglyceroporins is the aspartic acid residue (D) in the second NPA box. (3) The third subfamily of WCPs have little conserved amino acid sequences around the NPA boxes, unclassifiable to the first two subfamilies. I recommend to use always for this subfamily the name S-aquaporins. They are also named "superaquaporins", "aquaporins with unusual (or deviated) NPA boxes", "subcellular aquaporins", or "sip-like aquaporins". I also recommend to use always the spelling aquaporin (not aquaporine), and, for various AQPs, the abbreviation AQP followed immediately by the number, (e.g. AQP1), with no space or - which might create confusions with "minus".  相似文献   

6.
7.
A comprehensive evolutionary analysis of aquaporins, a family of intrinsic membrane proteins that function as water channels, was conducted to establish groups of homology (i.e., to identify orthologues and paralogues) within the family and to gain insights into the functional constraints acting on the structure of the aquaporin molecule structure. Aquaporins are present in all living organisms, and therefore, they provide an excellent opportunity to further our understanding of the broader biological significance of molecular evolution by gene duplication followed by functional and structural specialization. Based on the resulting phylogeny, the 153 channel proteins analyzed were classified into six major paralogous groups: (1) GLPs, or glycerol-transporting channel proteins, which include mammalian AQP3, AQP7, and AQP9, several nematode paralogues, a yeast paralogue, and Escherichia coli GLP; (2) AQPs, or aquaporins, which include metazoan AQP0, AQP1, AQP2, AQP4, AQP5, and AQP6; (3) PIPs, or plasma membrane intrinsic proteins of plants, which include PIP1 and PIP2; (4) TIPs, or tonoplast intrinsic proteins of plants, which include alphaTIP, gammaTIP, and deltaTIP; (5) NODs, or nodulins of plants; and (6) AQP8s, or metazoan aquaporin 8 proteins. Of these groups, AQPs, PIPs, and TIPs cluster together. According to the results, the capacity to transport glycerol shown by several members of the family was acquired only early in the history of the family. The new phylogeny reveals that several water channel proteins are misclassified and require reassignment, whereas several previously undetermined ones can now be classified with confidence. The deduced phylogenetic framework was used to characterize the molecular features of water channel proteins. Three motifs are common to all family members: AEF (Ala-Glu-Phe), which is located in the N-terminal domain; and two NPA (Asp-Pro-Ala) boxes, which are located in the center and C-terminal domains, respectively. Other residues are found to be conserved within the major groups but not among them. Overall, the PIP subfamily showed the least variation. In general, no radical amino acid replacements affecting tertiary structure were identified, with the exception of Ala-->Ser in the TIP subfamily. Constancy of rates of evolution was demonstrated within the different paralogues but rejected among several of them (GLP and NOD).  相似文献   

8.
9.
10.
11.
Aquaporin (AQP) water channel proteins play key roles in water movement across cell membranes. Extending previous reports of cryoprotective functions in insects, this study examines roles of AQPs in response to dehydration, rehydration, and freezing, and their distribution in specific tissues of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae). When AQPs were blocked using mercuric chloride, tissue dehydration tolerance increased in response to hypertonic challenge, and susceptibility to overhydration decreased in a hypotonic solution. Blocking AQPs decreased the ability of tissues from the midgut and Malpighian tubules to tolerate freezing, but only minimal changes were noted in cellular viability of the fat body. Immuno-localization revealed that a DRIP-like protein (a Drosophila aquaporin), AQP2- and AQP3 (aquaglyceroporin)-like proteins were present in most larval tissues. DRIP- and AQP2-like proteins were also present in the gut of adult midges, but AQP4-like protein was not detectable in any tissues we examined. Western blotting indicated that larval AQP2-like protein levels were increased in response to dehydration, rehydration and freezing, whereas, in adults DRIP-, AQP2-, and AQP3-like proteins were elevated by dehydration. These results imply a vital role for aquaporin/aquaglyceroporins in water relations and freezing tolerance in B. antarctica.  相似文献   

12.
Anuran amphibians obtain water by osmosis across their ventral skin. A specialized region in the pelvic skin of semiterrestrial species, termed the seat patch, contains aquaporins (AQPs) that become inserted into the apical plasma membrane of the epidermis following stimulation by arginine vasotocin (AVT) to facilitate rehydration. Two AVT-stimulated AQPs, AQP-h2 and AQP-h3, have been identified in the epidermis of seat patch skin of the Japanese tree frog, Hyla japonica, and show a high degree of homology with those of bufonid species. We used antibodies raised against AQP-h2 and AQP-h3 to characterize the expression of homologous AQPs in the skin of two species of toads that inhabit arid desert regions of southwestern North America. Western blot analysis of proteins gave positive results for AQP-h2-like proteins in the pelvic skin and also the urinary bladder of Anaxyrus (Bufo) punctatus while AQP-h3-like proteins were found in extracts from the pelvic skin and the more anterior ventral skin, but not the urinary bladder. Immunohistochemical observations showed both AQP-h2- and AQP-h3-like proteins were present in the apical membrane of skin from the pelvic skin of hydrated and dehydrated A. punctatus. Further stimulation by AVT or isoproterenol treatment of living toads was not evident. In contrast, skin from hydrated Incilius (Bufo) alvarius showed very weak labeling of AQP-h2- and AQP-h3-like proteins and labeling turned intense following stimulation by AVT. These results are similar to those of tree frogs and toads that occupy mesic habitats and suggest this pattern of AQP expression is the result of phylogenetic factors shared by hylid and bufonid anurans.  相似文献   

13.
14.
It has long been recognized that inhibition of plant water transport by either osmotic stress or salinity is mediated by aquaporins (AQPs), but the function and regulation of AQPs are highly variable among distinct isoforms and across different species. In this study, cucumber seedlings were subjected to polyethylene glycol (PEG) or NaCl stress for duration of 2 h or 24 h. The 2 h treatment with PEG or NaCl had non‐significant effect on the expression of plasma membrane AQP (CsPIPs) in roots, indicating the decrease in hydraulic conductivity of roots (Lpr) and root cells (Lprc) measured in these conditions were due to changes in AQP activity. After both 2 h and 24 h PEG or NaCl exposure, the decrease in hydraulic conductivity of leaves (Kleaf) and leaf cells (Lplc) could be attributed to a down‐regulation of the two most highly expressed isoforms, CsPIP1;2 and CsPIP2;4. In roots, both Lpr and Lprc were further reduced after 24 h PEG exposure, but partially recovered after 24 h NaCl treatment, which were consistent with changes in the expression of CsPIP genes. Overall, the results demonstrated differential responses of CsPIPs in mediating water transport of cucumber seedlings, and the regulatory mechanisms differed according to applied stresses, stress durations and specific organs.  相似文献   

15.
Recently, two novel mammalian aquaporins (AQPs), AQPs 11 and 12, have been identified and classified as members of a new AQP subfamily, the “subcellular AQPs”. In members of this subfamily one of the two asparagine-proline-alanine (NPA) motifs, which play a crucial role in selective water conduction, are not completely conserved. Mouse AQP11 (mAQP11) was expressed in Sf9 cells and purified using the detergent Fos-choline 10. The protein was reconstituted into liposomes, which were used for water conduction studies with a stopped-flow device. Single water permeability (pf) of AQP11 was measured to be 1.72 ± 0.03 × 10− 13 cm3/s, suggesting that other members of the subfamily with incompletely conserved NPA motifs may also function as water channels.  相似文献   

16.
Acyl-CoA dehydrogenases (ACADs), which are key enzymes in fatty acid and amino acid catabolism, form a large, pan-taxonomic protein family with at least 13 distinct subfamilies. Yet most reported ACAD members have no subfamily assigned, and little is known about the taxonomic distribution and evolution of the subfamilies. In completely sequenced genomes from approximately 210 species (eukaryotes, bacteria and archaea), we detect ACAD subfamilies by rigorous ortholog identification combining sequence similarity search with phylogeny. We then construct taxonomic subfamily-distribution profiles and build phylogenetic trees with orthologous proteins. Subfamily profiles provide unparalleled insight into the organisms’ energy sources based on genome sequence alone and further predict enzyme substrate specificity, thus generating explicit working hypotheses for targeted biochemical experimentation. Eukaryotic ACAD subfamilies are traditionally considered as mitochondrial proteins, but we found evidence that in fungi one subfamily is located in peroxisomes and participates in a distinct β-oxidation pathway. Finally, we discern horizontal transfer, duplication, loss and secondary acquisition of ACAD genes during evolution of this family. Through these unorthodox expansion strategies, the ACAD family is proficient in utilizing a large range of fatty acids and amino acids—strategies that could have shaped the evolutionary history of many other ancient protein families.  相似文献   

17.
Food allergies have become increasingly prevalent during the past few decades. Diarrhea is one of the most frequent intestinal symptoms caused by food allergens and is characterized by imbalanced ion exchange and water transfer; however, the underlying mechanism of allergic diarrhea remains unclear. Water transfer across the intestinal epithelial membrane seems to occur via aquaporins (AQPs). However, the molecular mechanism of water transfer and the pathophysiological roles of aquaporins in the intestine have not been fully established. The present studies have focused on the alterations of AQPs in a mouse model of allergic diarrhea in which BALB/c mice developed diarrhea following repeated challenges of orally administered ovalbumin. Quantitative real-time PCR analysis and immunohistochemical technique were used for expression of mRNA and protein of AQPs, respectively. AQP4 and AQP8 mRNA levels were significantly decreased in the proximal colon of allergic mice compared to controls; likewise, expression of AQP4 and AQP8 proteins was reduced in the proximal colon of the allergic mice. These results suggest that allergic diarrhea is associated with a downregulation in AQP4 and AQP8 expression.  相似文献   

18.
Aquaporins (AQPs) are water channels that allow cells to rapidly alter their membrane water permeability. A convenient model for studying AQP expression and activity regulation is Black Mexican Sweet (BMS) maize cultured cells. In an attempt to correlate membrane osmotic water permeability coefficient (Pf) with AQP gene expression, we first examined the expression pattern of 33 AQP genes using macro-array hybridization. We detected the expression of 18 different isoforms representing the four AQP subfamilies, i.e. eight plasma membrane (PIP), five tonoplast (TIP), three small basic (SIP) and two NOD26-like (NIP) AQPs. While the expression of most of these genes was constant throughout all growth phases, mRNA levels of ZmPIP1;3 , ZmPIP2;1 , ZmPIP2;2, ZmPIP2;4 and ZmPIP2;6 increased significantly during the logarithmic growth phase and the beginning of the stationary phase. The use of specific anti-ZmPIP antisera showed that the protein expression pattern correlated well with mRNA levels. Cell pressure probe and protoplast swelling measurements were then performed to determine the Pf. Interestingly, we found that the Pf were significantly increased at the end of the logarithmic growth phase and during the steady-state phase compared to the lag phase, demonstrating a positive correlation between AQP abundance in the plasma membrane and the cell Pf.  相似文献   

19.
Fluid transport across epithelial and endothelial barriers occurs in the neonatal and adult lungs. Biophysical measurements in the intact lung and cell isolates have indicated that osmotic water permeability is exceptionally high across alveolar epithelia and endothelia and moderately high across airway epithelia. This review is focused on the role of membrane water-transporting proteins, the aquaporins (AQPs), in high lung water permeability and lung physiology. The lung expresses several AQPs: AQP1 in microvascular endothelia, AQP3 in large airways, AQP4 in large- and small-airway epithelia, and AQP5 in type I alveolar epithelial cells. Lung phenotype analysis of transgenic mice lacking each of these AQPs has been informative. Osmotically driven water permeability between the air space and capillary compartments is reduced approximately 10-fold by deletion of AQP1 or AQP5 and reduced even more by deletion of AQP1 and AQP4 or AQP1 and AQP5 together. AQP1 deletion greatly reduces osmotically driven water transport across alveolar capillaries but has only a minor effect on hydrostatic lung filtration, which primarily involves paracellular water movement. However, despite the major role of AQPs in lung osmotic water permeabilities, AQP deletion has little or no effect on physiologically important lung functions, such as alveolar fluid clearance in adult and neonatal lung, and edema accumulation after lung injury. Although AQPs play a major role in renal and central nervous system physiology, the data to date on AQP knockout mice do not support an important role of high lung water permeabilities or AQPs in lung physiology. However, there remain unresolved questions about possible non-water-transporting roles of AQPs and about the role of AQPs in airway physiology, pleural fluid dynamics, and edema after lung infection.  相似文献   

20.
Leishmania donovani, a protozoan parasite, resides in the macrophages of the mammalian host. The aquaporin family of proteins form important components of the parasite-host interface. The parasite-host interface could be a potential target for chemotherapy. Analysis of L. major and L. infantum genomes showed the presence of five aquaporins (AQPs) annotated as AQP9 (230aa), AQP putative (294aa), AQP-like protein (279aa), AQP1 (314aa) and AQP-like protein (596aa). We report here the structural modeling, localization and functional characterization of the AQPs from L. donovani. LdAQP1, LdAQP9, LdAQP2860 and LdAQP2870 have the canonical NPA-NPA motifs, whereas LdAQP putative has a non-canonical NPM-NPA motif. In the carboxyl terminal to the second NPA box of all AQPs except AQP1, a valine/alanine residue was found instead of the arginine. In that respect these four AQPs are similar to tonoplast intrinsic proteins in plants, which are localized to intracellular organelles. Confocal microscopy of L. donovani expressing GFP-tagged AQPs showed an intracellular localization of LdAQP9 and LdAQP2870. Real-time PCR assays showed expression of all aquaporins except LdAQP2860, whose level was undetectable. Three-dimensional homology modeling of the AQPs showed that LdAQP1 structure bears greater topological similarity to the aquaglyceroporin than to aquaporin of E. coli. The pore of LdAQP1 was very different from the rest in shape and size. The cavity of LdAQP2860 was highly irregular and undefined in geometry. For functional characterization, four AQP proteins were heterologously expressed in yeast. In the fps1Δ yeast cells, which lacked the key aquaglyceroporin, LdAQP1 alone displayed an osmosensitive phenotype indicating glycerol transport activity. However, expression of LdAQP1 and LdAQP putative in a yeast gpd1Δ strain, deleted for glycerol production, conferred osmosensitive phenotype indicating water transport activity or aquaporin function. Our analysis for the first time shows the presence of subcellular aquaporins and provides structural and functional characterization of aquaporins in Leishmania donovani.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号