首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fogle EJ  van der Donk WA 《Biochemistry》2007,46(45):13101-13108
Phosphite dehydrogenase (PTDH) is a unique NAD-dependent enzyme that catalyzes the oxidation of inorganic phosphite to phosphate. The enzyme has great potential for cofactor regeneration, and mechanistic studies have provided some insight into the residues that are important for catalysis. In this investigation, pre-steady-state studies were performed on the His6-tagged wild-type (WT) enzyme, several active site mutants, a thermostable mutant (12X-PTDH), and a thermostable mutant with dual cofactor specificity (NADP-12X-PTDH). Stopped-flow kinetic experiments indicate that slow steps after hydride transfer do not significantly limit the rate of reaction for the WT enzyme, the active site mutants, or the thermostable mutant. Pre-steady-state kinetic isotope effects (KIEs) and single-turnover experiments further confirm that slow steps after the chemical step do not significantly limit the rate of reaction for any of these proteins. Collectively, these results suggest that the hydride transfer step is fully rate determining in PTDH and that the observed KIE on kcat is the intrinsic effect in WT PTDH and the mutants examined. In contrast, a slow step after catalysis may partially limit the rate of phosphite oxidation by NADP-12X-PTDH with NADP as the cofactor. Finally, site-directed mutagenesis of Asp79 indicates that this residue is important in orienting Arg237 for proper interaction with phosphite.  相似文献   

2.
The in situ regeneration of reduced nicotinamide cofactors (NAD(P)H) is necessary for practical synthesis of many important chemicals. Here, we report the engineering of a highly stable and active mutant phosphite dehydrogenase (12x-A176R PTDH) from Pseudomonas stutzeri and evaluation of its potential as an effective NADPH regeneration system in an enzyme membrane reactor. Two practically important enzymatic reactions including xylose reductase-catalyzed xylitol synthesis and alcohol dehydrogenase-catalyzed (R)-phenylethanol synthesis were used as model systems, and the mutant PTDH was directly compared to the commercially available NADP(+)-specific Pseudomonas sp. 101 formate dehydrogenase (mut Pse-FDH) that is widely used for NADPH regeneration. In both model reactions, the two regeneration enzymes showed similar rates of enzyme activity loss; however, the mutant PTDH showed higher substrate conversion and higher total turnover numbers for NADP(+) than mut Pse-FDH. The space-time yields of the product with the mutant PTDH were also up to fourfold higher than those with mut Pse-FDH. In particular, a space-time yield of 230 g L(-1) d(-1) xylitol was obtained with the mutant PTDH using a charged nanofiltration membrane, representing the highest productivity compared to other existing biological processes for xylitol synthesis based on yeast D-xylose converting strains or similar in vitro enzyme membrane reactor systems.  相似文献   

3.
NAD(P)H-dependent oxidoreductases are valuable tools for synthesis of chiral compounds. The expense of the cofactors, however, requires in situ cofactor regeneration for preparative applications. We have attempted to develop an enzymatic system based on phosphite dehydrogenase (PTDH) from Pseudomonas stutzeri to regenerate the reduced nicotinamide cofactors NADH and NADPH. Here we report the use of directed evolution to address one of the main limitations with the wild-type PTDH enzyme, its low stability. After three rounds of random mutagenesis and high-throughput screening, 12 thermostabilizing amino acid substitutions were identified. These 12 mutations were combined by site-directed mutagenesis, resulting in a mutant whose T50 is 20 degrees C higher and half-life of thermal inactivation at 45 degrees C is >7,000-fold greater than that of the parent PTDH. The engineered PTDH has a half-life at 50 degrees C that is 2.4-fold greater than the Candida boidinii formate dehydrogenase, an enzyme widely used for NADH regeneration. In addition, its catalytic efficiency is slightly higher than that of the parent PTDH. Various mechanisms of thermostabilization were identified using molecular modeling. The improved stability and effectiveness of the final mutant were shown using the industrially important bioconversion of trimethylpyruvate to l-tert-leucine. The engineered PTDH will be useful in NAD(P)H regeneration for industrial biocatalysis.  相似文献   

4.
Phosphite dehydrogenase (PTDH) catalyzes the NAD-dependent oxidation of phosphite to phosphate, a reaction that is 15 kcal/mol exergonic. The enzyme belongs to the family of D-hydroxy acid dehydrogenases. Five other family members that were analyzed do not catalyze the oxidation of phosphite, ruling out the possibility that this is a ubiquitous activity of these proteins. PTDH does not accept any alternative substrates such as thiophosphite, hydrated aldehydes, and methylphosphinate, and potential small nucleophiles such as hydroxylamine, fluoride, methanol, and trifluoromethanol do not compete with water in the displacement of the hydride from phosphite. The pH dependence of k(cat)/K(m,phosphite) is bell-shaped with a pK(a) of 6.8 for the acidic limb and a pK(a) of 7.8 for the basic limb. The pK(a) of 6.8 is assigned to the second deprotonation of phosphite. However, whether the dianionic form of phosphite is the true substrate is not clear since a reverse protonation mechanism is also consistent with the available data. Unlike k(cat)/K(m,phosphite), k(cat) and k(cat)/K(m,NAD) are pH-independent. Sulfite is a strong inhibitor of PTDH that is competitive with respect to phosphite and uncompetitive with respect to NAD(+). Incubation of the enzyme with NAD(+) and low concentrations of sulfite results in a covalent adduct between NAD(+) and sulfite in the active site of the enzyme that binds very tightly. Fluorescent titration studies provided the apparent dissociation constants for NAD(+), NADH, sulfite, and the sulfite-NAD(+) adduct. Substrate isotope effect studies with deuterium-labeled phosphite resulted in small normal isotope effects (1.4-2.1) on both k(cat) and k(cat)/K(m,phosphite) at pH 7.25 and 8.0. Solvent isotope effects (SIEs) on k(cat) are similar in size; however, the SIE of k(cat)/K(m,phosphite) at pH 7.25 is significantly larger (4.4), whereas at pH 8.0, it is the inverse (0.6). The pH-rate profile of k(cat)/K(m,phosphite), which predicts that the observed SIEs will have a significant thermodynamic origin, can account for these effects.  相似文献   

5.
Phosphite dehydrogenase (PTDH) catalyzes the unusual oxidation of phosphite to phosphate with the concomitant reduction of NAD(+) to NADH. PTDH shares significant amino acid sequence similarity with D-hydroxy acid dehydrogenases (DHs), including strongly conserved catalytic residues His292, Glu266, and Arg237. Site-directed mutagenesis studies corroborate the essential role of His292 as all mutants of this residue were completely inactive. Histidine-selective inactivation studies with diethyl pyrocarbonate provide further evidence regarding the importance of His292. This residue is most likely the active site base that deprotonates the water nucleophile. Kinetic analysis of mutants in which Arg237 was changed to Leu, Lys, His, and Gln revealed that Arg237 is involved in substrate binding. These results agree with the typical role of this residue in D-hydroxy acid DHs. However, Glu266 does not play the typical role of increasing the pK(a) of His292 to enhance substrate binding and catalysis as the Glu266Gln mutant displayed an increased k(cat) and unchanged pH-rate profile compared to those of wild-type PTDH. The role of Glu266 is likely the positioning of His292 and Arg237 with which it forms hydrogen bonds in a homology model. Homology modeling suggests that Lys76 may also be involved in substrate binding, and this postulate is supported by mutagenesis studies. All mutants of Lys76 display reduced activity with large effects on the K(m) for phosphite, and Lys76Cys could be chemically rescued by alkylation with 2-bromoethylamine. Whereas a positively charged residue is absolutely essential for activity at the position of Arg237, Lys76 mutants that lacked a positively charged side chain still had activity, indicating that it is less important for binding and catalysis. These results highlight the versatility of nature's catalytic scaffolds, as a common framework with modest changes allows PTDH to catalyze its unusual nucleophilic displacement reaction and d-hydroxy acid DHs to oxidize alcohols to ketones.  相似文献   

6.
Woodyer R  van der Donk WA  Zhao H 《Biochemistry》2003,42(40):11604-11614
Homology modeling was used to identify two particular residues, Glu175 and Ala176, in Pseudomonas stutzeri phosphite dehydrogenase (PTDH) as the principal determinants of nicotinamide cofactor (NAD(+) and NADP(+)) specificity. Replacement of these two residues by site-directed mutagenesis with Ala175 and Arg176 both separately and in combination resulted in PTDH mutants with relaxed cofactor specificity. All three mutants exhibited significantly better catalytic efficiency for both cofactors, with the best kinetic parameters displayed by the double mutant, which had a 3.6-fold higher catalytic efficiency for NAD(+) and a 1000-fold higher efficiency for NADP(+). The cofactor specificity was changed from 100-fold in favor of NAD(+) for the wild-type enzyme to 3-fold in favor of NADP(+) for the double mutant. Isoelectric focusing of the proteins in a nondenaturing gel showed that the replacement with more basic residues indeed changed the effective pI of the protein. HPLC analysis of the enzymatic products of the double mutant verified that the reaction proceeded to completion using either substrate and produced only the corresponding reduced cofactor and phosphate. Thermal inactivation studies showed that the double mutant was protected from thermal inactivation by both cofactors, while the wild-type enzyme was protected by only NAD(+). The combined results provide clear evidence that Glu175 and Ala176 are both critical for nicotinamide cofactor specificity. The rationally designed double mutant might be useful for the development of an efficient in vitro NAD(P)H regeneration system for reductive biocatalysis.  相似文献   

7.
Phosphite dehydrogenase (PTDH) from Pseudomonas stutzeri catalyzes the nicotinamide adenine dinucleotide-dependent oxidation of phosphite to phosphate. The enzyme belongs to the family of D-hydroxy acid dehydrogenases (DHDHs). A search of the protein databases uncovered many additional putative phosphite dehydrogenases. The genes encoding four diverse candidates were cloned and expressed, and the enzymes were purified and characterized. All oxidized phosphite to phosphate and had similar kinetic parameters despite a low level of pairwise sequence identity (39-72%). A recent crystal structure identified Arg301 as a residue in the active site that has not been investigated previously. Arg301 is fully conserved in the enzymes shown here to be PTDHs, but the residue is not conserved in other DHDHs. Kinetic analysis of site-directed mutants of this residue shows that it is important for efficient catalysis, with an ~100-fold decrease in k(cat) and an almost 700-fold increase in K(m,phosphite) for the R301A mutant. Interestingly, the R301K mutant displayed a slightly higher k(cat) than the parent PTDH, and a more modest increase in K(m) for phosphite (nearly 40-fold). Given these results, Arg301 may be involved in the binding and orientation of the phosphite substrate and/or play a catalytic role via electrostatic interactions. Three other residues in the active site region that are conserved in the PTDH orthologs but not DHDHs were identified (Trp134, Tyr139, and Ser295). The importance of these residues was also investigated by site-directed mutagenesis. All of the mutants had k(cat) values similar to that of the wild-type enzyme, indicating these residues are not important for catalysis.  相似文献   

8.
磷是植物生长发育所必需的大量营养元素之一。土壤中存在大量的正磷酸盐 (Pi),但由于土壤化学和微生物转化使得土壤可利用磷的浓度并不高。土壤缺磷以及杂草的抗除草剂能力已成为当前农业可持续发展的重要限制因素,所以提高植物对土壤磷的吸收利用能力或寻求可替代正磷酸盐的磷肥以及开发新型杂草控制系统已成为亟待解决的问题。自然界中亚磷酸盐 (Phi) 是含量仅次于正磷酸盐的磷源,但仅在某些细菌中能被专一性的亚磷酸盐脱氢酶 (PTDH) 氧化利用,对植物的生长发育则具有抑制作用。利用这一特性,将从土壤宏基因组中直接扩增到的假单胞菌PTDH基因PsPtx通过农杆菌侵染法转入烟草中,并通过RT-PCR、垂直板幼苗生长、显性标记和生长竞争实验分析PsPtx转基因烟草的基因表达以及在Phi胁迫条件下的特性。结果显示,PsPtx在其转基因植株的根茎叶组织中都有几乎相同水平的表达;PsPtx转基因烟草不但能解除Phi对植物的毒害作用,并将它氧化成可用的Pi作为生长发育所需的磷源,而且在Phi胁迫条件下较野生型烟草有相当明显的生长竞争优势;另外PsPtx还具备成为植物遗传转化显性选择标记的优良特质。因此,PsPtx基因编码的亚磷酸盐脱氢酶可用于开发一种基于亚磷酸盐为磷肥和除草剂的植物磷利用和杂草控制系统,为当前农作物转基因研究存在的一些重大问题提供一个有效解决方案。  相似文献   

9.
The resolution of racemic ibuprofen was studied by partial diastereomer salt formation. The resolution was performed via two methods: resolution with (+)-(R)-phenylethylamine as chiral agent and resolution with a mixture of (+)-(R)-phenylethylamine and benzylamine. The diastereomers and unreacted enantiomers were separated by supercritical fluid extraction with carbon dioxide at 15 MPa and 33 degrees C. The influence of the achiral benzylamine on the resolution efficiency was studied by varying the concentrations of the structurally related amines in their mixtures, keeping the sum molar ratio of the amines to racemic ibuprofen constant at 0.55 +/- 0.02. The presence of benzylamine positively influenced the resolution efficiency at certain concentrations. The crystal structure of the salts of (+)-(R)-phenylethylamine with (-)-(R)-ibuprofen and (+)-(S)-ibuprofen, respectively, as well as the cocrystal of the benzylamine-ibuprofen salt with neutral ibuprofen molecules are presented. These structures were determined by single crystal X-ray diffraction, proving the significantly different stoichiometry of the related amines with the chiral acid, in accordance with mass balance calculations.  相似文献   

10.
Phosphite dehydrogenase (PTDH) catalyzes the NAD+-dependent oxidation of phosphite to phosphate. This reaction requires the deprotonation of a water nucleophile for attack on phosphite. A crystal structure was recently solved that identified Arg301 as a potential base given its proximity and orientation to the substrates and a water molecule within the active site. Mutants of this residue showed its importance for efficient catalysis, with about a 100-fold loss in k cat and substantially increased K m,phosphite for the Ala mutant (R301A). The 2.35 Å resolution crystal structure of the R301A mutant with NAD+ bound shows that removal of the guanidine group renders the active site solvent exposed, suggesting the possibility of chemical rescue of activity. We show that the catalytic activity of this mutant is restored to near wild-type levels by the addition of exogenous guanidinium analogues; Brønsted analysis of the rates of chemical rescue suggests that protonation of the rescue reagent is complete in the transition state of the rate-limiting step. Kinetic isotope effects on the reaction in the presence of rescue agents show that hydride transfer remains at least partially rate-limiting, and inhibition experiments show that K i of sulfite with R301A is ∼400-fold increased compared to the parent enzyme, similar to the increase in K m for phosphite in this mutant. The results of our experiments indicate that Arg301 plays an important role in phosphite binding as well as catalysis, but that it is not likely to act as an active site base.  相似文献   

11.

To facilitate the wider application of the NADPH-dependent P450BM3, we fused the monooxygenase with a phosphite dehydrogenase (PTDH). The resulting monooxygenase-dehydrogenase fusion enzyme acts as a self-sufficient bifunctional catalyst, accepting phosphite as a cheap electron donor for the regeneration of NADPH.

The well-expressed fusion enzyme was purified and analyzed in comparison to the parent enzymes. Using lauric acid as substrate for P450BM3, it was found that the fusion enzyme had similar substrate affinity and hydroxylation selectivity while it displayed a significantly higher activity than the non-fused monooxygenase. Phosphite-driven conversions of lauric acid at restricted NADPH concentrations confirmed multiple turnovers of the cofactor. Interestingly, both the fusion enzyme and the native P450BM3 displayed enzyme concentration dependent activity and the fused enzyme reached optimal activity at a lower enzyme concentration. This suggests that the fusion enzyme has an improved tendency to form functional oligomers.

To explore the constructed phosphite-driven P450BM3 as a biocatalyst, conversions of the drug compounds omeprazole and rosiglitazone were performed. PTDH-P450BM3 driven by phosphite was found to be more efficient in terms of total turnover when compared with P450BM3 driven by NADPH. The results suggest that PTDH-P450BM3 is an attractive system for use in biocatalytic and drug metabolism studies.

  相似文献   

12.
Phosphite dehydrogenase represents a new enzymatic system for regenerating reduced nicotinamide cofactors for industrial biocatalysis. We previously engineered a variant of phosphite dehydrogenase with relaxed cofactor specificity and significantly increased activity and stability. Here we performed one round of random mutagenesis followed by comprehensive saturation mutagenesis to further improve the enzyme thermostability while maintaining its activity. Two new thermostabilizing mutations were identified. These, along with the 12 mutations previously identified, were subjected to saturation mutagenesis using the parent enzyme or the engineered thermostable variant 12x as a template, followed by screening of variants with increased thermostability. Of the 12 previously identified sites, 6 yielded new variants with improved stability over the parent enzyme. Several mutations were found to be context-dependent. On the basis of molecular modeling and biochemical analysis, various mechanisms of thermostabilization were identified. Combining the most thermostabilizing mutation at each site resulted in a variant that showed a 100-fold increase in half-life at 62 degrees C over the 12x mutant. The final mutant has improved the half-life of thermal inactivation at 45 degrees C by 23,000-fold over the parent enzyme. The engineered phosphite dehydrogenase will be useful in NAD(P)H regeneration.  相似文献   

13.
Single-strand-specific nucleases are a diverse and important group of enzymes that are able to cleave a variety of DNA structures present in duplex molecules. Nuclease SP, an enzyme from spinach, has been purified to apparent homogeneity, allowing for the unambiguous characterization of a number of its physical properties as well as its DNA strand cleavage specificities. The effects of ionic strength, pH, divalent metal cations, and temperature on nuclease SP activity have been examined in detail. Nuclease SP was found to be quite thermostable and could be stimulated by Co2+. In addition, the cleavage of UV-damaged and undamaged supercoiled plasmid substrates under a variety of conditions suggests that at least two types of structures are recognized and processed by nuclease SP: UV photoproduct-induced distortions and unwound "nuclease hypersensitive sites". These studies indicate that nuclease SP is functionally related to other single-strand-specific nucleases and is a potential enzymatic tool for probing and manipulating various types of DNA structures.  相似文献   

14.
A sensitive fluorometric assay for the quantification of phosphite has been developed. The assay uses the enzymatic oxidation of phosphite to phosphate by a recombinant phosphite dehydrogenase with NAD+ as cosubstrate to produce the highly fluorescent reaction product resorufin. The optimized assay can be carried out in a 96-well microtiter plate format for high-throughput screening purposes and has a detection limit of 0.25 nmol phosphite. We used the method to quantify phosphite levels in plant tissue extracts and to determine phosphite dehydrogenase activity in transgenic plants. The assay is suitable for other biological or environmental samples. Because phosphite is a widely used fungicide to protect plants from pathogenic oomycetes, the assay provides a cost-effective and easy-to-use method to monitor the fate of phosphite following application.  相似文献   

15.
Crystal structure of human pyrroline-5-carboxylate reductase   总被引:2,自引:0,他引:2  
Pyrroline-5-carboxylate reductase (P5CR) is a universal housekeeping enzyme that catalyzes the reduction of Delta(1)-pyrroline-5-carboxylate (P5C) to proline using NAD(P)H as the cofactor. The enzymatic cycle between P5C and proline is very important for the regulation of amino acid metabolism, intracellular redox potential, and apoptosis. Here, we present the 2.8 Angstroms resolution structure of the P5CR apo enzyme, its 3.1 Angstroms resolution ternary complex with NAD(P)H and substrate-analog. The refined structures demonstrate a decameric architecture with five homodimer subunits and ten catalytic sites arranged around a peripheral circular groove. Mutagenesis and kinetic studies reveal the pivotal roles of the dinucleotide-binding Rossmann motif and residue Glu221 in the human enzyme. Human P5CR is thermostable and the crystals were grown at 37 degrees C. The enzyme is implicated in oxidation of the anti-tumor drug thioproline.  相似文献   

16.
Taking the advantages of inert and stable nature of endospores, we developed a biocatalysis platform for multiple enzyme immobilization on Bacillus subtilis spore surface. Among B. subtilis outer coat proteins, CotG mediated a high expression level of Clostridium thermocellum cohesin (CtCoh) with a functional display capability of ~104 molecules per spore of xylose reductase‐C. thermocellum dockerin fusion protein (XR‐CtDoc). By co‐immobilization of phosphite dehydrogenase (PTDH) on spore surface via Ruminococcus flavefaciens cohesin‐dockerin modules, regeneration of NADPH was achieved. Both xylose reductase (XR) and PTDH exhibited enhanced stability upon spore surface display. More importantly, by altering the copy numbers of CtCoh and RfCoh fused with CotG, the molar ratio between immobilized enzymes was adjusted in a controllable manner. Optimization of spore‐displayed XR/PTDH stoichiometry resulted in increased yields of xylitol. In conclusion, endospore surface display presents a novel approach for enzyme cascade immobilization with improved stability and tunable stoichiometry. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:383–389, 2017  相似文献   

17.
Principles of protein thermostability have been studied by comparing structures of thermostable proteins with mesophilic counterparts that have a high degree of sequence identity. Two tetrameric NADP(H)-dependent alcohol dehydrogenases, one from Clostridium beijerinckii (CBADH) and the other from Thermoanaerobacter brockii (TBADH), having exceptionally high (75%) sequence identity, differ by 30 degrees in their melting temperatures. The crystal structures of CBADH and TBADH in their holo-enzyme form have been determined at a resolution of 2.05 and 2.5 A, respectively. Comparison of these two very similar structures (RMS difference in Calpha = 0.8 A) revealed several features that can account for the higher thermal stability of TBADH. These include additional ion pairs, "charged-neutral" hydrogen bonds, and prolines as well as improved stability of alpha-helices and tighter molecular packing. However, a deeper structural insight, based on the location of stabilizing elements, suggests that enhanced thermal stability of TBADH is due mainly to the strategic placement of structural determinants at positions that strengthen the interface between its subunits. This is also supported by mutational analysis of structural elements at critical locations. Thus, it is the reinforcement of the quaternary structure that is most likely to be a primary factor in preserving enzymatic activity of this oligomeric bacterial ADH at elevated temperatures.  相似文献   

18.

Background

Organophosphates (OPs) are neurotoxic compounds for which current methods of elimination are unsatisfactory; thus bio-remediation is considered as a promising alternative. Here we provide the structural and enzymatic characterization of the recently identified enzyme isolated from Pseudomonas pseudoalcaligenes dubbed OPHC2. OPHC2 belongs to the metallo-β-lactamase superfamily and exhibits an unusual thermal resistance and some OP degrading abilities.

Principal findings

The X-ray structure of OPHC2 has been solved at 2.1 Å resolution. The enzyme is roughly globular exhibiting a αβ/βα topology typical of the metallo-β-lactamase superfamily. Several structural determinants, such as an extended dimerization surface and an intramolecular disulfide bridge, common features in thermostable enzymes, are consistent with its high Tm (97.8°C). Additionally, we provide the enzymatic characterization of OPHC2 against a wide range of OPs, esters and lactones.

Significance

OPHC2 possesses a broad substrate activity spectrum, since it hydrolyzes various phosphotriesters, esters, and a lactone. Because of its organophosphorus hydrolase activity, and given its intrinsic thermostability, OPHC2 is an interesting candidate for the development of an OPs bio-decontaminant. Its X-ray structure shed light on its active site, and provides key information for the understanding of the substrate binding mode and catalysis.  相似文献   

19.
The crystal structure of a yeast hypothetical protein with sequence similarity to CN hydrolases has been determined to 2.4 A resolution by the multiwavelength anomalous dispersion (MAD) method. The protein folds as a four-layer alphabetabetaalpha sandwich and exists as a dimer in the crystal and in solution. It was selected in a structural genomics project as representative of CN hydrolases at a time when no structures had been determined for members of this family. Structures for two other members of the family have since been reported and the three proteins have similar topology and dimerization modes, which are distinct from those of other alphabetabetaalpha proteins whose structures are known. The dimers form an unusual eight-layer alphabetabetaalpha:alphabetabetaalpha structure. Although the precise enzymatic reactions catalyzed by the yeast protein are not known, considerable information about the active site may be deduced from conserved sequence motifs, comparative biochemical information, and comparison with known structures of hydrolase active sites. As with serine hydrolases, the active-site nucleophile (cysteine in this case) is positioned on a nucleophile elbow.  相似文献   

20.
A new and practical enzymatic procedure for preparative diastereoselective hydrolysis of peptide esters using the alkaline protease alcalase as a catalyst was developed. This procedure has been successfully applied to the resolution of peptide diastereomers and synthesis of racemization free peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号