首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CHL1 gene is considered to encode a low-affinity transport system (LATS) for NO3- in Arabidopsis thaliana (Y.-F. Tsay, J.I. Schroeder, K.A. Feldmann, N.M. Crawford [1993] Cell 72: 705-713). However, the anticipated reduced NO3- uptake by the LATS associated with loss of CHL1 gene activity in chl1-5 deletion mutants was evident only when plants were grown on NH4NO3. When KNO3 was the sole N source, NO3- accumulation and short-term tracer influx (using 13NO3- and 15NO3-) in leaves and roots of wild-type and mutant plants were essentially identical. Nevertheless, root uptake of 36CIO3- by the LATS and CIO3- accumulation in roots and shoots of mutant plants were significantly lower than in wild-type plants when grown on KNO3. One explanation for these results is that a second LATS is able to compensate for the chl1-5 deficiency in KNO3-grown plants. Growth on NH4NO3 may down-regulate the second LATS enough that the anticipated difference in NO3- uptake becomes apparent.  相似文献   

2.
As reported previously, atmospheric nitrogen dioxide (NO2) at an ambient level increased plant size and the contents of cell constituents. We investigated this effect of atmospheric NO2 on decontamination of cadmium (Cd) by kenaf (Hibiscus cannabinus). Seventeen-day-old seedlings of kenaf were grown in air either with NO2 or without NO2. (Plants were exposed to 100 +/- 50 ppb NO2 for 10 d under irrigation of 0.1% Hyponex supplemented with 20 microM CdCl2.) Plants were then harvested and the biomass of stems, leaves, and roots, as well as the content of Cd in the organs, was determined. The stem and root biomass per plant were 1.25-1.27-fold greater in +NO2 plants than in -NO2 plants. The Cd content per stem was more than 30% greater in +NO2 plants than in -NO2 plants.  相似文献   

3.
Isonicotinic acid hydrazide (INH), an inhibitor of the photorespiratory pathway blocking the conversion of glycine to serine and CO2, has been used as a selective agent to obtain INH-resistant tobacco (Nicotiana tabacum) callus cells. Of 22 cell lines that were INH-resistant, none were different from wild-type cells in their ability to take up [3H]INH or to oxidize INH to isonicotinic acid. In 7 of the 22 cell lines, INH resistance was associated with decreased inhibition of NAD-dependent glycine decarboxylation activity in isolated mitochondrial preparations. In the cell line that was most extensively investigated (I 24), this biochemical phenotype (exhibiting a 3-fold higher Ki with INH) was observed in leaf mitochondria of regenerated plants and of plants produced from them by self-fertilization. After crosses between resistant and sensitive plants, the decreased inhibition of glycine decarboxylation was observed among F2 and backcross progeny only in those plants previously identified as INH-resistant by callus growth tests. In contrast, in siblings identified as INH-sensitive, glycine decarboxylation was inhibited by INH at the wild-type level. This demonstration of the transfer of an altered enzyme property from callus to regenerated plants and through seed progeny fulfills an important requirement for the use of somatic cell genetics to produce biochemical mutants of higher plants.  相似文献   

4.
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that improves water use efficiency by shifting part or all of net atmospheric CO2 uptake to the night. Genetic dissection of regulatory and metabolic attributes of CAM has been limited by the difficulty of identifying a reliable phenotype for mutant screening. We developed a novel and simple colorimetric assay to measure leaf pH to screen fast neutron-mutagenized populations of common ice plant (Mesembryanthemum crystallinum), a facultative CAM species, to detect CAM-deficient mutants with limited nocturnal acidification. The isolated CAM-deficient mutants showed negligible net dark CO2 uptake compared with wild-type plants following the imposition of salinity stress. The mutants and wild-type plants accumulated nearly comparable levels of sodium in leaves, but the mutants grew more slowly than the wild-type plants. The mutants also had substantially reduced seed set and seed weight relative to wild type under salinity stress. Carbon-isotope ratios of seed collected from 4-month-old plants indicated that C3 photosynthesis made a greater contribution to seed production in mutants compared to wild type. The CAM-deficient mutants were deficient in leaf starch and lacked plastidic phosphoglucomutase, an enzyme critical for gluconeogenesis and starch formation, resulting in substrate limitation of nocturnal C4 acid formation. The restoration of nocturnal acidification by feeding detached leaves of salt-stressed mutants with glucose or sucrose supported this defect and served to illustrate the flexibility of CAM. The CAM-deficient mutants described here constitute important models for exploring regulatory features and metabolic consequences of CAM.  相似文献   

5.
The filamentous fungi Trichoderma species produce extracellular cellulase. The current study was carried out to obtain an industrial strain with hyperproduction of cellulase. The wild-type strain, Trichoderma viride TL-124, was subjected to successive mutagenic treatments with UV irradiation, low-energy ion beam implantation, atmospheric pressure non-equilibrium discharge plasma (APNEDP), and N-methyl-N'-nitro-N-nitrosoguanidine to generate about 3000 mutants. Among these mutants, T. viride N879 strain exhibited the greatest relevant activity: 2.38-fold filter paper activity and 2.61-fold carboxymethyl cellulase, 2.18-fold beta-glucosidase, and 2.27-fold cellobiohydrolase activities, compared with the respective wild-type activities, under solid-state fermentation using the inexpensive raw material wheat straw as a substrate. This work represents the first application of APNEDP in eukaryotic microorganisms.  相似文献   

6.
7.
Lysine and leucine auxotrophic, heterothallic (h+, h-) strains of Schizosaccharomyces pombe were used to obtain chromium (VI)-sensitive and -tolerant mutants by ultraviolet radiation-induced and nitrosoguanidine-induced mutagenesis. The minimal inhibitory concentrations of K2Cr2O7 on YEA media were 225 microM for the wild-type strain CW-6, 125 microM for the sensitive mutant CS-6.51 and 275 microM for the tolerant mutant CT-6.66. The mutants exhibited cross-sensitivity of various patterns to Cd2+, Cu2+, Ni2+, Zn2+ and VO3-(4). Cr(VI) was added to the actively growing cultures and the total chromium (TOCr) content of the cells was determined. The sensitive mutant exhibited a high bioaccumulation ability, with a dry biomass of 810 micrograms g-1 after 30 min, while the tolerant mutant had a significantly lower ability than the wild-type strain. In PIPES buffer, washed, lysine-starved biomasses were treated with 75 microM Cr(VI) and after 2 h, the TOCr and the organically bound chromium (OBCr) were determined. Under these conditions, the sensitive and tolerant mutants had the same TOCr content, 50% of which was OBCr. The wild-type strain exhibited a lower TOCr content than that of its mutants and only 35% of this was OBCr. The Cr(VI)-sensitivity was due to a significantly increased uptake of Cr(VI).  相似文献   

8.
Soybean [Glycine max (L.) Merrill] plants that had been subjected to 15 d of nitrogen deprivation were resupplied for 10 d with 1.0 mol m-3 nitrogen provided as NO3-, NH4+, or NH4(+) + NO3- in flowing hydroponic culture. Plants in a fourth hydroponic system received 1.0 mol m-3 NO3- during both stress and resupply periods. Concentrations of soluble carbohydrates and organic acids in roots increased 210 and 370%, respectively, during stress. For the first day of resupply, however, specific uptake rates of nitrogen, determined by ion chromatography as depletion from solution, were lower for stressed than for non-stressed plants by 43% for NO3- resupply, by 32% for NH4(+) + NO3- resupply, and 86% for NH4+ resupply. When specific uptake of nitrogen for stressed plants recovered to rates for non-stressed plants at 6 to 8 d after nitrogen resupply, carbohydrates and organic acids in their roots had declined to concentrations lower than those of non-stressed plants. Recovery of nitrogen uptake capacity of roots thus does not appear to be regulated simply by the content of soluble carbon compounds within roots. Solution concentrations of NH4+ and NO3- were monitored at 62.5 min intervals during the first 3 d of resupply. Intermittent 'hourly' intervals of net influx and net efflux occurred. Rates of uptake during influx intervals were greater for the NH4(+)-resupplied than for the NO3(-)-resupplied plants. For NH4(+)-resupplied plants, however, the hourly intervals of efflux were more numerous than for NO3(-)-resupplied plants. It thus is possible that, instead of repressing NH4+ influx, increased accumulation of amino acids and NH4+ in NH4(+)-resupplied plants inhibited net uptake by stimulation of efflux on NH4+ absorbed in excess of availability of carbon skeletons for assimilation. Entry of NH4+ into root cytoplasm appeared to be less restricted than translocation of amino acids from the cytoplasm into the xylem.  相似文献   

9.
The filamentous fungi Trichoderma species produce extracellular cellulase. The current study was carried out to obtain an industrial strain with hyperproduction of cellulase. The wild-type strain, Trichoderma viride TL-124, was subjected to successive mutagenic treatments with UV irradiation, low-energy ion beam implantation, atmospheric pressure non-equilibrium discharge plasma (APNEDP), and N-methyl-N′-nitro-N-nitrosoguanidine to generate about 3000 mutants. Among these mutants, T. viride N879 strain exhibited the greatest relevant activity: 2.38-fold filter paper activity and 2.61-fold carboxymethyl cellulase, 2.18-fold β-glucosidase, and 2.27-fold cellobiohydrolase activities, compared with the respective wild-type activities, under solid-state fermentation using the inexpensive raw material wheat straw as a substrate. This work represents the first application of APNEDP in eukaryotic microorganisms.  相似文献   

10.
The pho2 mutant of Arabidopsis thaliana (L.) Heynh. accumulates excessive Pi (inorganic phosphate) concentrations in shoots compared to wild-type plants (E. Delhaize and P. Randall, 1995, Plant Physiol. 107: 207–213). In this study, a series of experiments was conducted to compare the uptake and translocation of Pi by pho2 with that of wild-type plants. The pho2 mutants had about a twofold greater Pi uptake rate than wild-type plants under P-sufficient conditions and a greater proportion of the Pi taken up accumulated in shoots of pho2. When shoots were removed, the uptake rate by roots was found to be similar for both genotypes, suggesting that the greater Pi uptake by the intact pho2 mutant is due to a greater shoot sink for Pi. Although pho2 mutants could recycle 32Pi from shoots to roots through phloem the proportion of 32Pi translocated to roots was less than half of that found in wild-type plants. When transferred from P-sufficient to P-deficient solutions, Pi concentrations in pho2 roots had a similar depletion rate to wild-type roots despite pho2 shoots having a fourfold greater Pi concentration than wild-type shoots throughout the experiment. We suggest that the pho2 phenotype could result from a partial defect in Pi transport in the phloem between shoots and roots or from an inability of shoot cells to regulate internal Pi concentrations. Received: 20 August 1997 / Accepted: 4 October 1997  相似文献   

11.
Advances in genome sequencing technologies have enabled researchers and breeders to rapidly associate phenotypic variation to genome sequence differences. We recently took advantage of next-generation sequencing technology to develop MutMap, a method that allows rapid identification of causal nucleotide changes of rice mutants by whole genome resequencing of pooled DNA of mutant F2 progeny derived from crosses made between candidate mutants and the parental line. Here we describe MutMap+, a versatile extension of MutMap, that identifies causal mutations by comparing SNP frequencies of bulked DNA of mutant and wild-type progeny of M3 generation derived from selfing of an M2 heterozygous individual. Notably, MutMap+ does not necessitate artificial crossing between mutants and the wild-type parental line. This method is therefore suitable for identifying mutations that cause early development lethality, sterility, or generally hamper crossing. Furthermore, MutMap+ is potentially useful for gene isolation in crops that are recalcitrant to artificial crosses.  相似文献   

12.
Saccharomyces cerevisiae histidine auxotrophs are unable to use L-histidinol as a source of histidine even when they have a functional histidinol dehydrogenase. Mutations in the hol1 gene permit growth of His- cells on histidinol by enhancing the ability of cells to take up histidinol from the medium. Second-site mutations linked to HOL1-1 further increase histidinol uptake. HOL1 double mutants and, to a lesser extent, HOL1-1 single mutants show hypersensitivity to specific cations added to the growth medium, including Na+, Li+, Cs+, Be2+, guanidinium ion, and histidinol, but not K+, Rb+, Ca2+, or Mg2+. The Na(+)-hypersensitive phenotype is correlated with increased uptake and accumulation of this ion. The HOL1-1-101 gene was cloned and used to generate a viable haploid strain containing a hol1 deletion mutation (hol1 delta). The uptake of cations, the dominance of the mutant alleles, and the relative inability of hol1 delta cells to take up histidinol or Na+ suggest that hol1 encodes an ion transporter. The novel pattern of ion transport conferred by HOL1-1 and HOL1-1-101 mutants may be explained by reduced selectivity for the permeant ions.  相似文献   

13.
Ammonium and nitrate uptake by the floating plant Landoltia punctata   总被引:1,自引:0,他引:1  
BACKGROUND AND AIMS: Plants from the family Lemnaceae are widely used in ecological engineering projects to purify wastewater and eutrophic water bodies. However, the biology of nutrient uptake mechanisms in plants of this family is still poorly understood. There is controversy over whether Lemnaceae roots are involved in nutrient uptake. No information is available on nitrogen (N) preferences and capacity of Landoltia punctata (dotted duckweed), one of the best prospective species in Lemnaceae for phytomelioration and biomass production. The aim of this study was to assess L. punctata plants for their ability to take up NH4+ and NO3- by both roots and fronds. METHODS: NO3- and NH4+ fluxes were estimated by a non-invasive ion-selective microelectrode technique. This technique allows direct measurements of ion fluxes across the root or frond surface of an intact plant. KEY RESULTS: Landoltia punctata plants took up NH4+ and NO3- by both fronds and roots. Spatial distribution of NH4+ and NO3- fluxes demonstrated that, although ion fluxes at the most distal parts of the root were uneven, the mature part of the root was involved in N uptake. Despite the absolute flux values for NH4+ and NO3- being lower in roots than at the frond surface, the overall capacity of roots to take up ions was similar to that of fronds because the surface area of roots was larger. L. punctata plants preferred to take up NH4+ over NO3- when both N sources were available. CONCLUSIONS: Landoltia punctata plants take up nitrogen by both roots and fronds. When both sources of N are available, plants prefer to take up NH4+, but will take up NO3- when it is the only N source.  相似文献   

14.
15.
Root NO3- uptake and expression of two root NO3- transporter genes (Nrt2;1 and Nrt1) were investigated in response to changes in the N- or C-status of hydroponically grown Arabidopsis thaliana plants. Expression of Nrt2;1 is up-regulated by NO3 - starvation in wild-type plants and by N-limitation in a nitrate reductase (NR) deficient mutant transferred to NO3- as sole N source. These observations show that expression of Nrt2;1 is under feedback repression by N-metabolites resulting from NO3- reduction. Expression of Nrt1 is not subject to such a repression. However, Nrt1 is over-expressed in the NR mutant even under N-sufficient conditions (growth on NH4NO3 medium), suggesting that expression of this gene is affected by the presence of active NR, but not by N-status of the plant. Root 15NO3- influx is markedly increased in the NR mutant as compared to the wild-type. Nevertheless, both genotypes have similar net 15NO3- uptake rates due to a much larger 14NO3- efflux in the mutant than in the wild-type. Expressions of Nrt2;1 and Nrt1 are diurnally regulated in photosynthetically active A. thaliana plants. Both increase during the light period and decrease in the first hours of the dark period. Sucrose supply prevents the inhibition of Nrt2;1 and Nrt1 expressions in the dark. In all conditions investigated, Nrt2;1 expression is strongly correlated with root 15NO3- influx at 0.2 mM external concentration. In contrast, changes in the Nrt1 mRNA level are not always associated with similar changes in the activities of high- or low-affinity NO3- transport systems.  相似文献   

16.
Zhao MG  Tian QY  Zhang WH 《Plant physiology》2007,144(1):206-217
Nitric oxide (NO) has emerged as a key molecule involved in many physiological processes in plants. To characterize roles of NO in tolerance of Arabidopsis (Arabidopsis thaliana) to salt stress, effect of NaCl on Arabidopsis wild-type and mutant (Atnoa1) plants with an impaired in vivo NO synthase (NOS) activity and a reduced endogenous NO level was investigated. Atnoa1 mutant plants displayed a greater Na+ to K+ ratio in shoots than wild-type plants due to enhanced accumulation of Na+ and reduced accumulation of K+ when exposed to NaCl. Germination of Atnoa1 seeds was more sensitive to NaCl than that of wild-type seeds, and wild-type plants exhibited higher survival rates than Atnoa1 plants when grown under salt stress. Atnoa1 plants had higher levels of hydrogen peroxide than wild-type plants under both control and salt stress, suggesting that Atnoa1 is more vulnerable to salt and oxidative stress than wild-type plants. Treatments of wild-type plants with NOS inhibitor and NO scavenger reduced endogenous NO levels and enhanced NaCl-induced increase in Na+ to K+ ratio. Exposure of wild-type plants to NaCl inhibited NOS activity and reduced quantity of NOA1 protein, leading to a decrease in endogenous NO levels measured by NO-specific fluorescent probe. Treatment of Atnoa1 plants with NO donor sodium nitroprusside attenuated the NaCl-induced increase in Na+ to K+ ratio. Therefore, these findings provide direct evidence to support that disruption of NOS-dependent NO production is associated with salt tolerance in Arabidopsis.  相似文献   

17.
We have utilized a new class of acid-cleavable protein cross-linking reagents in the construction of antibody-diphtheria toxin conjugates (Srinivaschar, K., and Neville, D. M., Jr. (1989) Biochemistry 28, 2501-2509). The potency of anti-CD5 conjugates assayed by inhibition of protein synthesis on CD5 bearing cells (Jurkat) is correlated with cross-linker hydrolytic rates. The maximum increase in potency of the cleavable conjugates over non-cleavable conventional conjugates is 50-fold and is specific for the CD5 uptake route as judged by competition with excess anti-CD5. The potency of conjugates made from diphtheria toxin and the anti-high molecular weight melanoma-associated antigen (HMW-MAA) is enhanced 3-10-fold by a cleavable cross-linker. However the potency of transferrin or anti-CD3 diphtheria toxin conjugates is only minimally enhanced (2-3-fold). Mutant diphtheria toxins, CRM103 and CRM9, previously shown to express less than 1/100 of the wild type in binding affinity were substituted into these conjugates as probes for possible intracellular toxin receptor interactions. Both mutants were equally as toxic to Jurkat target cells exhibiting 1/700 the wild-type potency. CRM9 non-cleavable conjugates were equally as potent as wild-type conjugates for transferrin and anti-CD3-mediated uptake but not for anti-CD5-mediated uptake where toxicity was reduced 60-fold over the wild-type analog. The cleavable cross-linker enhanced the toxicity of anti-CD5-CRM103 and anti-CD5-CRM9 conjugates, but potency was only 1/10 that of the analogous wild-type cleavable conjugate. These data are consistent with a model in which potentiation of toxicity of the anti-CD5 and anti-high molecular weight melanoma-associated antigen conjugates by the cleavable cross-linker occurs from an enhanced intracellular toxin-toxin receptor interaction that ultimately results in increased toxin translocation to the cytosol compartment. In contrast, these data indicate that the anti-CD3 and transferrin uptake systems do not require this interaction in agreement with previous work (Johnson, V.G., Wilson, D., Greenfield, L., and Youle, R. J. (1988) J. Biol. Chem. 263, 1295-1300).  相似文献   

18.
The influence of a 12-h pretreatment with either NO3-, NH4+, glutamine, or glutamate (300 [mu]M) on the apparent induction of NO3- uptake was investigated. Net fluxes of NO3- into roots of intact, 7-d-old barley (Hordeum vulgare L. cv Prato) seedlings in solution culture were estimated from ion activity gradients measured with NO3--selective microelectrodes in the unstirred layer of solution immediately external to the root surface. Control plants, pretreated with nitrogen-free nutrient solution, exhibited a sigmoidal increase in net NO3- uptake, reaching a maximum rate between 8 and 9 h after first exposure to NO3-. Plants pretreated with NH4+ or Glu exhibited a delay of several hours in the initiation of the induction process after they had been exposed to NO3-. In Gln-pretreated plants, however, responses ranged from no delay of the induction process to delays comparable to those observed following NH4+ or Glu pretreatments. Only treatment with NO3-resulted in the induction of NO3- uptake, whereas pretreatments with NH4+, Gln, or Glu tended to delay induction of NO3- uptake upon subsequent exposure to NO3-.  相似文献   

19.
Bourgin JP  Goujaud J  Missonier C  Pethe C 《Genetics》1985,109(2):393-407
In previous experiments, seven lines of valine-resistant plants were regenerated from protoplast-derived haploid tobacco mesophyll cells which had been UV mutagenized and submitted to selection by toxic concentrations of valine. In this study we described the transmission of valine-resistance to progeny and a preliminary phenotypical and biochemical characterization of the resistant plants.—Two types were thus distinguished among the seven mutant lines. Valine-resistance of the mutants of the first type (three lines) was transmitted as a single Mendelian dominant character (Vr1), whereas valine-resistance of the second type (four lines) was transmitted as a digenic recessive character (vr2 and vr3). Allelism tests revealed that the four recessive mutant lines yielded resistant progeny when intercrossed and, therefore, bear recessive mutant alleles at the same two unlinked loci.—When cultured at a density of 100 cell/ml, protoplast-derived cells of mutants of the first type had a low level of resistance to valine, whereas protoplast-derived cells of mutants of the second type displayed a high level of resistance to valine and to other amino acids.—According to the results of 14C-labelled amino acid uptake experiments, the amino acid resistance of mutants of the second type, but not valine-resistance of the first type, could be accounted for by reduced uptake of several amino acids. Possible uses of valine-resistance as a marker in plant cell genetics are discussed.  相似文献   

20.
The heme of neuronal nitric oxide synthase (nNOS) participates in O2 activation but also binds self-generated NO, resulting in reversible feedback inhibition. We utilized mutagenesis to investigate if a conserved tryptophan residue (Trp409), which engages in pi-stacking with the heme and hydrogen bonds to its axial cysteine ligand, helps control catalysis and regulation by NO. Mutants W409F and W409Y were hyperactive regarding NO synthesis without affecting cytochrome c reduction, reductase-independent N-hydroxyarginine oxidation, or Arg and tetrahydrobiopterin binding. In the absence of Arg electron flux through the heme was slower in the W409 mutants than in wild-type. However, less NO complex accumulated during NO synthesis by the mutants. To understand the mechanism, we compared the kinetics of heme-NO complex formation, rate of heme reduction, kcat prior to and after NO complex formation, NO binding affinity, NO complex stability, and its reaction with O2. During the initial phase of NO synthesis, heme-NO complex formation was three and five times slower in W409F and W409Y, which corresponded to a slower heme reduction. NO complex formation inhibited wild-type turnover 7-fold but reduced mutant turnover less than 2-fold, giving mutants higher steady-state activities. NO binding kinetics were similar among mutants and wild type, although mutants also formed a 417 nm ferrous-NO complex. Oxidation of ferrous-NO complex was seven times faster in mutants than in wild type. We conclude that mutant hyperactivity primarily derives from slower heme reduction and faster oxidation of the heme-NO complex by O2. In this way Trp409 mutations minimize NO feedback inhibition by limiting buildup of the ferrous-NO complex during the steady state. Conservation of W409 among NOS suggests that this proximal Trp may regulate NO feedback inhibition and is important for enzyme physiologic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号