首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
aaRSs (aminoacyl-tRNA synthetases) are multi-domain proteins that have evolved by domain acquisition. The anti-codon binding domain was added to the more ancient catalytic domain during aaRS evolution. Unlike in eukaryotes, the anti-codon binding domains of GluRS (glutamyl-tRNA synthetase) and GlnRS (glutaminyl-tRNA synthetase) in bacteria are structurally distinct. This originates from the unique evolutionary history of GlnRSs. Starting from the catalytic domain, eukaryotic GluRS evolved by acquiring the archaea/eukaryote-specific anti-codon binding domain after branching away from the eubacteria family. Subsequently, eukaryotic GlnRS evolved from GluRS by gene duplication and horizontally transferred to bacteria. In order to study the properties of the putative ancestral GluRS in eukaryotes, formed immediately after acquiring the anti-codon binding domain, we have designed and constructed a chimaeric protein, cGluGlnRS, consisting of the catalytic domain, Ec GluRS (Escherichia coli GluRS), and the anti-codon binding domain of EcGlnRS (E. coli GlnRS). In contrast to the isolated EcN-GluRS, cGluGlnRS showed detectable activity of glutamylation of E. coli tRNA(glu) and was capable of complementing an E. coli ts (temperature-sensitive)-GluRS strain at non-permissive temperatures. Both cGluGlnRS and EcN-GluRS were found to bind E. coli tRNA(glu) with native EcGluRS-like affinity, suggesting that the anticodon-binding domain in cGluGlnRS enhances k(cat) for glutamylation. This was further confirmed from similar experiments with a chimaera between EcN-GluRS and the substrate-binding domain of EcDnaK (E. coli DnaK). We also show that an extended loop, present in the anticodon-binding domains of GlnRSs, is absent in archaeal GluRS, suggesting that the loop was a later addition, generating additional anti-codon discrimination capability in GlnRS as it evolved from GluRS in eukaryotes.  相似文献   

2.
In its tRNA acceptor end binding domain, the glutamyl-tRNA synthetase (GluRS) of Escherichia coli contains one atom of zinc that holds the extremities of a segment (Cys98-x-Cys100-x24-Cys125-x-His127) homologous to the Escherichia coli glutaminyl-tRNA synthetase (GlnRS) loop where a leucine residue stabilizes the peeled-back conformation of tRNAGln acceptor end. We report here that the GluRS zinc-binding region belongs to the novel SWIM domain family characterized by the signature C-x-C-xn-C-x-H (n = 6-25), and predicted to interact with DNA or proteins. In the presence of tRNAGlu, the GluRS C100Y variant has a lower affinity for l-glutamate than the wild-type enzyme, with Km and Kd values increased 12- and 20-fold, respectively. On the other hand, in the absence of tRNAGlu, glutamate binds with the same affinity to the C100Y variant and to wild-type GluRS. In the context of the close structural and mechanistic similarities between GluRS and GlnRS, these results indicate that the GluRS SWIM domain modulates glutamate binding to the active site via its interaction with the tRNAGlu acceptor arm. Phylogenetic analyses indicate that ancestral GluRSs had a strong zinc-binding site in their SWIM domain. Considering that all GluRSs require a cognate tRNA to activate glutamate, and that some of them have different or no putative zinc-binding residues in the corresponding positions, the properties of the C100Y variant suggest that the GluRS SWIM domains evolved to position correctly the tRNA acceptor end in the active site, thereby contributing to the formation of the glutamate binding site.  相似文献   

3.
The glutaminyl-tRNA synthetase (GlnRS) enzyme, which pairs glutamine with tRNAGln for protein synthesis, evolved by gene duplication in early eukaryotes from a nondiscriminating glutamyl-tRNA synthetase (GluRS) that aminoacylates both tRNAGln and tRNAGlu with glutamate. This ancient GluRS also separately differentiated to exclude tRNAGln as a substrate, and the resulting discriminating GluRS and GlnRS further acquired additional protein domains assisting function in cis (the GlnRS N-terminal Yqey domain) or in trans (the Arc1p protein associating with GluRS). These added domains are absent in contemporary bacterial GlnRS and GluRS. Here, using Saccharomyces cerevisiae enzymes as models, we find that the eukaryote-specific protein domains substantially influence amino acid binding, tRNA binding and aminoacylation efficiency, but they play no role in either specific nucleotide readout or discrimination against noncognate tRNA. Eukaryotic tRNAGln and tRNAGlu recognition determinants are found in equivalent positions and are mutually exclusive to a significant degree, with key nucleotides located adjacent to portions of the protein structure that differentiated during the evolution of archaeal nondiscriminating GluRS to GlnRS. These findings provide important corroboration for the evolutionary model and suggest that the added eukaryotic domains arose in response to distinctive selective pressures associated with the greater complexity of the eukaryotic translational apparatus. We also find that the affinity of GluRS for glutamate is significantly increased when Arc1p is not associated with the enzyme. This is consistent with the lower concentration of intracellular glutamate and the dissociation of the Arc1p:GluRS complex upon the diauxic shift to respiratory conditions.  相似文献   

4.
Bis-ANS binds to native glutaminyl-tRNA synthetase (GlnRS) with a fast and a slow phase. The rate constant of the slow phase is independent of bis-ANS concentration suggesting a slow conformational change in the pathway of bis-ANS binding. Aging of GlnRS causes a large decrease of the slow phase amplitude with concomitant increase of the fast phase amplitude. Several other large, multi-domain proteins show similar patterns upon aging. The near UV-CD spectra of the native and the aged GlnRS remain similar. Significant changes in far UV-CD, acrylamide quenching and sulfhydryl reactivity, are seen upon aging, suggesting disruptions in native interactions. Refolding of GlnRS from the urea-denatured state rapidly produces a state that is very similar to the equilibrium molten globule state. Bis-ANS binds to the molten globule state with kinetics similar to that of the aged state and unlike that of the native state. This suggests that the slow binding phase of bis-ANS, seen in native proteins, originate from relatively high energy barriers between the native and the more open states. Thus bis-ANS can be used as a powerful probe for large amplitude, low-frequency motions of proteins.  相似文献   

5.
The aminoacyl-beta-ketophosphonate-adenosines (aa-KPA) are stable analogs of the aminoacyl adenylates, which are high-energy intermediates in the formation of aminoacyl-tRNA catalyzed by aminoacyl-tRNA synthetases (aaRS). We have synthesized glutamyl-beta-ketophosphonate-adenosine (Glu-KPA) and glutaminyl-beta-ketophosphonate-adenosine (Gln-KPA), and have tested them as inhibitors of their cognate aaRS, and of a non-cognate aaRS. Glu-KPA is a competitive inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS) with a K(i) of 18microM with respect to its substrate glutamate, and binds at one site on this monomeric enzyme; the non-cognate Gln-KPA also binds this GluRS at one site, but is a much weaker (K(i)=2.9mM) competitive inhibitor. By contrast, Gln-KPA inhibits E. coli glutaminyl-tRNA synthetase (GlnRS) by binding competitively but weakly at two distinct sites on this enzyme (average K(i) of 0.65mM); the non-cognate Glu-KPA shows one-site weak (K(i)=2.8mM) competitive inhibition of GlnRS. These kinetic results indicate that the glutamine and the AMP modules of Gln-KPA, connected by the beta-ketophosphonate linker, cannot bind GlnRS simultaneously, and that one Gln-KPA molecule binds the AMP-binding site of GlnRS through its AMP module, whereas another Gln-KPA molecule binds the glutamine-binding site through its glutamine module. This model suggests that similar structural constraints could affect the binding of Glu-KPA to the active site of mammalian cytoplasmic GluRSs, which are evolutionarily much closer to bacterial GlnRS than to bacterial GluRS. This possibility was confirmed by the fact that Glu-KPA inhibits bovine liver GluRS 145-fold less efficiently than E. coli GluRS by competitive weak binding at two distinct sites (average K(i)=2.6mM). Moreover, these kinetic differences reveal that the active sites of bacterial GluRSs and mammalian cytoplasmic GluRSs have substantial structural differences that could be further exploited for the design of better inhibitors specific for bacterial GluRSs, promising targets for antimicrobial therapy.  相似文献   

6.
The urea induced equilibrium denaturation behavior of glutaminyl-tRNA synthetase from Escherichia coli (GlnRS) in 0.25 m potassium l-glutamate, a naturally occurring osmolyte in E. coli, has been studied. Both the native to molten globule and molten globule to unfolded state transitions are shifted significantly toward higher urea concentrations in the presence of l-glutamate, suggesting that l-glutamate has the ability to counteract the denaturing effect of urea. d-Glutamate has a similar effect on the equilibrium denaturation of glutaminyl-tRNA synthetase, indicating that the effect of l-glutamate may not be due to substrate-like binding to the native state. The activation energy of unfolding is not significantly affected in the presence of 0.25 m potassium l-glutamate, indicating that the native state is not preferentially stabilized by the osmolyte. Dramatic increase of coefficient of urea concentration dependence (m) values of both the transitions in the presence of glutamate suggests destabilization and increased solvent exposure of the denatured states. Four other osmolytes, sorbitol, trimethylamine oxide, inositol, and triethylene glycol, show either a modest effect or no effect on native to molten globule transition of glutaminyl-tRNA synthetase. However, glycine betaine significantly shifts the transition to higher urea concentrations. The effect of these osmolytes on other proteins is mixed. For example, glycine betaine counteracts urea denaturation of tubulin but promotes denaturation of S228N lambda-repressor and carbonic anhydrase. Osmolyte counteraction of urea denaturation depends on osmolyte-protein pair.  相似文献   

7.
In translation, separate aminoacyl-tRNA synthetases attach the 20 different amino acids to their cognate tRNAs, with the exception of glutamine. Eukaryotes and some bacteria employ a specific glutaminyl-tRNA synthetase (GlnRS) which other Bacteria, the Archaea (archaebacteria), and organelles apparently lack. Instead, tRNAGln is initially acylated with glutamate by glutamyl-tRNA synthetase (GluRS), then the glutamate moiety is transamidated to glutamine. Lamour et al. [(1994) Proc Natl Acad Sci USA 91:8670–8674] suggested that an early duplication of the GluRS gene in eukaryotes gave rise to the gene for GlnRS—a copy of which was subsequently transferred to proteobacteria. However, questions remain about the occurrence of GlnRS genes among the Eucarya (eukaryotes) outside of the ``crown' taxa (animals, fungi, and plants), the distribution of GlnRS genes in the Bacteria, and their evolutionary relationships to genes from the Archaea. Here, we show that GlnRS occurs in the most deeply branching eukaryotes and that putative GluRS genes from the Archaea are more closely related to GlnRS and GluRS genes of the Eucarya than to those of Bacteria. There is still no evidence for the existence of GlnRS in the Archaea. We propose that the last common ancestor to contemporary cells, or cenancestor, used transamidation to synthesize Gln-tRNAGln and that both the Bacteria and the Archaea retained this pathway, while eukaryotes developed a specific GlnRS gene through the duplication of an existing GluRS gene. In the Bacteria, GlnRS genes have been identified in a total of 10 species from three highly diverse taxonomic groups: Thermus/Deinococcus, Proteobacteria γ/β subdivision, and Bacteroides/Cytophaga/Flexibacter. Although all bacterial GlnRS form a monophyletic group, the broad phyletic distribution of this tRNA synthetase suggests that multiple gene transfers from eukaryotes to bacteria occurred shortly after the Archaea–eukaryote divergence.  相似文献   

8.
The crystal structure of ligand-free E. coli glutaminyl-tRNA synthetase (GlnRS) at 2.4 A resolution shows that substrate binding is essential to construction of a catalytically proficient active site. tRNA binding generates structural changes throughout the enzyme, repositioning key active site peptides that bind glutamine and ATP. The structure gives insight into longstanding questions regarding the tRNA dependence of glutaminyl adenylate formation, the coupling of amino acid and tRNA selectivities, and the roles of specific pathways for transmission of tRNA binding signals to the active site. Comparative analysis of the unliganded and tRNA-bound structures shows, in detail, how flexibility is built into the enzyme architecture and suggests that the induced-fit transitions are a key underlying determinant of both amino acid and tRNA specificity.  相似文献   

9.
Discrimination of tRNAGln is an integral function of several bacterial glutamyl-tRNA synthetases (GluRS). The origin of the discrimination is thought to arise from unfavorable interactions between tRNAGln and the anticodon-binding domain of GluRS. From experiments on an anticodon-binding domain truncated Escherichia coli (E. coli) GluRS (catalytic domain) and a chimeric protein, constructed from the catalytic domain of E. coli GluRS and the anticodon-binding domain of E. coli glutaminyl-tRNA synthetase (GlnRS), we show that both proteins discriminate against E. coli tRNAGln. Our results demonstrate that in addition to the anticodon-binding domain, tRNAGln discriminatory elements may be present in the catalytic domain in E. coli GluRS as well.  相似文献   

10.
Protein biosynthesis requires aminoacyl-transfer RNA (tRNA) synthetases to provide aminoacyl-tRNA substrates for the ribosome. Most bacteria and all archaea lack a glutaminyl-tRNA synthetase (GlnRS); instead, Gln-tRNA(Gln) is produced via an indirect pathway: a glutamyl-tRNA synthetase (GluRS) first attaches glutamate (Glu) to tRNA(Gln), and an amidotransferase converts Glu-tRNA(Gln) to Gln-tRNA(Gln). The human pathogen Helicobacter pylori encodes two GluRS enzymes, with GluRS2 specifically aminoacylating Glu onto tRNA(Gln). It was proposed that GluRS2 is evolving into a bacterial-type GlnRS. Herein, we have combined rational design and directed evolution approaches to test this hypothesis. We show that, in contrast to wild-type (WT) GlnRS2, an engineered enzyme variant (M110) with seven amino acid changes is able to rescue growth of the temperature-sensitive Escherichia coli glnS strain UT172 at its non-permissive temperature. In vitro kinetic analyses reveal that WT GluRS2 selectively acylates Glu over Gln, whereas M110 acylates Gln 4-fold more efficiently than Glu. In addition, M110 hydrolyzes adenosine triphosphate 2.5-fold faster in the presence of Glu than Gln, suggesting that an editing activity has evolved in this variant to discriminate against Glu. These data imply that GluRS2 is a few steps away from evolving into a GlnRS and provides a paradigm for studying aminoacyl-tRNA synthetase evolution using directed engineering approaches.  相似文献   

11.
Glutamyl-tRNA synthetases (GluRSs) are divided into two distinct types, with regard to the presence or absence of glutaminyl-tRNA synthetase (GlnRS) in the genetic translation systems. In the original 19-synthetase systems lacking GlnRS, the 'non-discriminating' GluRS glutamylates both tRNAGlu and tRNAGln. In contrast, in the evolved 20-synthetase systems with GlnRS, the 'discriminating' GluRS aminoacylates only tRNAGlu. Here we report the 2.4 A resolution crystal structure of a 'discriminating' GluRS.tRNAGlu complex from Thermus thermophilus. The GluRS recognizes the tRNAGlu anticodon bases via two alpha-helical domains, maintaining the base stacking. We show that the discrimination between the Glu and Gln anticodons (34YUC36 and 34YUG36, respectively) is achieved by a single arginine residue (Arg 358). The mutation of Arg 358 to Gln resulted in a GluRS that does not discriminate between the Glu and Gln anticodons. This change mimics the reverse course of GluRS evolution from anticodon 'non-dicsriminating' to 'discriminating'.  相似文献   

12.
Calexcitin (CE) is a calcium sensor protein that has been implicated in associative learning through the Ca(2+)-dependent inhibition of K(+) channels and activation of ryanodine receptors. CE(B), the major CE variant, was identified as a member of the sarcoplasmic Ca(2+) binding protein family: proteins that can bind both Ca(2+) and Mg(2+). We have now determined the intrinsic Ca(2+) and Mg(2+) binding affinities of CE(B) and investigated their interplay on the folding and structure of CE(B). We find that urea denaturation of CE(B) displays a three-state unfolding transition consistent with the presence of two structural domains. Through a combination of spectroscopic and denaturation studies we find that one domain likely possesses molten globule structure and contains a mixed Ca(2+)/Mg(2+) binding site and a Ca(2+) binding site with weak Mg(2+) antagonism. Furthermore, ion binding to the putative molten globule domain induces native structure formation. The other domain contains a single Ca(2+)-specific binding site and has native structure, even in the absence of ion binding. Ca(2+) binding to CE(B) induces the formation of a recessed hydrophobic pocket. On the basis of measured ion binding affinities and intracellular ion concentrations, it appears that Mg(2+)-CE(B) represents the resting state and Ca(2+)-CE(B) corresponds to the active state, under physiological conditions.  相似文献   

13.
Accurate aminoacylation of tRNAs by the aminoacyl-tRNA synthetases (aaRSs) plays a critical role in protein translation. However, some of the aaRSs are missing in many microorganisms. Helicobacter pylori does not have a glutaminyl-tRNA synthetase (GlnRS) but has two divergent glutamyl-tRNA synthetases: GluRS1 and GluRS2. Like a canonical GluRS, GluRS1 aminoacylates tRNAGlu1 and tRNAGlu2. In contrast, GluRS2 only misacylates tRNAGln to form Glu-tRNAGln. It is not clear how GluRS2 achieves specific recognition of tRNAGln while rejecting the two H. pylori tRNAGlu isoacceptors. Here, we show that GluRS2 recognizes major identity elements clustered in the tRNAGln acceptor stem. Mutations in the tRNA anticodon or at the discriminator base had little to no impact on enzyme specificity and activity.  相似文献   

14.
The putative zinc-binding domain (pZBD) in Escherichia coli glutamyl-tRNA synthetase (GluRS) is known to correctly position the tRNA acceptor arm and modulate the amino acid-binding site. However, its functional role in other bacterial species is not clear since many bacterial GluRSs lack a zinc-binding motif in the pZBD. From experimental studies on pZBD-swapped E. coli GluRS, with Thermosynechoccus elongatus GluRS, Burkholderia thailandensis GluRS and E. coli glutamyl-queuosine-tRNAAsp synthetase (Glu-Q-RS), we show that E. coli GluRS, containing the zinc-free pZBD of B. thailandensis, is as functional as the zinc-bound wild-type E. coli GluRS, whereas the other constructs, all zinc-bound, show impaired function. A pZBD-tinkered version of E. coli GluRS that still retained Zn-binding capacity, also showed reduced activity. This suggests that zinc is not essential for the pZBD to be functional. From extensive structural and sequence analyses from whole genome database of bacterial GluRS, we further show that in addition to many bacterial GluRS lacking a zinc-binding motif, the pZBD is actually deleted in some bacteria, all containing either glutaminyl-tRNA synthetase (GlnRS) or a second copy of GluRS (GluRS2). Correlation between the absence of pZBD and the occurrence of glutamine amidotransferase CAB (GatCAB) in the genome suggests that the primordial role of the pZBD was to facilitate transamidation of misacylated Glu-tRNAGln via interaction with GatCAB, whereas its role in tRNAGlu interaction may be a consequence of the presence of pZBD.  相似文献   

15.
APOBEC3A (A3A), one of the seven-member APOBEC3 family of cytidine deaminases, lacks strong antiviral activity against lentiviruses but is a potent inhibitor of adeno-associated virus and endogenous retroelements. In this report, we characterize the biochemical properties of mammalian cell-produced and catalytically active E. coli-produced A3A. The enzyme binds to single-stranded DNA with a Kd of 150 nM and forms dimeric and monomeric fractions. A3A, unlike APOBEC3G (A3G), deaminates DNA substrates nonprocessively. Using a panel of oligonucleotides that contained all possible trinucleotide contexts, we identified the preferred target sequence as TC (A/G). Based on a three-dimensional model of A3A, we identified a putative binding groove that contains residues with the potential to bind substrate DNA and to influence target sequence specificity. Taking advantage of the sequence similarity to the catalytic domain of A3G, we generated A3A/A3G chimeric proteins and analyzed their target site preference. We identified a recognition loop that altered A3A sequence specificity, broadening its target sequence preference. Mutation of amino acids in the predicted DNA binding groove prevented substrate binding, confirming the role of this groove in substrate binding. These findings shed light on how APOBEC3 proteins bind their substrate and determine which sites to deaminate.  相似文献   

16.
Glutamyl-queuosine-tRNAAsp synthetase (Glu-Q-RS) is a paralog of glutamyl-tRNA synthetase (GluRS) and is found in more than forty species of proteobacteria, cyanobacteria, and actinobacteria. Glu-Q-RS shows striking structural similarity with N-terminal catalytic domain of GluRS (NGluRS) but it lacks the C-terminal anticodon binding domain (CGluRS). In spite of structural similarities, Glu-Q-RS and NGluRS differ in their functional properties. Glu-Q-RS glutamylates the Q34 nucleotide of the anticodon of tRNAAsp whereas NGluRS constitutes the catalytic domain of GluRS catalyzing the transfer of Glu on the acceptor end of tRNAGlu. Since NGluRS is able to catalyze aminoacylation of only tRNAGlu the glutamylation capacity of tRNAAsp by Glu-Q-RS is surprising. To understand the substrate specificity of Glu-Q-RS we undertook a systemic approach by investigating the biophysical and biochemical properties of the NGluRS (1–301), CGluRS (314–471) and Glu-Q-RS-CGluRS, (1–298 of Glu-Q-RS fused to 314–471 from GluRS). Circular dichroism, fluorescence spectroscopy and differential scanning calorimetry analyses revealed absence of N-terminal domain (1–298 of Glu-Q-RS) and C-terminal domain (314–471 from GluRS) communication in chimera, in contrast to the native full length GluRS. The chimeric Glu-Q-RS is still able to aminoacylate tRNAAsp but has also the capacity to bind tRNAGlu. However the chimeric protein is unable to aminoacylate tRNAGlu probably as a consequence of the lack of domain–domain communication.  相似文献   

17.
Steady-state and transient kinetic analyses of glutaminyl-tRNA synthetase (GlnRS) reveal that the enzyme discriminates against noncognate glutamate at multiple steps during the overall aminoacylation reaction. A major portion of the selectivity arises in the amino acid activation portion of the reaction, whereas the discrimination in the overall two-step reaction arises from very weak binding of noncognate glutamate. Further transient kinetics experiments showed that tRNA(Gln) binds to GlnRS approximately 60-fold weaker when noncognate glutamate is present and that glutamate reduces the association rate of tRNA with the enzyme by 100-fold. These findings demonstrate that amino acid and tRNA binding are interdependent and reveal an important additional source of specificity in the aminoacylation reaction. Crystal structures of the GlnRS x tRNA complex bound to either amino acid have previously shown that glutamine and glutamate bind in distinct positions in the active site, providing a structural basis for the amino acid-dependent modulation of tRNA affinity. Together with other crystallographic data showing that ligand binding is essential to assembly of the GlnRS active site, these findings suggest a model for specificity generation in which required induced-fit rearrangements are significantly modulated by the identities of the bound substrates.  相似文献   

18.
The molecular basis of the genetic code relies on the specific ligation of amino acids to their cognate tRNA molecules. However, two pathways exist for the formation of Gln-tRNAGln. The evolutionarily older indirect route utilizes a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) that can form both Glu-tRNAGlu and Glu-tRNAGln. The Glu-tRNAGln is then converted to Gln-tRNAGln by an amidotransferase. Since the well-characterized bacterial ND-GluRS enzymes recognize tRNAGlu and tRNAGln with an unrelated α-helical cage domain in contrast to the β-barrel anticodon-binding domain in archaeal and eukaryotic GluRSs, the mode of tRNAGlu/tRNAGln discrimination in archaea and eukaryotes was unknown. Here, we present the crystal structure of the Methanothermobacter thermautotrophicus ND-GluRS, which is the evolutionary predecessor of both the glutaminyl-tRNA synthetase (GlnRS) and the eukaryotic discriminating GluRS. Comparison with the previously solved structure of the Escherichia coli GlnRS-tRNAGln complex reveals the structural determinants responsible for specific tRNAGln recognition by GlnRS compared to promiscuous recognition of both tRNAs by the ND-GluRS. The structure also shows the amino acid recognition pocket of GluRS is more variable than that found in GlnRS. Phylogenetic analysis is used to reconstruct the key events in the evolution from indirect to direct genetic encoding of glutamine.  相似文献   

19.
Levengood JD  Roy H  Ishitani R  Söll D  Nureki O  Ibba M 《Biochemistry》2007,46(39):11033-11038
Aminoacyl-tRNA synthetases are normally found in one of two mutually exclusive structural classes, the only known exception being lysyl-tRNA synthetase which exists in both classes I (LysRS1) and II (LysRS2). Differences in tRNA acceptor stem recognition between LysRS1 and LysRS2 do not drastically impact cellular aminoacylation levels, focusing attention on the mechanism of tRNA anticodon recognition by LysRS1. On the basis of structure-based sequence alignments, seven tRNALys anticodon variants and seven LysRS1 anticodon binding site variants were selected for analysis of the Pyrococcus horikoshii LysRS1-tRNALys docking model. LysRS1 specifically recognized the bases at positions 35 and 36, but not that at position 34. Aromatic residues form stacking interactions with U34 and U35, and aminoacylation kinetics also identified direct interactions between Arg502 and both U35 and U36. Tyr491 was also found to interact with U36, and the Y491E variant exhibited significant improvement compared to the wild type in aminoacylation of a tRNALysUUG mutant. Refinement of the LysRS1-tRNALys docking model based upon these data suggested that anticodon recognition by LysRS1 relies on considerably fewer interactions than that by LysRS2, providing a structural basis for the more significant role of the anticodon in tRNA recognition by the class II enzyme. To date, only glutamyl-tRNA synthetase (GluRS) has been found to contain an alpha-helix cage anticodon binding domain homologous to that of LysRS1, and these data now suggest that specificity for the anticodon of tRNALys could have been acquired through relatively few changes to the corresponding domain of an ancestral GluRS enzyme.  相似文献   

20.
Prajapati RS  Indu S  Varadarajan R 《Biochemistry》2007,46(36):10339-10352
Molten globule-like intermediates have been shown to occur during protein folding and are thought to be involved in protein translocation and membrane insertion. However, the determinants of molten globule stability and the extent of specific packing in molten globules is currently unclear. Using far- and near-UV CD and intrinsic and ANS fluorescence, we show that four periplasmic binding proteins (LBP, LIVBP, MBP, and RBP) form molten globules at acidic pH values ranging from 3.0 to 3.4. Only two of these (LBP and LIVBP) have similar sequences, but all four proteins adopt similar three-dimensional structures. We found that each of the four molten globules binds to its corresponding ligand without conversion to the native state. Ligand binding affinity measured by isothermal titration calorimetry for the molten globule state of LIVBP was found to be comparable to that of the corresponding native state, whereas for LBP, MBP, and RBP, the molten globules bound ligand with approximately 5-30-fold lower affinity than the corresponding native states. All four molten globule states exhibited cooperative thermal unfolding assayed by DSC. Estimated values of DeltaCp of unfolding show that these molten globule states contain 28-67% of buried surface area relative to the native states. The data suggest that molten globules of these periplasmic binding proteins retain a considerable degree of long range order. The ability of these sequentially unrelated proteins to form highly ordered molten globules may be related to their large size as well as an intrinsic property of periplasmic binding protein folds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号