首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enzyme preparation has been produced on the basis of Penicillium canescens strains with the activity of cellibiohydrolase I, II; endo-1,4-β-gluconase of Penicillium verruculosum; and β-glucosidase of Aspergillus niger. It was shown that for the most effective hydrolysis of aspen wood pulp the optimal ratio of cellobiohydrolase and endo-1,4-β-gluconase in enzyme preparations was 8: 2 (by protein). It was also established that the homologous xylanase secreted by the Penicillium canescens fungus is a required component for the enzyme complex for hydrolysis of the hemicellulose matrix of aspen wood.  相似文献   

2.
Methods for the production and analysis of cellulase and hemicellulase enzyme preparations of various compositions based on the Penicillium verruculosum carbohydrase complex and intended for the effective hydrolysis of different types of cellulose-containing materials (CCMs) have been developed. New recombinant strains of P. verruculosum producing multienzyme carbohydrase complexes with increased activities of cellulases (due to the expression of endo-β-1,4-glucanases I and IV and cellobiohydrolase II from Trichoderma reesei) and hemicellulases (due to the expression of endo-β-1,4-xylanases from P. canescens and T. reesei and endo-β-1,4-mannanase from T. reesei) were constructed. The hydrolytic efficiency of the enzyme preparations (EPs) produced by the new recombinant strains during continuous hydrolysis of three CCM types (milled aspen, depitched pine wood, and milled bagasse) was studied. It was shown that new EPs containing recombinant proteins and retaining their own basic cellulase complex are characterized by the highest hydrolytic ability, exceeding that of the EP based on the original P. verruculosum strain. The recombinant enzyme preparations were highly stable; the optimal pH and temperature values for cellulase, xylanase and mannanase activities were in the range of 3.5–5.5 and 50–80°C, respectively.  相似文献   

3.
The induction of the synthesis of secreted enzymes endo-1,4-beta-xylanase (EC 3.2.1.8) and beta-galactosidase (EC 3.2.1.23) in the original and recombinant Penicillium canescens strains has been studied. In all producer strains, the synthesis of these enzymes was induced by arabinose and its metabolite arabitol. The two enzymes differed in the concentration of arabinose required for the induction: the synthesis of beta-galactosidase was most pronounced at 1 mM, whereas maximum synthesis of endo-1,4-beta-xylanase was observed at 5 to 10 mM. An increase in the number of endo-1,4-beta-xylanase copies in the high-copy-number strain of the fungus suppressed the synthesis of beta-galactosidase; the synthesis of endo-1,4-beta-xylanase in the high-copy-number recombinant producing beta-galactosidase was affected to a lesser extent. The amount of the enzymes synthesized did not depend on the saccharide used as a sole source of carbon for growing the mycelium prior to its transfer to the inducer-containing medium.  相似文献   

4.
5.
The complete gene xylA that encodes endo-1,4-beta-xylanase secreted by Penicillium canescens was cloned and sequenced. The coding region of the gene is separated by eight introns. The protein comprises 302 amino acids of the mature protein and 25 amino acids of the signal peptide. The xylanase of P. canescens belongs to the glycosyl hydrolase family 10. Nucleotide sequences for binding catabolite repression protein CREA and transactivator protein were detected in the promoter region. A set of multicopy strains displaying a seven-eightfold increase in xylanase yield was obtained. The fraction of xylanase in most productive strains amounted to 30-50% of the total secreted protein.  相似文献   

6.
The composition of the enzyme complex secreted by Penicillium canescens was investigated. A scheme for purification of the main components of the complex by chromatofocusing on a Mono P column was developed. It was found that along with beta-galactosidase, the major components of the complex were endo-beta-1,4-xylanase (31 kD, pI 8.2-9.3), alpha-L-arabinofuranosidase (60 kD, pI 7.6), arabinoxylan-arabinofuranohydrolase (70 kD, pI 3.8-4.0), and endo-beta-1,3/1,4-glucanase (40 kD, pI 4.4). The substrate specificity, pH and temperature activity optima, adsorbability, thermal stability, and ability for synergic interaction of the isolated enzymes were studied.  相似文献   

7.
The endo-1,4-β-d-glucanase [cellulase, 1,4-(1,3:1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] activity of two-day old culture filtrates of Penicillium janthinellum has been enhanced four-fold by incubating with a 10-day old culture filtrate of Penicillium funiculosum grown on the same medium. An inactive protein isolated by fractionation of two-day old culture filtrate of P. janthinellum using preparative isoelectric focusing, showed 30- to 50-fold enhancement of endo-1,4-β-d-glucanase activity. This fraction has been designated the ‘procellulase’ in the present paper. The purity of the procellulase was confirmed by analytical isoelectric focusing and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. It had a molecular weight of 68 000 and an isoelectric point of pH 3.7.  相似文献   

8.
An enzyme catalyzing hydrolysis of beta-1,4 bonds in cellulose acetate was purified 18.3-fold to electrophoretic homogeneity from a culture supernatant of Neisseria sicca SB, which can assimilate cellulose acetate as the sole carbon and energy source. The molecular mass of the enzyme was 41 kDa and the isoelectric point was 4.8. The pH and temperature optima of the enzyme were 6.0-7.0 and 60 degrees C. The enzyme catalyzed hydrolysis of water-soluble cellulose acetate (degree of substitution, 0.88) and carboxymethyl cellulose. The Km and Vmax for water-soluble cellulose acetate and carboxymethyl cellulose were 0.242% and 2.24 micromol/min/mg, and 2.28% and 12.8 micromol/min/mg, respectively. It is estimated that the enzyme is a kind of endo-1,4-beta-glucanase (EC 3.2.1.4) from the substrate specificity and hydrolysis products of cellooligosaccharides. The enzyme and cellulose acetate esterase from Neisseria sicca SB degraded water-insoluble cellulose acetate by synergistic action.  相似文献   

9.
A xyloglucan-specific endo-1,4-[beta]-glucanase was isolated from the apoplast fraction of auxin-treated pea (Pisum sativum) stems, in which both the rate of stem elongation and the amount of xyloglucan solubilized were high. The enzyme was purified to apparent homogeneity by sequential cation-exchange chromatographies, affinity chromatography, and gel filtration. The purified enzyme gave a single protein band on sodium dodecyi sulfate-polyacrylamide gel electrophoresis, and the molecular size was determined to be 77 kD by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 70 kD by gel filtration. The isoelectric point was about 8.1. The enzyme specifically cleaved the 1,4-[beta]-glucosyl linkages of the xyloglucan backbone to yield mainly nona- and heptasaccharides but did not hydrolyze carboxymethylcellulose, swollen cellulose, and (1->3, 1->4)-[beta]-glucan. By hydrolysis, the average molecular size of xyloglucan was decreased from 50 to 20 kD with new reducing chain ends in the lower molecular size fractions. This suggests that the enzyme has endo-1,4-[beta]-glucanase activity against xyloglucan. In conclusion, a xyloglucan-specific endo-1,4-[beta]-glucanase with an activity that differs from the activities of cellulase and xyloglucan endotransglycosylase has been isolated from elongating pea stems.  相似文献   

10.
Steam-exploded aspen has been examined as a candidate feedstock for both cellulose production and enzymatic hydrolysis of wood. Batch and fed-batch cultivation methods were evaluated and compared with previous experiments using ball-milled, crystalline cellulose (Solka Floe). Batch cultivation of Trichoderma reesei Rut C-30 on 9 wt% water-washed aspen yielded enzyme productivities and activities comparable to those obtained on Solka Floe (40 FP IU/L-h; 7. 5 FP IU/mL). Fed-batch cultivation of Rut C-30 resulted in higher enzyme productivities and tilers than batch cultivation (50 FP IU/L-h; 15 FP IU/mL). However, the overall enzyme production performance was lower than on Solka Floe at comparable cellulose feeding rates and concentrations. This may be due to the accumulation of steam explosion by-products and lignin in the fermentor.The hydroiysis of water-washed steam-exploded aspen was performed at different enzyme loadings and wood concentrations. Glucose production, using 10 and 15wt% suspension, showed that while glucose concentration increased with wood load, the yield of glucose derived from cellulose decreased. With 10wt% suspensions, it was possible to obtain a cellous conversion to glucose above 95%. Low cellulose levels in the hydrolyzates indicated that the filter paper activity ratios (approximately 1.5), a significant result since the fungus was grown exclusively on wood. mIt also suggested that the observed yield decrease is more likely to be caused by glucose than cellobiose inhibition of the enzymes.  相似文献   

11.
Recombinant endo-beta-1,4-xylanase (Xyl-31rec, 31 kD, pI 8.2-9.3, the tenth family of glycosyl hydrolases) was isolated from the culture liquid of Penicillium canescens (strain with the amplified homologous xylanase gene) by chromatofocusing on Mono P and hydrophobic chromatography on phenyl-Superose. It is shown that the biochemical and kinetic parameters, substrate specificity, stability, and other properties of the recombinant and native enzymes are almost the same. It was found that Xyl-31rec can be used for biobleaching of cellulose, the recombinant P. canescens strains providing a high yield of extracellular Xyl-31rec (up to 800-900 U/ml of culture liquid) and not secreting cellulases.  相似文献   

12.
Enzyme recirculation in saccharification of lignocellulosic materials   总被引:1,自引:0,他引:1  
Steam-exploded aspen wood and wheat straw were enzymically hydrolysed for 2 days when sugar yields of 53% and 49% were obtained. Removal of hydrolysate after 1 day and continued hydrolysis for a further 24 h increased the yields to 67 and 56%, respectively. After hydrolysis, 50% or more of the enzymes was adsorbed on the solid residue with the remainder in solution along with the hydrolysate. Enzymes in the hydrolysate were easily recovered by a few minutes contact with a plug of new substrate. A small quantity of sugar is also adsorbed, but ≈90% passes through the substrate plug. We propose here a simple technique for recirculating the enzymes attached to the solid residue, thereby improving significantly the total enzyme recovery and sugar yield per enzyme unit. An enzyme recovery factor, ERF, was calculated on the basis of sugar yields obtained with recovered enzyme and was compared with the initial amount of enzyme. ERF values of 0.79 and 0.73 were obtained with steam-exploded aspen wood and wheat straw, respectively. Various aspects associated with the adsorption of enzymes in the hydrolysate onto new substrate and the extent to which sugars are bound to the substrate and residue are discussed.  相似文献   

13.
An enzyme hydrolyzing beta-1,4 bonds in cellulose acetate was purified 10.5-fold to electrophoretic homogeneity from a culture supernatant of Neisseria sicca SB, which assimilate cellulose acetate as the sole carbon and energy source. The enzyme was an endo-1,4-beta-glucanase, to judge from the substrate specificity and hydrolysis products of cellooligosaccharides, we named it endo-1,4-beta-glucanase I (EG I). Its molecular mass was 50 kDa, 9 kDa larger than EG II from this strain, and its isoelectric point was 5.0. Results of N-terminal and inner-peptide sequences of both enzymes, and a similarity search, suggested that EG I contained a carbohydrate-binding module at the N-terminus and that EG II lacked this module. The pH and temperature optima of EG I were 5.0-6.0 and 45 degrees C. It hydrolyzed water-soluble cellulose acetate (degree of substitution, 0.88) and carboxymethyl cellulose. The Km and Vmax for these compounds were 0.296% and 1.29 micromol min(-1) mg(-1), and 0.448% and 13.6 micromol min(-1) mg(-1), respectively. Both glucanases and cellulose acetate esterase from this strain degraded water-insoluble cellulose acetate synergistically.  相似文献   

14.
Bakke M  Kamei J  Obata A 《FEBS letters》2011,585(1):115-120
Hyaluronidase (HAase) activity was detected in the culture supernatants of Penicillium purpurogenum and Penicillium funiculosum. The HAase from Penicillium spp. (HAase-P) was a hyaluronate 4-glycanohydrolase, which catalyzed the endolytic hydrolysis of the β-1,4 glycosidic linkage, as do vertebrate HAases. The gene encoding HAase-P was cloned and expressed in Escherichia coli. According to homology analyses of the deduced amino acid sequences, HAase-P is not classified into any of the known HAase groups, but belongs to glycoside hydrolase family 16, which includes endo-β-1,3(4)-glucanase. Regarding the substrate specificities, no chondroitinase and glucanase activities were detected. Judging from homology analyses and enzymatic properties, HAase-P seems to be a new type of HAase.  相似文献   

15.
Formation and location of 1,4-beta-glucanases and 1,4-beta-glucosidases were studied in cultures of Penicillium janthinellum grown on Avicel, sodium carboxymethyl cellulose, cellobiose, glucose, mannose, and maltose. Endo-1,4-beta-glucanases were found to be cell free, and their formation was induced by cellobiose. 1,4-beta-Glucosidases, on the other hand, were formed constitutively and were primarily cell free, but with a small amount strongly associated with the cell wall. Low 1,4-beta-glucosidase activities of periplasmic or intracellular origin were also found. A rotational viscosimetric method was developed to measure the total endo-1,4-beta-glucanase activity of the culture (broth and solids). By this method, it was possible to determine the endo-1,4-beta-glucanase activity not only in the supernatant of the culture but also on the surface of the mycelium or absorbed on residual Avicel. During a 70-liter batch cultivation of P. janthinellum, the adsorption of endo-1,4-beta-glucanases by residual and newly added 10% Avicel was measured. The adsorption of soluble protein and endo-1,4-beta-glucanases by Avicel was found to be largely independent of the pH value but dependent on temperature.  相似文献   

16.
Cellulose is the most abundant polymer in the world and termites are the most important metazoan cellulose processors. Termites are divided into lower and higher termites, with the latter being the most derived and most specious. Although termites are known for their ability to digest wood, members of the family Termitidae (higher termites) are nutritionally diverse in their use of cellulose. This study investigated the evolution of endogenous cellulases in 25 species of higher termites, using phylogenetic inferences from mitochondrial (16S) and nuclear (28S) ribosomal RNA and endo-β-1,4-glucanase sequences. The translated endo-β-1,4-glucanase amino acid order in all 41 sequences obtained showed high similarity to endo-β-1,4-glucanases in the glycosyl hydrolase family 9. The inferred endo-β-1,4-glucanase phylogenetic tree showed congruency with the mitochondrial/nuclear tree, with the fungus-growers being the most basal group and the soil/litter- and wood/lichen/grass/litter-feeders being the most distal diphyletic feeding groups. The bacterial comb-grower formed a separate clade from the fungus-growers and is sister groups with the soil/litter- and wood/lichen/grass/litter-feeders. There was also a strong diphyletic relationship between endo-β-1,4-glucanases of upper layer soil-feeders and the other soil-feeders. Within the monophyletic wood/lichen/grass/litter-feeding termites’ subclade, the nasutitermitines were polyphyletic and a strong diphyletic relationship was observed in the most distal lichen- and the grass/litter-feeders groups.  相似文献   

17.
Formation and location of 1,4-β-glucanases and 1,4-β-glucosidases were studied in cultures of Penicillium janthinellum grown on Avicel, sodium carboxymethyl cellulose, cellobiose, glucose, mannose, and maltose. Endo-1,4-β-glucanases were found to be cell free, and their formation was induced by cellobiose. 1,4-β-Glucosidases, on the other hand, were formed constitutively and were primarily cell free, but with a small amount strongly associated with the cell wall. Low 1,4-β-glucosidase activities of periplasmic or intracellular origin were also found. A rotational viscosimetric method was developed to measure the total endo-1,4-β-glucanase activity of the culture (broth and solids). By this method, it was possible to determine the endo-1,4-β-glucanase activity not only in the supernatant of the culture but also on the surface of the mycelium or absorbed on residual Avicel. During a 70-liter batch cultivation of P. janthinellum, the adsorption of endo-1,4-β-glucanases by residual and newly added 10% Avicel was measured. The adsorption of soluble protein and endo-1,4-β-glucanases by Avicel was found to be largely independent of the pH value but dependent on temperature.  相似文献   

18.
This study demonstrates sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust bioconversion of hardwoods. With only about 4% sodium bisulfite charge on aspen and 30‐min pretreatment at temperature 180°C, SPORL can achieve near‐complete cellulose conversion to glucose in a wide range of pretreatment liquor of pH 2.0–4.5 in only about 10 h enzymatic hydrolysis. The enzyme loading was about 20 FPU cellulase plus 30 CBU β‐glucosidase per gram of cellulose. The production of fermentation inhibitor furfural was less than 20 mg/g of aspen wood at pH 4.5. With pH 4.5, SPORL avoided reactor corrosion problem and eliminated the need for substrate neutralization prior to enzymatic hydrolysis. Similar results were obtained from maple and eucalyptus. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

19.
通过同源序列PCR克隆的方法,获得桔青霉(Penicillium citrinum)CR-2菌株的木聚糖酶编码基因xyl,该基因全长984 bp,编码327个氨基酸,无内含子序列,具有完整开放阅读框。其编码的氨基酸序列N端具有一段包含19个氨基酸的信号肽序列,并具有糖基水解酶第10家族(GH10)的保守催化域特征,推测该酶属于第10家族成员。将该基因与毕赤酵母表达载体pPIC9相连接构建重组载体pPIC9-XYL,电击转化至毕赤酵母GS115菌株中。挑选阳性重组子经测序、酶活性以及SDS电泳分析表明,xyl基因成功在毕赤酵母中分泌表达,重组酶活性可达214.15 IU/mL。该重组酶最适温度与最适pH分别为50℃和4.5,且具有良好的pH和热稳定性。  相似文献   

20.

Background  

Mannans are one of the key polymers in hemicellulose, a major component of lignocellulose. The Mannan endo-1,4-β-mannosidase or 1,4-β- D -mannanase (EC 3.2.1.78), commonly named β-mannanase, is an enzyme that can catalyze random hydrolysis of β-1,4-mannosidic linkages in the main chain of mannans, glucomannans and galactomannans. The enzyme has found a number of applications in different industries, including food, feed, pharmaceutical, pulp/paper industries, as well as gas well stimulation and pretreatment of lignocellulosic biomass for the production of second generation biofuel. Bacillus licheniformis is a Gram-positive endospore-forming microorganism that is generally non-pathogenic and has been used extensively for large-scale industrial production of various enzymes; however, there has been no previous report on the cloning and expression of mannan endo-1,4-β-mannosidase gene (manB) from B. licheniformis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号