首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
RNA 2',3'-cyclic phosphate ends play important roles in RNA metabolism as substrates for RNA ligases during tRNA restriction-repair and tRNA splicing. Diverse bacteria from multiple phyla encode a two-component RNA repair cassette, comprising Pnkp (polynucleotide kinase-phosphatase-ligase) and Hen1 (RNA 3'-terminal ribose 2'-O-methyltransferase), that heals and then seals broken tRNAs with 2',3'-cyclic phosphate and 5'-OH ends. The Pnkp-Hen1 repair operon is absent in the majority of bacterial species, thereby raising the prospect that other RNA repair systems might be extant. A candidate component is RNA 3'-phosphate cyclase, a widely distributed enzyme that transforms RNA 3'-monophosphate termini into 2',3'-cyclic phosphates but cannot seal the ends it produces. Escherichia coli RNA cyclase (RtcA) is encoded in a σ(54)-regulated operon with RtcB, a protein of unknown function. Taking a cue from Pnkp-Hen1, we purified E. coli RtcB and tested it for RNA ligase activity. We report that RtcB per se seals broken tRNA-like stem-loop structures with 2',3'-cyclic phosphate and 5'-OH ends to form a splice junction with a 2'-OH, 3',5'-phosphodiester. We speculate that: (i) RtcB might afford bacteria a means to recover from stress-induced RNA damage; and (ii) RtcB homologs might catalyze tRNA repair or splicing reactions in archaea and eukarya.  相似文献   

2.
Ribotoxins cleave essential RNAs involved in protein synthesis as a strategy for cell killing. RNA repair systems exist in nature to counteract the lethal actions of ribotoxins, as first demonstrated by the RNA repair system from bacteriophage T4 25 yr ago. Recently, we found that two bacterial proteins, named Pnkp and Hen1, form a stable complex and are able to repair ribotoxin-cleaved tRNAs in vitro. However, unlike the well-studied T4 RNA repair system, the natural RNA substrates of the bacterial Pnkp/Hen1 RNA repair system are unknown. Here we present comprehensive RNA repair assays with the recombinant Pnkp/Hen1 proteins from Anabaena variabilis using a total of 33 different RNAs as substrates that might mimic various damaged forms of RNAs present in living cells. We found that unlike the RNA repair system from bacteriophage T4, the bacterial Pnkp/Hen1 RNA repair system exhibits broad substrate specificity. Based on the experimental data presented here, a model of preferred RNA substrates of the Pnkp/Hen1 repair system is proposed.  相似文献   

3.
4.
The RNA methyltransferase Hen1 and the RNA end-healing/sealing enzyme Pnkp comprise an RNA repair system encoded by an operon-like cassette present in bacteria from eight different phyla. Clostridium thermocellum Hen1 (CthHen1) is a manganese-dependent RNA ribose 2'O-methyltransferase that marks the 3' terminal nucleoside of broken RNAs and protects repair junctions from iterative damage by transesterifying endonucleases. Here we used the crystal structure of the homologous plant Hen1 to guide a mutational analysis of CthHen1, the results of which provide new insights to RNA end recognition and catalysis. We illuminated structure-activity relations at eight essential constituents of the active site implicated in binding the 3' dinucleotide of the RNA methyl acceptor (Arg273, Arg414), the manganese cofactor (Glu366, Glu369, His370, His418), and the AdoMet methyl donor (Asp291, Asp316). We investigated the effects of varying the terminal nucleobase, RNA size, RNA content, and RNA secondary structure on methyl acceptor activity. Key findings are as follows. CthHen1 displayed a fourfold preference for guanosine as the terminal nucleoside. RNA size had little impact in the range of 12-24 nucleotides, but activity declined sharply with a 9-mer. CthHen1 was adept at methylating a polynucleotide composed of 23 deoxyribonucleotides and one 3' terminal ribonucleotide, signifying that it has no strict RNA specificity beyond the 3' nucleoside. CthHen1 methylated RNA ends in the context of duplex secondary structures. These properties distinguish bacterial Hen1 from plant and metazoan homologs.  相似文献   

5.
Hen1 is an RNA ribose 2′-O-methyltransferase that modifies the 3′ terminal nucleoside of eukaryal small regulatory RNAs. Here, we report that Hen1 homologs are present in bacterial proteomes from eight different phyla. Bacterial Hen1 is encoded by the proximal ORF of a two-gene operon that also encodes polynucleotide kinase-phosphatase (Pnkp), an RNA repair enzyme. Purified recombinant Clostridium thermocellum Hen1 is a homodimer of a 465-amino acid polypeptide. CthHen1 catalyzes methyl transfer from AdoMet to the 3′ terminal nucleoside of an RNA oligonucleotide, but is unreactive with a synonymous DNA oligonucleotide or an RNA with a single 3′-terminal deoxyribose sugar. CthHen1 is optimally active at alkaline pH and dependent on manganese. Activity is inhibited by AdoHcy and abolished by mutations D291A and D316A in the putative AdoMet-binding pocket. The C-terminal fragment, Hen1-(259–465), comprises an autonomous monomeric methyltransferase domain.  相似文献   

6.
Small regulatory RNA repertoires in biological samples are heterogeneous mixtures that may include species arising from varied biosynthetic pathways and modification events. Small RNA profiling and discovery approaches ought to capture molecules in a way that is representative of expression level. It follows that the effects of RNA modifications on representation should be minimized. The collection of high-quality, representative data, therefore, will be highly dependent on bias-free sample manipulation in advance of quantification. We examined the impact of 2'-O-methylation of the 3'-terminal nucleotide of small RNA on key enzymatic reactions of standard front-end manipulation schemes. Here we report that this common modification negatively influences the representation of these small RNA species. Deficits occurred at multiple steps as determined by gel analysis of synthetic input RNA and by quantification and sequencing of derived cDNA pools. We describe methods to minimize the effects of 2'-O-methyl modification of small RNA 3'-termini using T4 RNA ligase 2 truncated, and other optimized reaction conditions, demonstrating their use by quantifying representation of miRNAs and piRNAs in cDNA pools prepared from biological samples.  相似文献   

7.
Summary Based on the comparative analyses of the primary structure of 5S RNAs from 19 organisms, a secondary structure model of 5S RNA is proposed. 5S RNA has essentially the same structure among all prokaryotic species. The same is true for eukaryotic 5S RNAs. Prokaryotic and eukaryotic 5S RNAs are also quite similar to each other, except for a difference in a specific region.By comparing the nucleotide alignment from the juxtaposed 5S RNA secondary structures, a phylogenic tree of nineteen organisms was constructed. The time of divergence between prokaryotes and eukaryotes was estimated to be 2.5×109 years ago (minimum estimate: 2.1×109).  相似文献   

8.
9.
MicroRNAs (miRNAs), small interfering RNAs (siRNAs), and piwi-interacting RNAs (piRNAs) impact numerous biological processes in eukaryotes. In addition to biogenesis, turnover contributes to the steady-state levels of small RNAs. One major factor that stabilizes miRNAs and siRNAs in plants as well as siRNAs and piRNAs in animals is 2'-O-methylation on the 3' terminal ribose by the methyltransferase HUA ENHANCER1 (HEN1) [1-6]. Genetic studies with Arabidopsis, Drosophila, and zebrafish hen1 mutants show that 2'-O-methylation protects small RNAs from 3'-to-5' truncation and 3' uridylation, the addition of nontemplated nucleotides, predominantly uridine [2, 7, 8]. Uridylation is a widespread phenomenon that is not restricted to small RNAs in hen1 mutants and is often associated with their reduced accumulation ([7, 9, 10]; reviewed in [11]). The enzymes responsible for 3' uridylation of small RNAs when they lack methylation in plants or animals have remained elusive. Here, we identify the Arabidopsis HEN1 SUPPRESSOR1 (HESO1) gene as responsible for small RNA uridylation in hen1 mutants. HESO1 exhibits terminal nucleotidyl transferase activity, prefers uridine as the substrate nucleotide, and is completely inhibited by 2'-O-methylation. We show that uridylation leads to miRNA degradation, and the degradation is most likely through an enzyme that is distinct from that causing the 3' truncation in hen1 mutants.  相似文献   

10.
Jády BE  Kiss T 《The EMBO journal》2001,20(3):541-551
In eukaryotes, two distinct classes of small nucleolar RNAs (snoRNAs), namely the fibrillarin-associated box C/D snoRNAs and the Gar1p-associated box H/ACA snoRNAs, direct the site-specific 2'-O-ribose methylation and pseudouridylation of ribosomal RNAs (rRNAs), respectively. We have identified a novel evolutionarily conserved snoRNA, called U85, which possesses the box elements of both classes of snoRNAs and associates with both fibrillarin and Gar1p. In vitro and in vivo pseudouridylation and 2'-O-methylation experiments provide evidence that the U85 snoRNA directs 2'-O-methylation of the C45 and pseudouridylation of the U46 residues in the invariant loop 1 of the human U5 spliceosomal RNA. The U85 is the first example of a snoRNA that directs modification of an RNA polymerase II-transcribed spliceosomal RNA and that functions both in RNA pseudouridylation and 2'-O-methylation.  相似文献   

11.
Analysis by a PAGE approach for detecting small circular RNAs showed the existence of one such molecular species (RNA 1) accumulating at high levels in cherimoya. Sequencing of cDNA clones of RNA 1 revealed a size of 281 nt and a sequence identical to the 3'-terminal region of the 494-nt tRNALeu(UAA) group I intron from cherimoya. Northern blot hybridizations with a probe complementary to RNA 1 showed that this RNA coexists in vivo with its corresponding linear form, with the presumed full-length intron, and with minor amounts of two additional small circular species (RNAs 2 and 3). RNAs 2 and 3 had sizes of 216 and 156 nt, respectively, and sequences identical to different moieties of the 3'-terminal region of the tRNALeu(UAA) intron. The three cyclization sites giving rise to RNAs 1, 2, and 3, located within loop 8, are preceded by CUU or UUU trinucleotides and followed by sequences capable of forming base pairing interactions with the internal guide sequence characteristic of group I introns. The good correlation observed between the stabilities of these interactions and the in vivo accumulation levels of the corresponding cherimoya circular RNAs support the hypothesis that they emerge through a common mechanism similar to that advanced previously for the generation of circular RNAs derived from other group I introns. The lack of interactions of similar stabilities in tobacco, in which no circular RNAs derived from the tRNALeu(UAA) intron were detected, is consistent with this proposal, although other factors are also probably important in the synthesis and accumulation of the small circular RNAs in cherimoya.  相似文献   

12.
Lavoie M  Abou Elela S 《Biochemistry》2008,47(33):8514-8526
Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.  相似文献   

13.
The 5' and 3'-terminal nucleotide sequences of 17-S rRNA and its immediate precursor 18-S RNA from the yeast Saccharomyces carlsbergensis have been analysed. Identification of the terminal oligonucleotides, as present in Ti ribonuclease digests, was performed by diagonal procedures. The major (molar yield 0.9) 5'-terminal oligonucleotide (molar yield 0.15) with the overall composition pU (U2,C2)G was observed. 18-S precursor RNA was found to contain the same 5'-terminal sequences as 17-S rRNA. However, the 3'-terminal sequences of the two types of RNA appeared to be different. The 17-S rRNA yields the oligonucleotide A-U-C-A-U-U-AOH while at least half of the 18-S RNA molecules contain the sequence U-U-U-C-A-A-U-AOH. In addition 18-S RNA yields several minor 3'-terminal oligonucleotides which appear to be structurally related to the major 3'-terminal sequence. These results demonstrate that the extra nucleotides in 18-S RNA relative to 17-S RNA are located exclusively at the 3'-terminus of the 18-S RNA molecule. The possibility that the 3'-terminal nucleotide sequence of 18-S RNA plays a role in the maturation process is discussed.  相似文献   

14.
Hema M  Gopinath K  Kao C 《Journal of virology》2005,79(3):1417-1427
The 3' portions of plus-strand brome mosaic virus (BMV) RNAs mimic cellular tRNAs. Nucleotide substitutions or deletions in the 3'CCA of the tRNA-like sequence (TLS) affect minus-strand initiation unless repaired. We observed that 2-nucleotide deletions involving the CCA 3' sequence in one or all BMV RNAs still allowed RNA accumulation in barley protoplasts at significant levels. Alterations of CCA to GGA in only BMV RNA3 also allowed RNA accumulation at wild-type levels. However, substitutions in all three BMV RNAs severely reduced RNA accumulation, demonstrating that substitutions have different repair requirements than do small deletions. Furthermore, wild-type BMV RNA1 was required for the repair and replication of RNAs with nucleotide substitutions. Results from sequencing of progeny viral RNA from mutant input RNAs demonstrated that RNA1 did not contribute its sequence to the mutant RNAs. Instead, the repaired ends were heterogeneous, with one-third having a restored CCA and others having sequences with the only commonality being the restoration of one cytidylate. The role of BMV RNA1 in increased repair was examined.  相似文献   

15.
RNA沉默在植物生物逆境反应中的作用   总被引:1,自引:0,他引:1  
谢兆辉 《遗传》2010,32(6):561-570
RNA沉默是真核生物共有的基因表达调节机制和防御机制。在植物RNA沉默中, 一些小RNAs, 如微小 RNAs和小干扰RNAs, 在植物防御病毒、细菌或食草动物的反应中具有重要作用。为了抑制宿主的RNA沉默系统, 植物病毒或细菌进化出了在RNA沉默不同阶段起作用的病毒沉默抑制子或细菌沉默抑制子, 来克服寄主的RNA沉默反应。文章就植物RNA沉默、病毒沉默抑制子、细菌沉默抑制子及其相关防御反应的一些新进展做一概述。  相似文献   

16.
Tran EJ  Zhang X  Maxwell ES 《The EMBO journal》2003,22(15):3930-3940
Box C/D ribonucleoprotein (RNP) complexes direct the nucleotide-specific 2'-O-methylation of ribonucleotide sugars in target RNAs. In vitro assembly of an archaeal box C/D sRNP using recombinant core proteins L7, Nop56/58 and fibrillarin has yielded an RNA:protein enzyme that guides methylation from both the terminal box C/D core and internal C'/D' RNP complexes. Reconstitution of sRNP complexes containing only box C/D or C'/D' motifs has demonstrated that the terminal box C/D RNP is the minimal methylation-competent particle. However, efficient ribonucleotide 2'-O-methylation requires that both the box C/D and C'/D' RNPs function within the full-length sRNA molecule. In contrast to the eukaryotic snoRNP complex, where the core proteins are distributed asymmetrically on the box C/D and C'/D' motifs, all three archaeal core proteins bind both motifs symmetrically. This difference in core protein distribution is a result of altered RNA-binding capabilities of the archaeal and eukaryotic core protein homologs. Thus, evolution of the box C/D nucleotide modification complex has resulted in structurally distinct archaeal and eukaryotic RNP particles.  相似文献   

17.
本文利用双脱氧序列分析法对我国大麦条纹花叶病毒新疆株(BSMV-XJ)RNA2 cDNA的3′端进行序列分析,证明XJ株RNA2 3′端239个核苷酸与国外典型株3′端相应部位有高度的序列同源性。通过序列分析及使用寡核苷酸定位裂解法和分子杂交确定,在紧邻239个核苷酸的上游有一个Poly(A)结构,3′终端为一个类tRNA结构,亦与国外典型株相同。经分析认为BSMV-XJ3个基因组RNA具有相同的3′端结构。  相似文献   

18.
Small RNA database.   总被引:1,自引:0,他引:1       下载免费PDF全文
J Gu  Y Chen    R Reddy 《Nucleic acids research》1998,26(1):160-162
The small RNA database is a compilation of all the small size RNA sequences available to date, including nuclear, nucleolar, cytoplasmic and mitochondria small RNAs from eukaryotic organisms and small RNAs from prokaryotic cells as well as viruses. Currently, approximately 600 small RNA sequences are in our database. It also gives the sources of individual RNAs and their GenBank accession numbers. The small RNA database can be accessed through the WWW (World Wide Web). Our WWW URL address is: http://mbcr.bcm.tmc. edu/smallRNA/smallrna.html . The new small RNA sequences published since our last compilation are listed in this paper (Table 1).  相似文献   

19.
The nucleotide sequences at the 5' and 3' termini of RNA isolated from the New Jersey serotype of vesicular stomatitis virus [vsV(NJ)] and two of its defective interfering (DI) particles have been determined. The sequence differs from that previously demonstrated for the RNA from the Indiana serotype of VSV at only 1 of the first 17 positions from the 3' terminus and at only 2 of the first 17 positions from the 5' terminus. The 5'-terminal sequence of VSV(NJ) RNA is the complement of the 3'-terminal sequence, and duplexes which are 20 bases long and contain the 3' and 5' termini have been isolated from this RNA. The RNAs isolated from DI particles of VSV(NJ) have the same base sequences as do the RNAs from the parental virus. These results are in sharp contrast to those obtained with the Indiana serotype of VSV and its DI particles, in which the 3'-terminal sequences differ in 3 positions within the first 17. However, with both serotypes, the 3'-terminal sequence of the DI RNA is the complement of the 5'-terminal sequence of the RNA from the infectious virus. These findings suggest that the 3' and 5' RNA termini are highly conserved in both serotypes and that the 3' terminus of DI RNA is ultimately derived by copying the 5' end of the VSV genome, as recently proposed (D. Kolakofsky, M. Leppert, and L. Kort, in B. W. J. Mahy and R. D. Barry, ed., Negative-Strand Virus and the Host Cell, 1977; M. Leppert, L. Kort, and D. Kolakofsky, Cell 12:539-552, 1977; A. S. Huang, Bacteriol. Rev. 41:811-8218 1977).  相似文献   

20.
Makarova IuA  Kramerov DA 《Genetika》2007,43(2):149-158
Small nucleolar RNAs (snoRNAs) are one of the most numerous and well-studied groups of non-protein-coding RNAs. In complex with proteins, snoRNAs perform the two most common nucleotide modifications in rRNA: 2'-O-methylation of ribose and pseudouridylation. Although the modification mechanisms and shoRNA structures are highly conserved, the snoRNA genes are surprisingly diverse in organization. In addition to genes transcribed independently, there are genes that are in introns of other genes, form clusters transcribed from a common promoter, or cluster in introns. Interestingly. one type of gene organization usually prevails in different taxa. Vertebrate snoRNAs mostly originate from introns of protein-coding genes; a small group of snoRNAs are encoded by introns of genes for noncoding RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号