共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional solution structure of conotoxin TVIIA, a 30-residue polypeptide from the venom of the piscivorous cone snail Conus tulipa, has been determined using 2D 1H NMR spectroscopy. TVIIA contains six cysteine residues which form a 'four-loop' structural framework common to many peptides from Conus venoms including the omega-, delta-, kappa-, and muO-conotoxins. However, TVIIA does not belong to these well-characterized pharmacological classes of conotoxins, but displays high sequence identity with conotoxin GS, a muscle sodium channel blocker from Conus geographus. Structure calculations were based on 562 interproton distance restraints inferred from NOE data, together with 18 backbone and nine side-chain torsion angle restraints derived from spin-spin coupling constants. The final family of 20 structures had mean pairwise rms differences over residues 2-27 of 0.18+/-0.05 A for the backbone atoms and 1.39+/-0.33 A for all heavy atoms. The structure consists of a triple-stranded, antiparallel beta sheet with +2x, -1 topology (residues 7-9, 16-20 and 23-27) and several beta turns. The core of the molecule is formed by three disulfide bonds which form a cystine knot motif common to many toxic and inhibitory polypeptides. The global fold, molecular shape and distribution of amino-acid sidechains in TVIIA is similar to that previously reported for conotoxin GS, and comparison with other four-loop conotoxin structures provides further indication that TVIIA and GS represent a new and distinct subgroup of this structural family. The structure of TVIIA determined in this study provides the basis for determining a structure-activity relationship for these molecules and their interaction with target receptors. 相似文献
2.
J M Hill A R Atkins M L Loughnan A Jones D A Adams R C Martin R J Lewis D J Craik P F Alewood 《European journal of biochemistry》2000,267(15):4642-4648
A novel conotoxin belonging to the 'four-loop' structural class has been isolated from the venom of the piscivorous cone snail Conus tulipa. It was identified using a chemical-directed strategy based largely on mass spectrometric techniques. The new toxin, conotoxin TVIIA, consists of 30 amino-acid residues and contains three disulfide bonds. The amino-acid sequence was determined by Edman analysis as SCSGRDSRCOOVCCMGLMCSRGKCVSIYGE where O = 4-transL-hydroxyproline. Two under-hydroxylated analogues, [Pro10]TVIIA and [Pro10,11]TVIIA, were also identified in the venom of C. tulipa. The sequences of TVIIA and [Pro10]TVIIA were further verified by chemical synthesis and coelution studies with native material. Conotoxin TVIIA has a six cysteine/four-loop structural framework common to many peptides from Conus venoms including the omega-, delta- and kappa-conotoxins. However, TVIIA displays little sequence homology with these well-characterized pharmacological classes of peptides, but displays striking sequence homology with conotoxin GS, a peptide from Conus geographus that blocks skeletal muscle sodium channels. These new toxins and GS share several biochemical features and represent a distinct subgroup of the four-loop conotoxins. 相似文献
3.
Pc16a, the first characterized peptide from Conus pictus venom, shows a novel disulfide connectivity
Van Der Haegen A Peigneur S Dyubankova N Möller C Marí F Diego-García E Naudé R Lescrinier E Herdewijn P Tytgat J 《Peptides》2012,34(1):106-113
A novel conotoxin, pc16a, was isolated from the venom of Conus pictus. This is the first peptide characterized from this South-African cone snail and it has only 11 amino acid residues, SCSCKRNFLCC*, with the rare cysteine framework XVI and a monoisotopic mass of 1257.6Da. Two peptides were synthesized with two possible conformations: globular (pc16a_1) and ribbon (pc16a_2). pc16a_1 co-eluted with the native peptide, which indicates a disulfide connectivity I-III, II-IV. The structure of pc16a_1 was determined by NMR. Both synthetic peptides were used to elucidate the biological activity. Bioassays were performed on crickets, ghost shrimps, larvae of the mealworm beetle and mice, but no effect was seen. Using two-electrode voltage clamp, a range of voltage-gated ion channels (Na(v) and K(v)) and nicotinic acetylcholine receptors were screened, but again no activity was found. Hence, the specific target of pc16a still remains to be discovered. 相似文献
4.
Mohammed Abdel-Wahab Masahiro Miyashita Atsushi Kitanaka Hironori Juichi Moustafa Sarhan Maged Fouda 《Bioscience, biotechnology, and biochemistry》2016,80(10):1879-1882
Over 200 components with molecular mass ranging mainly from 400 to 4000 Da were characterized from the venom of the vermivorous cone snail Conus fulgetrum that inhabit Egyptian Red Sea. One major component having a molecular mass of 2946 Da was purified by HPLC, and its primary structure was determined by a combination of Edman degradation and MS/MS analysis. 相似文献
5.
Purification and sequence of a presynaptic peptide toxin from Conus geographus venom 总被引:23,自引:0,他引:23
A novel toxin, omega-conotoxin (omega-CgTX), from the venom of the fish-eating marine mollusc Conus geographus has been purified and biochemically characterized. Recently, this omega-conotoxin has been shown to inhibit the voltage-activated entry of Ca2+, thus providing a potentially powerful probe for exploring the vertebrate presynaptic terminal [Kerr, L. M., & Yoshikami, D. (1984) Nature (London) 308, 282-284]. The toxin is a basic 27 amino acid peptide amide with three disulfide bridges. An unusual feature is a remarkable preponderance of hydroxylated amino acids. The sequence of omega-CgTx GVIA is Cys-Lys-Ser- Hyp-Gly5-Ser-Ser-Cys-Ser-Hyp10-Thr-Ser-Tyr-Asn-Cys15-C ys-Arg-Ser- Cys-Asn20-Hyp-Tyr-Thr-Lys-Arg25-Cys-Tyr-NH2. 相似文献
6.
A novel 13 residue acyclic peptide from the marine snail, Conus monile, targets potassium channels 总被引:1,自引:0,他引:1
Sudarslal S Singaravadivelan G Ramasamy P Ananda K Sarma SP Sikdar SK Krishnan KS Balaram P 《Biochemical and biophysical research communications》2004,317(3):682-688
A novel 13-residue peptide Mo1659 has been isolated from the venom of a vermivorous cone snail, Conus monile. HPLC fractions of the venom extract yielded an intense UV absorbing fraction with a mass of 1659Da. De novo sequencing using both matrix assisted laser desorption and ionization and electrospray MS/MS methods together with analysis of proteolytic fragments successfully yielded the amino acid sequence, FHGGSWYRFPWGY-NH(2). This was further confirmed by comparison with the chemically synthesized peptide and by conventional Edman sequencing. Mo1659 has an unusual sequence with a preponderance of aromatic residues and the absence of apolar, aliphatic residues like Ala, Val, Leu, and Ile. Mo1659 has no disulfide bridges distinguishing it from the conotoxins and bears no sequence similarity with any of the acyclic peptides isolated thus far from the venom of cone snails. Electrophysiological studies on the effect of Mo1659 on measured currents in dorsal root ganglion neurons suggest that the peptide targets non-inactivating voltage-dependent potassium channels. 相似文献
7.
Abdel-Rahman MA Abdel-Nabi IM El-Naggar MS Abbas OA Strong PN 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2011,154(4):318-325
A combination of proteomic and biochemical assays was used to examine variations in the venom of Conus vexillum taken from two locations (Hurgada and Sharm El-Shaikh) in the Red Sea, Egypt. Using MALDI/TOF-MS, a remarkable degree of intra-species variation between venom samples from both locations was identified. To evaluate variability in the cytotoxic effects of Conus venom, mice were injected with the same dose from each location. The oxidative stress biomarkers [malondialdehyde (MDA), protein carbonyl content (PCC)], antioxidants [glutathione (GSH), superoxide dismutase (SOD), catalase (CAT)], total antioxidant capacity (TAC) and nitric oxide (NO), were measured 3, 6, 9 and 12 h post venom injection. The venoms induced a significant increase in the levels of PCC, MDA, NO, GSH and CAT. The venoms significantly inhibited the activity of SOD and reduced the TAC. Toxicological data showed that the venom obtained from Hurgada was more potent than that obtained from Sharm El-Shaikh. It can be concluded that: (1) the venom of the same Conus species from different regions is highly diversified (2) the venoms from different locations reflect clear differences in venom potency and (3) the cytotoxic effects of C. vexillum venom can be attributed to its ability to induce oxidative stress. 相似文献
8.
The amino acid sequences of homologous hydroxyproline-containing myotoxins from the marine snail Conus geographus venom 总被引:5,自引:0,他引:5
Two homologous toxic peptides containing hydroxyproline from the venom of the marine snail Conus geographus have been sequenced.Geographutoxin I: Geographutoxin II: Arg-Asp-Cys-Cys-Thr-Hyp-Hyp-Arg-Lys-Cys-Lys-Asp-Arg-Arg-Cys-Lys-Hyp-Met-Lys-Cys-Cys-Ala-NH2These peptides inhibit the contractile response of directly stimulated mouse diaphragm. 相似文献
9.
Zugasti-Cruz A Maillo M López-Vera E Falcón A Heimer de la Cotera EP Olivera BM Aguilar MB 《Peptides》2006,27(3):506-511
A novel 31-residue toxin, named as7a, was isolated and characterized from the venom of Conus austini, a vermivorous cone snail collected in the western Gulf of Mexico. The complete amino acid sequence, TCKQKGEGCSLDVgammaCCSSSCKPGGPLFDFDC, was determined by automatic Edman sequencing after reduction and alkylation. The sequence shows six Cys residues arranged in the pattern that defines the O-superfamily of conotoxins, and the sequence motif -gammaCCS-, which has only been found in the gamma-conotoxin family. The molecular mass of the native peptide was determined by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, which confirmed the chemical analyses and suggested a free C-terminus. The purified peptide elicited toxic effects in the freshwater snail Pomacea paludosa after intramuscular injection, but it had no effect when injected intracerebrally into mice. The structural similarity of peptide as7a to other gamma-conotoxins suggests that modulation of pacemaker channels could be responsible for its biological activity. 相似文献
10.
M Fainzilber D Gordon A Hasson M E Spira E Zlotkin 《European journal of biochemistry》1991,202(2):589-595
Three peptide toxins exhibiting strong paralytic activity to molluscs, but with no paralytic effects on arthropods or vertebrates, were purified from the venom of the molluscivorous snail Conus textile neovicarius from the Red Sea. The amino acid sequences of these mollusc specific toxins are: TxIA, WCKQSGEMCNLLDQNCCDGYCI-VLVCT (identical to the so called 'King Kong peptide'); TxIB, WCKQSGEMCNVLDQNCCDGYCIVFVCT; TxIIA, WGGYSTYC gamma VDS gamma CCSDNCVRSYCT (gamma = gamma-carboxyglutamate). There is a similarity of the Cys framework of these toxins to that of the omega-conotoxins; however, their net negative charges, high content of hydrophobic residues and uneven number of Cys residues in TxIIA, are highly unusual for conotoxins. When assayed on isolated cultured Aplysia neurons, all three toxins induced membrane depolarization and spontaneous repetitive firing. The TxI toxins also induce a marked prolongation of the action potential duration, which is sodium dependent. These effects differ significantly from the blocking activities of piscivorous venom conotoxins. These mollusc specific conotoxins may therefore serve as new and selective probes for ion-channel functions in molluscan neuronal systems. 相似文献
11.
C A Ramilo G C Zafaralla L Nadasdi L G Hammerland D Yoshikami W R Gray R Kristipati J Ramachandran G Miljanich B M Olivera 《Biochemistry》1992,31(41):9919-9926
Three neurotoxic peptides from the venom of Conus striatus have been purified, biochemically characterized, and chemically synthesized. One of these, an acetylcholine receptor blocker designated alpha-conotoxin SII, has the sequence GCCCNPACGPNYGCGTSCS. In contrast to all other alpha-conotoxins, SII has three disulfide bonds (instead of two), has no net positive charge, and has a free C-terminus. The other two paralytic peptides are Ca channel-targeted omega-conotoxins, SVIA and SVIB. omega-SVIA is the smallest natural omega-conotoxin so far characterized and has the sequence CRSSGSPCGVTSICCGRCYRGKCT-NH2. Although omega-conotoxin SVIA is a potent paralytic toxic in lower vertebrate species, it was much less effective in mammals. The third toxin, omega-conotoxin SVIB, has the sequence CKLKGQSCRKTSYDCCSGSCGRSGKC-NH2. This peptide has a different pharmacological specificity from other omega-conotoxins previously purified from Conus venoms; only omega-conotoxin SVIB has proven to be lethal to mice upon ic injection. Binding competition experiments with rat brain synaptosomal membranes indicate that the high-affinity binding site for omega-conotoxin SVIB is distinct from the high-affinity omega-conotoxin GVIA or MVIIA site. 相似文献
12.
Conceição K Konno K Melo RL Marques EE Hiruma-Lima CA Lima C Richardson M Pimenta DC Lopes-Ferreira M 《Peptides》2006,27(12):3039-3046
Characterization of the peptide content of venoms has a number of potential benefits for basic research, clinical diagnosis, development of new therapeutic agents, and production of antiserum. In order to analyze in detail the peptides and small proteins of crude samples, techniques such as chromatography and mass spectrometry have been employed. The present study describes the isolation, biochemical characterization, and sequence determination of a novel peptide, named Orpotrin from the venom of Potamotrygon gr. orbignyi. The natural peptide was shown to be effective in microcirculatory environment causing a strong vasoconstriction. The peptide was fully sequenced by de novo amino acid sequencing with mass spectrometry and identified as the novel peptide. Its amino acid sequence, HGGYKPTDK, aligns only with creatine kinase residues 97–105, but has no similarity to any bioactive peptide. Therefore, possible production of this peptide from creatine kinase by limited proteolysis is discussed. Taken together, the results indicate the usefulness of this single-step approach for low molecular mass compounds in complex samples such as venoms. 相似文献
13.
Total synthesis and further characterization of the gamma-carboxyglutamate-containing "sleeper" peptide from Conus geographus venom 总被引:2,自引:0,他引:2
The total synthesis of the Gla-containing "sleeper" peptide (Gly-Glu-Gla-Gla-Leu-Gln-Gla-Asn-Gln-Gla-Leu-Ile-Arg-Gla-Lys-Ser-Asn-NH2 ) from Conus geographus is described. A new strategy for the synthesis of acid-sensitive peptide amides was developed, which allowed complete deprotection and cleavage of the L-gamma-carboxyglutamate-containing peptide from the 2,4-dimethoxybenzhydrylamine resin. Synthetic sleeper peptide, after preparative high-performance liquid chromatography (HPLC) purification, was shown to be identical with the native peptide by all criteria (coelution experiments of HPLC, sequence analysis, and biological activity). In addition, a developmental switch in the behavioral symptoms induced by the peptide after intracerebral administration in mice was documented. At low doses of the peptide (4-30 pmol/g), a sleeplike state was induced in mice under 2 weeks old; in contrast, older mice became markedly hyperactive. It is proposed that, in the presence of Ca2+, the sleeper peptide assumes an alpha-helical configuration in which all the gamma-carboxyglutamate residues are located on the same side of the alpha-helix. 相似文献
14.
A 22-residue peptide toxin from the venomous marine snail Conus geographus (L.) was found to have a most unusual amino acid composition: Lys4, Arg3, , Asx2, Glx2, Thr, Ala, plus three residues of trans-4-hydroxyproline. Absence of Gly and Pro indicates that the hydroxyproline must be in sequences different from those in which hydroxyproline occurs in collagen and other proteins. 相似文献
15.
R B Jacobsen E C Jimenez R G De la Cruz W R Gray L J Cruz B M Olivera 《The journal of peptide research》1999,54(2):93-99
A Conus peptide family (the contryphans) is noteworthy because of the presence of a post-translationally modified D-amino acid in all members of the family. A new contryphan peptide, Leu-contryphan-P, was isolated from the venom of Conus purpurascens; the sequence of this peptide is: Gly-Cys-Val-D-Leu-Leu-Pro-Trp-Cys-OH. This is the first known occurrence of D-leucine in a Conus peptide. The discovery of Leu-contryphan-P suggests that there may be branches of the contryphan peptide family that diverge much more in sequence than previously anticipated. Several natural contryphans provide dramatic examples of interconversion between multiple conformational states in small constrained peptides. The contryphans that have 4-trans-hydroxyproline and D-tryptophan in positions 3 and 4, respectively, exhibit two peaks under reverse-phase HPLC conditions, indicating interconversion between two discrete conformations. However, [L-Trp4]contryphan-Sm (with L-Trp substituted for D-Trp) exhibits a single, broad peak that elutes later than the natural peptide, suggesting that D-Trp stabilizes a conformation in which hydrophobic residues are buried. Leucontryphan-P which has valine and D-leucine instead of 4-trans-hydroxyproline and D-tryptophan shows only a single peak that elutes much later than the other contryphans. 相似文献
16.
McIntosh JM Dowell C Watkins M Garrett JE Yoshikami D Olivera BM 《The Journal of biological chemistry》2002,277(37):33610-33615
Many venomous organisms produce toxins that disrupt neuromuscular communication to paralyze their prey. One common class of such toxins comprises nicotinic acetylcholine receptor antagonists (nAChRs). Thus, most toxins that act on nAChRs are targeted to the neuromuscular subtype. The toxin characterized in this report, alpha-conotoxin GIC, is a most striking exception. The 16-amino acid peptide was identified from a genomic DNA clone from Conus geographus. The predicted mature toxin was synthesized, and synthetic toxin was used in all studies described. alpha-Conotoxin GIC shows no paralytic activity in fish or mice. Furthermore, even at concentrations up to 100 microm, the peptide has no detectable effect on the human muscle nicotinic receptor subtype heterologously expressed in Xenopus oocytes. In contrast, the toxin has high affinity (IC(50) approximately 1.1 nm) for the human alpha3beta2 subunit combination, making it the most neuronally selective nicotinic antagonist characterized thus far. Although alpha-conotoxin GIC shares some sequence similarity with alpha-conotoxin MII, which is also a potent alpha3beta2 nicotinic antagonist, it is much less hydrophobic, and the kinetics of channel block are substantially different. It is noteworthy that the nicotinic ligands in C. geographus venom fit an emerging pattern in venomous predators, with one nicotinic antagonist targeted to the muscle subtype (thereby causing paralysis) and a second nicotinic antagonist targeted to the alpha3beta2 nAChR subtype (possibly inhibiting the fight-or-flight response). 相似文献
17.
Biochemical characterization and nuclear magnetic resonance structure of novel alpha-conotoxins isolated from the venom of Conus consors. 总被引:1,自引:0,他引:1
P Favreau I Krimm F Le Gall M J Bobenrieth H Lamthanh F Bouet D Servent J Molgo A Ménez Y Letourneux J M Lancelin 《Biochemistry》1999,38(19):6317-6326
Two novel alpha-conotoxins were purified and characterized from the venom of the fish-hunting cone snail Conus consors. These peptides were identified by screening HPLC fractions of the crude venom and by binding experiments with Torpedo nicotinic acetylcholine receptor. The toxins named alpha-CnIA and alpha-CnIB exhibited sequences of 14 and 12 amino acids, respectively. The alpha-CnIA represents the main alpha-conotoxin contained in the venom, whereas alpha-CnIB is present in a relatively small amount. Chemical synthesis of alpha-CnIA was carried out using the Fmoc methodology by selective disulfide bond formation. The biological activity of the toxin was assessed in fish and mice. The alpha-CnIA inhibited the fixation of iodinated alpha-bungarotoxin to Torpedo nicotinic acetylcholine receptors with an IC50 of 0.19 microM which can be compared to the IC50 of 0.31 microM found for the previously characterized alpha-MI isolated from the piscivorous Conus magus. The synthetic alpha-CnIA blocked spontaneous and evoked synaptic potentials in frog and mouse isolated neuromuscular preparations at sub-micromolar concentrations. Solution NMR of this toxin indicated a conformational heterogeneity with the existence of different conformers in solution, at slow and intermediate exchange rates relative to the NMR chemical shift time scale, similar to that reported for alpha-GI and alpha-MI. NMR structures were calculated for the major NMR signals representing more than 80% of the population at 5 degrees C. 相似文献
18.
T Piek A Duval B Hue H Karst B Lapied P Mantel T Nakajima M Pelhate J O Schmidt 《Comp. Biochem. Physiol. C, Comp. Pharmacol. Toxicol.》1991,99(3):487-495
1. At concentrations varying from 10(-8) to 10(-6) M synthetic poneratoxin (PoTX) is a strong, but very slowly acting agonist for smooth muscles and its blocks synaptic transmission in the insect CNS in a concentration-dependent manner and depolarizes giant interneurons. 2. However, in isolated dorsal unpaired median cells 10(-6) M PoTX causes only a reversible hyperpolarization of about 5 mV. 3. At concentrations from 10(-8) to 10(-6) M PoTX affects the electrical activity of isolated cockroach axons, as well as isolated frog and rat skeletal muscle fibres. 4. PoTX prolongs action potentials and induces slow automatic activity, due to a slow Na(+)-current activation at very negative values of potential and due to slow deactivation. 相似文献
19.
K Konno M Hisada R Fontana C C Lorenzi H Naoki Y Itagaki A Miwa N Kawai Y Nakata T Yasuhara J Ruggiero Neto W F de Azevedo M S Palma T Nakajima 《Biochimica et biophysica acta》2001,1550(1):70-80
A novel antimicrobial peptide, anoplin, was purified from the venom of the solitary wasp Anoplius samariensis. The sequence was mostly analyzed by mass spectrometry, which was corroborated by solid-phase synthesis. Anoplin, composed of 10 amino acid residues, Gly-Leu-Leu-Lys-Arg-Ile-Lys-Thr-Leu-Leu-NH2, has a high homology to crabrolin and mastoparan-X, the mast cell degranulating peptides from social wasp venoms, and, therefore, can be predicted to adopt an amphipathic alpha-helix secondary structure. In fact, the circular dichroism (CD) spectra of anoplin in the presence of trifluoroethanol or sodium dodecyl sulfate showed a high content, up to 55%, of the alpha-helical conformation. A modeling study of anoplin based on its homology to mastoparan-X supported the CD results. Biological evaluation using the synthetic peptide revealed that this peptide exhibited potent activity in stimulating degranulation from rat peritoneal mast cells and broad-spectrum antimicrobial activity against both Gram-positive and Gram-negative bacteria. Therefore, this is the first antimicrobial component to be found in the solitary wasp venom and it may play a key role in preventing potential infection by microorganisms during prey consumption by their larvae. Moreover, this peptide is the smallest among the linear alpha-helical antimicrobial peptides hitherto found in nature, which is advantageous for chemical manipulation and medical application. 相似文献
20.
Aguilar MB Luna-Ramírez KS Echeverría D Falcón A Olivera BM Heimer de la Cotera EP Maillo M 《Peptides》2008,29(2):186-195
A novel peptide, conorfamide-Sr2 (CNF-Sr2), was purified from the venom extract of Conus spurius, collected in the Caribbean Sea off the Yucatan Peninsula. Its primary structure was determined by automated Edman degradation and amino acid analysis, and confirmed by electrospray ionization mass spectrometry. Conorfamide-Sr2 contains 12 amino acids and no Cys residues, and it is only the second FMRFamide-related peptide isolated from a venom. Its primary structure GPM gammaDPLgammaIIRI-nh2, (gamma, gamma-carboxyglutamate; -nh2, amidated C-terminus; calculated monoisotopic mass, 1468.72Da; experimental monoisotopic mass, 1468.70Da) shows two features that are unusual among FMRFamide-related peptides (FaRPs, also known as RFamide peptides), namely the novel presence of gamma-carboxyglutamate, and a rather uncommon C-terminal residue, Ile. CNF-Sr2 exhibits paralytic activity in the limpet Patella opea and causes hyperactivity in the freshwater snail Pomacea paludosa and in the mouse. The sequence similarities of CNF-Sr2 with FaRPs from marine and freshwater mollusks and mice might explain its biological effects in these organisms. It also resembles FaRPs from polychaetes (the prey of C. spurius), which suggests a natural biological role. Based on these similarities, CNF-Sr2 might interact with receptors of these three distinct types of FaRPs, G-protein-coupled receptors, Na+ channels activated by FMRFamide (FaNaCs), and acid-sensing ion channels (ASICs). The biological activities of CNF-Sr2 in mollusks and mice make it a potential tool to study molecular targets in these and other organisms. 相似文献