首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Niche differentiation and ecological filtering are primary ecological processes that shape community assembly, but their relative importance remains poorly understood. Analyses of the distributions of functional traits can provide insight into the community structure generated by these processes. We predicted the trait distributions expected under the ecological processes of niche differentiation and environmental filtering, then tested these predictions with a dataset of 4672 trees located in nine 1‐ha plots of tropical rain forest in French Guiana. Five traits related to leaf function (foliar N concentration, chlorophyll content, toughness, tissue density and specific leaf area), and three traits related to stem function (trunk sapwood density, branch sapwood density, and trunk bark thickness), as well as laminar surface area, were measured on every individual tree. There was far more evidence for environmental filtering than for niche differentiation in these forests. Furthermore, we contrasted results from species‐mean and individual‐level trait values. Analyses that took within‐species trait variation into account were far more sensitive indicators of niche differentiation and ecological filtering. Species‐mean analyses, by contrast, may underestimate the effects of ecological processes on community assembly. Environmental filtering appeared somewhat more intense on leaf traits than on stem traits, whereas niche differentiation affected neither strongly. By accounting for within‐species trait variation, we were able to more properly consider the ecological interactions among individual trees and between individual trees and their environment. In so doing, our results suggest that the ecological processes of niche differentiation and environmental filtering may be more pervasive than previously believed.  相似文献   

2.
Several multi-year biodiversity experiments have shown positive species richness–productivity relationships which strengthen over time, but the mechanisms which control productivity are not well understood. We used experimental grasslands (Jena Experiment) with mixtures containing different numbers of species (4, 8, 16 and 60) and plant functional groups (1–4; grasses, legumes, small herbs, tall herbs) to explore patterns of variation in functional trait composition as well as climatic variables as predictors for community biomass production across several years (from 2003 to 2009). Over this time span, high community mean trait values shifted from the dominance of trait values associated with fast growth to trait values suggesting a conservation of growth-related resources and successful reproduction. Increasing between-community convergence in means of several productivity-related traits indicated that environmental filtering and exclusion of competitively weaker species played a role during community assembly. A general trend for increasing functional trait diversity within and convergence among communities suggested niche differentiation through limiting similarity in the longer term and that similar mechanisms operated in communities sown with different diversity. Community biomass production was primarily explained by a few key mean traits (tall growth, large seed mass and leaf nitrogen concentration) and to a smaller extent by functional diversity in nitrogen acquisition strategies, functional richness in multiple traits and functional evenness in light-acquisition traits. Increasing species richness, presence of an exceptionally productive legume species (Onobrychis viciifolia) and climatic variables explained an additional proportion of variation in community biomass. In general, community biomass production decreased through time, but communities with higher functional richness in multiple traits had high productivities over several years. Our results suggest that assembly processes within communities with an artificially maintained species composition maximize functional diversity through niche differentiation and exclusion of weaker competitors, thereby maintaining their potential for high productivity.  相似文献   

3.
针对目前关于植物群落功能性状构建模式及其驱动因素存在的争议, 研究了33个物种10个功能性状的构建模式。研究结果显示: (1)在刈割-施肥复合梯度上, 这些功能性状主要表现为随机构建模式, 发生随机性和确定性构建的样方比例分别为82.7%和17.3%; (2)在10个功能性状中, 生长型、生活周期、单株地上干质量、叶面积和叶干质量5个功能性状为随机构建模式, 不受试验处理和群落特征(地上净初级生产力、刈割生物量损失、群落高度)变化的影响。植物倾斜度、繁殖方式、固氮性、株高和比叶面积5个功能性状的构建模式与试验处理或群落特征变化有关, 表现出趋同或趋异构建响应。其中, 植物倾斜度和比叶面积的构建模式仅受群落特征影响, 而固氮性、繁殖方式和株高3个性状的构建模式同时还受刈割或施肥处理的影响, 其构建模式因功能性状而异; (3)群落的生物量损失和地上净初级生产力是解释植物功能性状构建模式变化较理想的群落特征; (4)刈割和施肥处理对株高的构建模式具有相反效应, 而刈割和施肥的交互作用对其无显著影响。上述结果说明该研究群落植物功能性状的构建存在不同模式, 以随机构建模式为主, 确定性构建模式居次要地位。确定性构建模式与试验处理和群落特征变化有关, 而且是性状依赖的。相反选择力对趋同和趋异构建模式的平衡效应能引起功能性状发生随机构建。  相似文献   

4.
Aims Decades of empirical work have demonstrated how dominant plant species and nitrogen fertilization can influence the structure and function of plant communities. More recent studies have examined the interplay between these factors, but few such studies use an explicit trait-based framework. In this study, we use an explicit trait-based approach to identify potential mechanisms for community-level responses and to test ecological niche theory.Methods We experimentally manipulated plant communities (control, ?dominant species, ?random biomass) and nitrogen (N) inputs (control, +organic N, +inorganic N) in a fully factorial design. We predicted that traits related to plants' ability to take up different forms of soil N would differ between dominant and subordinate species, resulting in interactive effects of dominant species loss and N fertilization on plant community structure and function. The study took place in a montane meadow in the Rocky Mountains, Colorado, USA.Important findings After four years, the plant community in removal plots converged toward a species composition whose leaf and root functional traits resembled those of the previously removed dominant species. Ecosystem productivity generally increased with N addition: soil carbon efflux was ~50% greater when either form of N was added, while inorganic N addition increased aboveground biomass production by ~60% relative to controls. The increase in production was mediated by increased average height, leaf mass:area ratio and leaf dry matter content in plant communities to which we added inorganic N. Contrary to our predictions, there were no interactive effects of N fertilization and dominant species loss on plant community structure or ecosystem function. The plant community composition in this study exhibited resistance to soil N addition and, given the functional convergence we observed, was resilient to species loss. Together, our results indicate that the ability of species to compensate functionally for species loss confers resilience and maintains diversity in montane meadow communities.  相似文献   

5.
Understanding the influence of the environment on the functional structure of ecological communities is essential to predict the response of biodiversity to global change drivers. Ecological theory suggests that multiple environmental factors shape local species assemblages by progressively filtering species from the regional species pool to local communities. These successive filters should influence the various components of community functional structure in different ways. In this paper, we tested the relative influence of multiple environmental filters on various metrics of plant functional trait structure (i.e. ‘community weighted mean trait’ and components of functional trait diversity, i.e. functional richness, evenness and divergence) in 82 vegetation plots in the Guisane Valley, French Alps. For the 211 sampled species we measured traits known to capture key aspects of ecological strategies amongst vascular plant species, i.e. leaf traits, plant height and seed mass (LHS). A comprehensive information theory framework, together with null model based resampling techniques, was used to test the various environmental effects. Particular community components of functional structure responded differently to various environmental gradients, especially concerning the spatial scale at which the environmental factors seem to operate. Environmental factors acting at a large spatial scale (e.g. temperature) were found to predominantly shape community weighted mean trait values, while fine‐scale factors (topography and soil characteristics) mostly influenced functional diversity and the distribution of trait values among the dominant species. Our results emphasize the hierarchical nature of ecological forces shaping local species assemblage: large‐scale environmental filters having a primary effect, i.e. selecting the pool of species adapted to a site, and then filters at finer scales determining species abundances and local species coexistence. This suggests that different components of functional community structure will respond differently to environmental change, so that predicting plant community responses will require a hierarchical multi‐facet approach.  相似文献   

6.
Quantifying species relative abundances in plant communities remains a key issue for the assessment of community functional structure. This is particularly challenging when non-destructive estimates are required over time. We tested whether the point intercept method (PIM), originally developed for low-diverse communities, is relevant for assessing the aboveground biomass and functional structure of highly diverse, low-productive Mediterranean grasslands. We sampled 18 communities with the PIM along a gradient of soil depth and texture, twice over the growing season. After each sampling period, we harvested the aboveground biomass in order to measure species biomass and to assess species richness and community functional structure with plant height, leaf area and leaf dry matter content (LDMC). We investigated the relationship between point intercept measurements and aboveground biomass at three hierarchical levels (species, growth-form and community) to find generalizable calibration equations for estimating community biomass and tested for sensitivity of estimates to community structure. We then compared the community weighted mean (CWM) and variance (CWV) of LDMC, calculated with and without calibration. Differences in species growth strategy and phenology strongly impacted biomass estimates at both the species and the community level. These differences were, however, successfully accounted for by growth-form specific calibrations, which provided accurate estimates without any influence of community structure. Lack of calibration may have dramatic consequences on functional structure assessment by inducing errors in estimates of CWV up to 80 %, depending on growth-form proportions. This work contributes to a better understanding of the possible methodological biases induced during sampling with the PIM, when quantifying species relative abundances for functional structure assessment in complex communities.  相似文献   

7.
8.
Local species coexistence is the outcome of abiotic and biotic filtering processes which sort species according to their trait values. However, the capacity of trait‐based approaches to predict the variation in realized species richness remains to be investigated. In this study, we asked whether a limited number of plant functional traits, related to the leaf‐height‐seed strategy scheme and averaged at the community level, is able to predict the variation in species richness over a flooding disturbance gradient. We further investigated how these mean community traits are able to quantify the strength of abiotic and biotic processes involved in the disturbance–productivity–diversity relationship. We thus tested the proposal that the deviation between the fundamental species richness, assessed from ecological niche‐based models, and realized species richness, i.e. field‐observed richness, is controlled by species interactions. Flooding regime was determined using a detailed hydrological model. A precise vegetation sampling was performed across 222 quadrats located throughout the flooding gradient. Three core functional traits were considered: specific leaf area (SLA), plant height and seed mass. Species richness showed a hump‐shaped response to disturbance and productivity, but was better predicted by only two mean community traits: SLA and height. On the one hand, community SLA that increased with flooding, controlled the disturbance‐diversity relationship through habitat filtering. On the other hand, species interactions, the strength of which was captured by community height values, played a strong consistent role throughout the disturbance gradient by reducing the local species richness. Our study highlights that a limited number of simple, quantitative, easily measurable functional traits can capture the variation in plant species richness at a local scale and provides a promising quantification of key community assembly mechanisms.  相似文献   

9.
植物群落中生态位重迭的计测   总被引:20,自引:1,他引:19       下载免费PDF全文
王刚 《植物生态学报》1984,8(4):329-335
本文阐明了生态位重迭在植物生态学研究中的重要性。指出植物群落中生态位重迭的计测有不同于动物的特殊性,并建议以群落梯度代替生态因子梯度;以生态距离间隔作为生态位重迭计测公式中的加权因子,使生态位重迭的计测简化。以甘肃省马衔山林区的林下草本植物为例,计测各种对间的生态位重迭。计测分两种情况进行:其一,在光照、土壤水分、土壤有机质三维复合生态因子梯度上;其二,在群落梯度上。二者所得结果,进行了比较分析。最后在讨论中指出:计测生态位重迭时,必须区分部分重迭与完全重迭,区分样方和资源位。  相似文献   

10.
Fertilization via nutrient deposition and agricultural inputs is one of the most important factors driving decreases in plant diversity. However, we still do not fully understand which processes (niche process or neutral process) are more important in leading to decreases in plant diversity caused by fertilization. A hypothesis-based approach was used to test the relative importance of niche versus neutral processes along a fertilization gradient in an alpine meadow community on the eastern Tibetan plateau, China. Niche overlap values were calculated for species biomass, and the null model was used to generate the values of niche overlap expected at random. A linear regression modeling was used to evaluate the relationship between functional traits (specific leaf area, leaf dry matter content, and leaf total nitrogen concentration) and species relative abundance. Our results demonstrated that observed niche overlap for species biomass was significantly higher than expected at lower fertilization gradients. Moreover, we also found a significantly negative correlation between species relative abundance and specific leaf area and leaf dry matter content, but a significantly positive correlation between relative abundance and leaf nitrogen concentration at lower fertilization gradients. However, these relationships were not significant at higher fertilization gradients. We concluded that community assembly is dynamic progression along the environmental gradients, and niche and neutral processes may together determine species diversity loss in response to fertilization.  相似文献   

11.
Competition in plant communities is often a contentious issue because the mechanisms of competitive interactions are not obvious. We sought evidence that Proteaceae communities are competing along two leaf niche axes as observed in a previous study. Two functional characters, leaf size and leaf shape were measured on numerous individuals per species per plot of six communities from two different regions. Patterns of overdispersion along these leaf trait axes between species were observed, similar to the earlier study. The observed results were compared with the patterns expected under a null model using standard and novel indices to test the significance of trait dispersion between species within a plot. Competition and niche differentiation in the observed plots were not supported as the observed trait overlaps were not significantly different from the null expectation. Our results do not support the theory that Proteaceae communities compete along the two proposed functional leaf traits.  相似文献   

12.
Functional trait composition of plant communities has been proposed as a helpful key for understanding the mechanisms of biodiversity effects on ecosystem functioning. In this study, we applied a step‐wise modeling procedure to test the relative effects of taxonomic diversity, functional identity, and functional diversity on macrophytes community productivity along water depth gradient. We sampled 42 plots and 1513 individual plants and measured 16 functional traits and abundance of 17 macrophyte species. Results showed that there was a significant decrease in taxonomic diversity, functional identity (i.e., stem dry mass content, leaf [C] and leaf [N]), and functional diversity (i.e., floating leaf, mean Julian flowering date and rooting depth) with increasing water depth. For the multiple‐trait functional diversity (FD) indices, functional richness decreased, while functional divergence increased with water depth gradient. Macrophyte community productivity was strongly determined by functional trait composition within community, but not significantly affected by taxonomic diversity. Community‐weighted means (CWM) showed a two times higher explanatory power relative to FD indices in determining variations in community productivity. For nine of sixteen traits, CWM and FD showed significant correlations with community productivity, although the strength and direction of those relations depended on selected trait. Furthermore, functional composition in a community affected productivity through either additive or opposite effects of CWM and FD, depending on the particular traits being considered. Our results suggested both mechanisms of mass ratio and niche complementarity can operate simultaneously on variations in community productivity, and considering both CWM and FD would lead to a more profound understanding of traits–productivity relationships.  相似文献   

13.
Niche conservatism theory suggests that recently diverged sister species share the same ecological niche. However, if the ecological niche evolves as part of the speciation process, the ecological pattern could be useful for recognizing cryptic species. In a broad sense systematists agree that the niche characters could be used for species differentiation. However, to date such characters have been ignored. We used the genetic algorithm for rule‐set production for modelling the ecological niche as a means of inferring ecological divergence in allopatric populations of muroid rodents for which taxonomic identity is uncertain. Our results show that niche differentiation is significant in most of the identified phylogroups. The differentiation is likely associated with natural evolutionary units, which can be identified by applying species concepts based on phylogenetic and ecological patterns (e.g. phylogenetic, cohesive, evolutionary). Even so, the role of the niche partition within phylogenetic reconstruction may be a limited one.  相似文献   

14.
Abstract. The community structure of 11 lawn sites in New Zealand and Fiji was examined in terms of guilds, seeking assembly rules based on guild proportionality. First, associations were analysed, using a new patch model which examined the mean of associations within patches of about 4 cm x 4 cm. As expected from the previously-demonstrated existence of niche limitation at this scale in lawns, the majority of associations between individual species were negative. Even in a lawn only four months old there were significant associations (mostly negative, and one positive). At some sites those species with the most negative associations were those whose morphology might be expected to restrict co-existence with other species. Much ecological theory is based on the assumption that there are limitations to coexistence, related to the resource usage of the species, such that species that are too similar in resource use are less likely to coexist. This theory was tested by looking for evidence of guild proportionality. We defined two guilds, graminoids and forbs. Using these guilds, three of the sites showed significant evenness in proportional representation from the two guilds in quadrats containing four species, i.e. there was less variation in the graminoid:forb ratio than expected on a random basis. Inclusion of species-poor quadrats in a joint analysis over all richness categories overwhelmed this effect, though there was still a strong trend for two of the New Zealand sites: the two species-rich grass lawns. Preliminary analyses of alternative guild delimitations gave no indication that other guild delimitations would have revealed stronger community structure. There was a strong and significant tendency in most sites for the graminoid guild to be more strongly represented in species-poor quadrats, an effect caused by species frequencies.  相似文献   

15.
Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate‐induced biomass responses in 12 co‐occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf‐trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition.  相似文献   

16.
植物表皮蜡质中的饱和链烷作为内源指示剂广泛用于评价放牧家畜的食性和食量, 但用于天然草原蝗虫食性的评价研究较少。为了探讨天然草原蝗虫的食性及其生态位变化, 本研究以内蒙古天然草原为研究对象, 于2003年7-8月沿降水梯度选择3种典型植物群落(小针茅Stipa klemenzii、 羊草Leymus chinensis和大针茅Stipa grandis群落), 在每个植物群落不同放牧压力下小区随机做20个植被样方, 样方内植物齐地面刈割, 测定其地上生物量和物种多样性, 取主要植物种测定其链烷模式, 同时采集放牧小区优势蝗虫种亚洲小车蝗Oedaleus asiaticus的粪便, 测定其链烷模式, 运用链烷技术评价蝗虫的食性及其营养生态位。结果表明: 不同植物群落中优势牧草种类及其比例不同, 其链烷模式存在种间差异, 链烷技术可以评价亚洲小车蝗的食性。亚洲小车蝗的食性在不同植物群落及不同放牧压力下存在显著的差异, 在羊草和大针茅群落中, 亚洲小车蝗是禾草采食者, 主要采食羊草和糙隐子草Cleistogenes squarrosa, 且与绵羊的营养生态位重叠指数较低, 分别为0.0619和0.0172; 在小针茅群落中亚洲小车蝗是杂类草采食者, 主要采食无芒隐子草Cleistogenes songorica、 猪毛菜Salsola collina和小针茅, 且与绵羊的营养生态位重叠指数较高, 达到0.1815。因此, 放牧不仅改变了群落的植物种类组成, 而且直接影响了亚洲小车蝗的食物组成, 二者对食物资源利用存在一定程度的竞争。  相似文献   

17.
The mechanisms that drive species coexistence and community dynamics have long puzzled ecologists. Here, we explain species coexistence, size structure and diversity patterns in a phytoplankton community using a combination of four fundamental factors: organism traits, size-based constraints, hydrology and species competition. Using a 'microscopic' Lotka-Volterra competition (MLVC) model (i.e. with explicit recipes to compute its parameters), we provide a mechanistic explanation of species coexistence along a niche axis (i.e. organismic volume). We based our model on empirically measured quantities, minimal ecological assumptions and stochastic processes. In nature, we found aggregated patterns of species biovolume (i.e. clumps) along the volume axis and a peak in species richness. Both patterns were reproduced by the MLVC model. Observed clumps corresponded to niche zones (volumes) where species fitness was highest, or where fitness was equal among competing species. The latter implies the action of equalizing processes, which would suggest emergent neutrality as a plausible mechanism to explain community patterns.  相似文献   

18.
Ecological theory predicts that communities using the same resources should have similar structure, but evolutionary constraints on colonisation and niche shifts may hamper such convergence. Multitrophic communities of wasps exploiting fig fruits, which first evolved about 75MYA, do not show long‐term ‘inheritance’ of taxonomic (lineage) composition or species diversity. However, communities on three continents have converged ecologically in the presence and relative abundance of five insect guilds that we define. Some taxa fill the same niches in each community (phylogenetic niche conservatism). However, we show that overall convergence in ecological community structure depends also on a combination of niche shifts by resident lineages and local colonisations of figs by other insect lineages. Our study explores new ground, and develops new heuristic tools, in combining ecology and phylogeny to address patterns in the complex multitrophic communities of insect on plants, which comprise a large part of terrestrial biodiversity.  相似文献   

19.
This study tested an hypothesis concerning patterns in species abundance in ecological communities. Why do the majority of species occur in low abundance, with just a few making up the bulk of the biomass? We propose that many of the minor species are analogues of the dominants in terms of the ecosystem functions they perform, but differ in terms of their capabilities to respond to environmental stresses and disturbance. They thereby confer resilience on the community with respect to ecosystem function. Under changing conditions, ecosystem function is maintained when dominants decline or are lost because functionally equivalent minor species are able to substitute for them. We have tested this hypothesis with respect to ecosystem functions relating to global change. In particular, we identified five plant functional attributes—height, biomass, specific leaf area, longevity, and leaf litter quality—that determine carbon and water fluxes. We assigned values for these functional attributes to each of the graminoid species in a lightly grazed site and in a heavily grazed site in an Australian rangeland. Our resilience proposition was cast in the form of three specific hypotheses in relation to expected similarities and dissimilarities between dominant and minor species, within and between sites. Functional similarity—or ecological distance—was determined as the euclidean distance between species in functional attribute space. The analyses provide evidence in support of the resilience hypothesis. Specifically, within the lightly grazed community, dominant species were functionally more dissimilar to one another, and functionally similar species more widely separated in abundance rank, than would be expected on the basis of average ecological distances in the community. Between communities, depending on the test used, two of three, or three of four minor species in the lightly grazed community that were predicted to increase in the heavily grazed community did in fact do so. Although there has been emphasis on the importance of functional diversity in supporting the flow of ecosystem goods and services, the evidence from this study indicates that functional similarity (between dominant and minor species, and among minor species) may be equally important in ensuring persistence (resilience) of ecosystem function under changing environmental conditions.  相似文献   

20.
Functional convergence of different communities in similar environments would be expected as an outcome of the operation of 'assembly rules'. At an ecological level, competitive exclusion would restrict the co-occurrence of species with similar niches. Repetition of competitive sorting on an evolutionary time scale might lead to character displacement. Either process would ultimately lead to species niches being more regularly arranged in ecological factor space than expected on a random basis, with the consequence that the niche structure of different communities in similar environments would converge. We assessed the applicability of this model of community structure by comparing vegetation between study sites spaced in altitude 20 m apart along a continuous gradient in South Westland low-altitude conifer/broad-leaved forest, with respect to seven variates of vegetation texture primarily concerning the morphology of the photosynthetic unit (PSU). We employed a null model that assigns observed species to sites at random, as would be expected in the absence of assembly rules for the communities, comparing observed variation in texture to variation under the null model to look for convergence or divergence and to determine statistical significance. Significant convergence between adjacent sites was found in all variates when species weighted either by percentage cover or cover rank were used to calculate site texture means, but convergence was less pronounced among groups of five or 10 consecutive sites. Significant divergence occurred at the five-site level (three variates) using cover rank as a weighting factor and at the two-, five- and 10-site levels (five variates) when no weighting factor was used. Overall, divergence was more pronounced among sets of sites spanning a wider range in altitude, which seemed consistent with the presence of an environmental gradient along the transect, although a DCA ordination of site floristics failed to reveal a simple altitudinal trend. This study is the first to seek community-level convergence within a local area and the first to find statistically significant convergence between vegetation patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号