首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cDNA for a new ubiquitin-specific protease (UBP), AtUBP5, was identified from Arabidopsis thaliana flower mRNA using an oligonucleotide made against the conserved UBP cysteine (Cys) box. The 924-amino-acid AtUBP5 contains the regions characteristic of all UBPs and has 35% identity and 53% similarity overall to a mammalian UBP (Unp), resulting from additional significant similarity outside these regions. AtUBP5 has 48% identity and 58% similarity overall to two uncharacterized Arabidopsis genomic sequences but is distinct outside the UBP conserved regions from two other previously published Arabidopsis UBPs, AtUBP3 and -4. Using in vivo Escherichia coli assays, which allow co-expression of GSTAtUBPs and substrates, we show that all three UBPs were active. AtUBP5 was active without 311 amino acids N-terminal to the active site cysteine, or without 233 nonconserved amino acids between the Cys and His boxes, or without both, indicating the core region was sufficient. In in vivo and in vitro assays, GSTAtUBP3, -4, and -5 exhibited preference for specific Ub-Ub linkages, suggesting accessibility and/or conformation is important and demonstrating that these enzymes cleave post-translationally. A chimeric UBP consisting of the AtUBP5 Cys box with AtUBP3 amino acids was active and exhibited AtUBP3 specificity, indicating that the modular nature of UBPs and specificity for cleavage sites is not determined by the Cys box.  相似文献   

2.
The ubiquitin/26S proteasome pathway is a major route for selectively degrading cytoplasmic and nuclear proteins in eukaryotes. In this pathway, chains of ubiquitins become attached to short-lived proteins, signalling recognition and breakdown of the modified protein by the 26S proteasome. During or following target degradation, the attached multi-ubiquitin chains are released and subsequently disassembled by ubiquitin-specific proteases (UBPs) to regenerate free ubiquitin monomers for re-use. Here, we describe Arabidopsis thaliana UBP14 that may participate in this recycling process. Its amino acid sequence is most similar to yeast UBP14 and its orthologues, human IsoT1-3 and Dictyostelium UbpA, and it can functionally replace yeast UBP14 in a ubp14Delta mutant. Like its orthologues, AtUBP14 can disassemble multi-ubiquitin chains linked internally via epsilon-amino isopeptide bonds using Lys48 and can process some, but not all, translational fusions of ubiquitin linked via alpha-amino peptide bonds. However, unlike its yeast and Dictyostelium orthologues, AtUBP14 is essential in Arabidopsis. T-DNA insertion mutations in the single gene that encodes AtUBP14 cause an embryonic lethal phenotype, with the homozygous embryos arresting at the globular stage. The arrested seeds have substantially increased levels of multi-ubiquitin chains, indicative of a defect in ubiquitin recycling. Taken together, the data demonstrate an essential role for the ubiquitin/26S proteasome pathway in general and for AtUBP14 in particular during early plant development.  相似文献   

3.
The ubiquitin-specific proteases (UBPs) are a class of enzymes vital to the ubiquitin pathway. These enzymes cleave ubiquitin at its C-terminus from two types of substrates containing (i) ubiquitin in an α-amino linkage, as found in the primary ubiquitin translation products, polyubiquitin and ubiquitin-ribosomal fusion proteins, or (ii) ubiquitin in an ?-amino linkage, as found in multiubiquitin chains either unattached or conjugated to cellular proteins. We have isolated cDNAs for two Arabidopsis thaliana genes, AtUBP3 and AtUBP4, which encode UBPs that are 93% identical. These two cDNAs represent the only two members of this subgroup and encode the smallest UBPs described to date in any organism. Using in vivo assays in Escherichia coli that allow the coexpression of a UBP with a putative substrate, we have shown that AtUBP3 and AtUBP4 can specifically deubiquitinate the artificial substrate Ub-X-β-gal but cannot act upon the natural α-amino-linked ubiquitin fusions Arabidopsis Ub-CEP52 and Arabidopsis polyubiquitin. Affinity-purified antibody prepared against AtUBP3 expressed in E. coli recognizes both AtUBP3 and AtUBP4. AtUBP3 and/or AtUBP4 are present in all Arabidopsis organs examined and at multiple developmental stages. Subcellular localization studies show that AtUBP3 and/or AtUBP4 are present in nuclear extracts. Possible physiological roles for these UBPs are discussed.  相似文献   

4.
The ubiquitin-specific proteases (UBPs) are a class of enzymes vital to the ubiquitin pathway. These enzymes cleave ubiquitin at its C-terminus from two types of substrates containing (i) ubiquitin in an α-amino linkage, as found in the primary ubiquitin translation products, polyubiquitin and ubiquitin-ribosomal fusion proteins, or (ii) ubiquitin in an ɛ-amino linkage, as found in multiubiquitin chains either unattached or conjugated to cellular proteins. We have isolated cDNAs for two Arabidopsis thaliana genes, AtUBP3 and AtUBP4, which encode UBPs that are 93% identical. These two cDNAs represent the only two members of this subgroup and encode the smallest UBPs described to date in any organism. Using in vivo assays in Escherichia coli that allow the coexpression of a UBP with a putative substrate, we have shown that AtUBP3 and AtUBP4 can specifically deubiquitinate the artificial substrate Ub-X-β-gal but cannot act upon the natural α-amino-linked ubiquitin fusions Arabidopsis Ub-CEP52 and Arabidopsis polyubiquitin. Affinity-purified antibody prepared against AtUBP3 expressed in E. coli recognizes both AtUBP3 and AtUBP4. AtUBP3 and/or AtUBP4 are present in all Arabidopsis organs examined and at multiple developmental stages. Subcellular localization studies show that AtUBP3 and/or AtUBP4 are present in nuclear extracts. Possible physiological roles for these UBPs are discussed. Received: 14 November 1996 / Accepted: 6 February 1997  相似文献   

5.
Moon BC  Choi MS  Kang YH  Kim MC  Cheong MS  Park CY  Yoo JH  Koo SC  Lee SM  Lim CO  Cho MJ  Chung WS 《FEBS letters》2005,579(18):3885-3890
Calmodulin (CaM), a key Ca(2+) sensor in eukaryotes, regulates diverse cellular processes by interacting with many proteins. To identify Ca(2+)/CaM-mediated signaling components, we screened an Arabidopsis expression library with horseradish peroxidase-conjugated Arabidopsis calmodulin2 (AtCaM2) and isolated a homolog of the UBP6 deubiquitinating enzyme family (AtUBP6) containing a Ca(2+)-dependent CaM-binding domain (CaMBD). The CaM-binding activity of the AtUBP6 CaMBD was confirmed by CaM mobility shift assay, phosphodiesterase competition assay and site-directed mutagenesis. Furthermore, expression of AtUBP6 restored canavanine resistance to the Deltaubp6 yeast mutant. This is the first demonstration that Ca(2+) signaling via CaM is involved in ubiquitin-mediated protein degradation and/or stabilization in plants.  相似文献   

6.
Ubiquitin-specific proteases (UBPs) are a highly conserved family of proteins in eukaryotes, and play critical roles in protein de-ubiquitination. Here we report a systematic genetic and expression profiling analysis of the UBP gene family in the Arabidopsis thaliana genome. Mutation analysis of 25 of the 27 member genes representing 13 of the 14 sub-families of the UBP gene family revealed that single-gene mutants of three genes in two sub-families exhibit visible phenotypes. Two of these three genes belonging to the UBP15 sub-family were selected for further characterization. The ubp15 mutants display narrower, serrated and flat rosette leaves, partially due to a defect in cell proliferation, as well as other phenotypes such as early flowering, weak apical dominance and reduced fertility, while the line over-expressing UBP15 shows opposite phenotypes. We demonstrated that UPB15 has UBP activity in vitro , and that this biochemical activity is essential for its in vivo function. A genetic interaction analysis among members of this sub-family revealed that UBP15 and UBP16, but not UBP17, have functional redundancy. Our data thus suggest that distinct UBPs, even within a closely related sub-family, can function in different developmental pathways. Although there are clearly functional redundancies among related sub-family members, those redundancies cannot be inferred simply based on the amino acid identity of the family members.  相似文献   

7.
Deubiquitinating enzymes are essential to the ubiquitin (Ub)/26S proteasome system where they release Ub monomers from the primary translation products of poly-Ub and Ub extension genes, recycle Ubs from polyubiquitinated proteins, and reverse the effects of ubiquitination by releasing bound Ubs from individual targets. The Ub-specific proteases (UBPs) are one large family of deubiquitinating enzymes that bear signature cysteine and histidine motifs. Here, we genetically characterize a UBP subfamily in Arabidopsis (Arabidopsis thaliana) encoded by paralogous UBP3 and UBP4 genes. Whereas homozygous ubp3 and ubp4 single mutants do not display obvious phenotypic abnormalities, double-homozygous mutant individuals could not be created due to a defect in pollen development and/or transmission. This pollen defect was rescued with a transgene encoding wild-type UBP3 or UBP4, but not with a transgene encoding an active-site mutant of UBP3, indicating that deubiquitination activity of UBP3/UBP4 is required. Nuclear DNA staining revealed that ubp3 ubp4 pollen often fail to undergo mitosis II, which generates the two sperm cells needed for double fertilization. Substantial changes in vacuolar morphology were also evident in mutant grains at the time of pollen dehiscence, suggesting defects in vacuole and endomembrane organization. Even though some ubp3 ubp4 pollen could germinate in vitro, they failed to fertilize wild-type ovules even in the absence of competing wild-type pollen. These studies provide additional evidence that the Ub/26S proteasome system is important for male gametogenesis in plants and suggest that deubiquitination of one or more targets by UBP3/UBP4 is critical for the development of functional pollen.  相似文献   

8.
Ubiquitin-specific processing proteases (UBPs) are characterized by a conserved core domain with surrounding divergent sequences, particularly at the N-terminal end. We previously cloned two isoforms of a testis UBP, UBP-t1 and UBP-t2, which contain identical core regions but distinct N termini that target the two isoforms to different subcellular locations (Lin, H., Keriel, A., Morales, C. R., Bedard, N., Zhao, Q., Hingamp, P., Lefrancois, S., Combaret, L., and Wing, S. S. (2000) Mol. Cell. Biol. 20, 6568-6578). To determine whether the N termini also influence the biochemical functions of the UBP, we expressed UBP-t1, UBP-t2, and the common core domain, UBP core, in Escherichia coli. The three isoforms cleaved branched triubiquitin at >20-fold faster rates than linear diubiquitin, suggesting that UBP-testis functions as an isopeptidase. Both N-terminal extensions inhibited the ability of UBP-core to generate free ubiquitin when linked in a peptide bond with itself, another peptide, or to small adducts. The N-terminal extension of UBP-t2 increased the ability of UBP-core to cleave branched triubiquitin. UBP-core removed ubiquitin from testis ubiquitinated proteins more rapidly than UBP-t2 and UBP-t1. Thus, UBP enzymes appear to contain a catalytic core domain, the activities and specificities of which can be modulated by N-terminal extensions. These divergent N termini can alter localization and confer multiple functions to the various members of the large UBP family.  相似文献   

9.

Key message

UBIQUITIN-SPECIFIC PROTEASES play important roles in plant development and stress responses.

Abstract

Protein ubiquitination and deubiquitination are reversible processes, which can modulate the stability, activity as well as subcellular localization of the substrate proteins. UBIQUITIN-SPECIFIC PROTEASE (UBP) protein family participates in protein deubiquitination. Members of UBP family are involved in a variety of physiological processes in plants, as evidenced by their functional characterization in model plant Arabidopsis and other plants. UBPs are conserved in plants and distinct UBPs function in different regulatory processes, although functional redundancies exist between some members. Here we briefly reviewed recent advances in understanding the biological functions of UBP protein family in Arabidopsis, particularly the molecular mechanisms by which UBPs regulate plant development and stress responses. We believe that elucidation of UBPs function and regulation in Arabidopsis will provide new insights about protein deubiquitination and might shed light on the understanding of the mechanistic roles of UBPs in general, which will definitely contribute to crop improvement in agriculture.
  相似文献   

10.
? Signalling by ubiquitination is implicated in diverse aspects of the plant lifecycle, and enzymes of ubiquitin metabolism are overrepresented in the Arabidopsis genome compared with other model eukaryotes. Despite the importance of ubiquitination in the regulation of signalling, little is known about deubiquitinating enzymes, which reverse the process of ubiquitination. ? Transgenic RNA interference-based cosuppression and the isolation of Atubp12/13 double mutants collectively provides the first report that AtUBP12 and AtUBP13 are functionally redundant and are required for immunity against virulent Pseudomonas syringae pv tomato in Arabidopsis. The Solanaceous AtUBP12 orthologue NtUBP12 was identified. Viral-induced gene silencing and transient gain-of-function assays were employed to establish that the NtUBP12 protein functions as a negative regulator of the Cf-9-triggered hypersensitive response. ? Here, we demonstrate that NtUBP12 and AtUBP12 are bona fide deubiquitinating enzymes capable of cleaving lysine-48-linked ubiquitin chains. AtUBP12 and NtUBP12 are functionally interchangeable and their deubiquitinating activity is required to suppress plant cell death. ? Overall, our data implicate AtUBP12- and NtUBP12-dependent deubiquitination in the stabilization of common substrates across Solanaceae and Brassicaceae which regulate disease resistance.  相似文献   

11.
The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana   总被引:6,自引:1,他引:5  
Conjugation of multiple ubiquitins serves as a committed step in the degradation of a variety of intracellular eukaryotic proteins by the 26S proteasome. Conjugates are formed via a three-enzyme cascade; the initial step requires ubiquitin-activating enzyme (E1), which couples ubiquitin activation to ATP hydrolysis. Previously, we showed that many higher plants contain multiple E1 proteins and described several E1 genes from wheat. To facilitate understanding of the roles of the different plant E1s, we characterized the E1 gene and protein family from Arabidopsis thaliana . Arabidopsis E1s are encoded by two genes ( AtUBA1 and AtUBA2 ) that synthesize approximately 123-kDa proteins with 81% amino acid sequence identity to each other and 44–75% sequence identity with confirmed E1s from other organisms. Like other E1 proteins, AtUBA1 and 2 contain a cysteine residue in the putative active site for forming the ubiquitin thiol-ester intermediate. Enzymatic analysis of the corresponding proteins expressed in Escherichia coli demonstrated that both proteins activate ubiquitin in an ATP-dependent reaction and transfer the activated ubiquitin to a variety of Arabidopsis E2s with near equal specificity. Expression studies by quantitative RT-PCR and histochemistry with transgenic plants containing AtUBA promoter-β-glucuronidase-coding region fusions showed that the AtUBA1 and 2 genes are co-expressed in most, if not all, Arabidopsis tissues and cells. Collectively, the data indicate that E1 proteins, and presumably the rest of the ubiquitin pathway, are present throughout Arabidopsis . They also show that the AtUBA1 and 2 genes are not differentially expressed nor do they encode E1s with dramatically distinct enzymatic properties.  相似文献   

12.
13.
The conjugation of polyubiquitin to target proteins acts as a signal that regulates target stability, localization, and function. Several ubiquitin binding domains have been described, and while much is known about ubiquitin binding to the isolated domains, little is known with regard to how the domains interact with polyubiquitin in the context of full-length proteins. Isopeptidase T (IsoT/USP5) is a deubiquitinating enzyme that is largely responsible for the disassembly of unanchored polyubiquitin in the cell. IsoT has four ubiquitin binding domains: a zinc finger domain (ZnF UBP), which binds the proximal ubiquitin, a UBP domain that forms the active site, and two ubiquitin-associated (UBA) domains whose roles are unknown. Here, we show that the UBA domains are involved in binding two different polyubiquitin isoforms, linear and K48-linked. Using isothermal titration calorimetry, we show that IsoT has at least four ubiquitin binding sites for both polyubiquitin isoforms. The thermodynamics of the interactions reveal that the binding is enthalpy-driven. Mutation of the UBA domains suggests that UBA1 and UBA2 domains of IsoT interact with the third and fourth ubiquitins in both polyubiquitin isoforms, respectively. These data suggest that recognition of the polyubiquitin isoforms by IsoT involves considerable conformational mobility in the polyubiquitin ligand, in the enzyme, or in both.  相似文献   

14.
In eukaryotes, both natural and engineered fusions of ubiquitin to itself or other proteins are cleaved by processing proteases after the last (Gly76) residue of ubiquitin. Using the method of sib selection, and taking advantage of the fact that bacteria such as Escherichia coli lack ubiquitin-specific enzymes, we have cloned a gene, named UBP1, of the yeast Saccharomyces cerevisiae that encodes a ubiquitin-specific processing protease. With the exception of polyubiquitin, the UBP1 protease cleaves at the carboxyl terminus of the ubiquitin moiety in natural and engineered fusions irrespective of their size or the presence of an amino-terminal ubiquitin extension. These properties of UBP1 distinguish it from the previously cloned yeast protease YUH1, which deubiquitinates relatively short ubiquitin fusions but is virtually inactive with longer fusions such as ubiquitin-beta-galactosidase. The amino acid sequence of the 809-residue UBP1 lacks significant similarities to other known proteins, including the 236-residue YUH1 protease. Null ubp1 mutants are viable, and retain the ability to deubiquitinate ubiquitin-beta-galactosidase, indicating that the family of ubiquitin-specific proteases in yeast is not limited to UBP1 and YUH1.  相似文献   

15.
In eukaryotes, both natural and engineered ubiquitin (Ub) fusions to itself or other proteins are cleaved by processing proteases after the last (Gly76) residue of ubiquitin. YUH1 and UBP1, the genes for two ubiquitin-specific proteases of the yeast Saccharomyces cerevisiae, have been cloned previously and shown to encode nonhomologous proteins. Using an Escherichia coli-based genetic screen, we have isolated two other yeast genes for ubiquitin-specific proteases, named UBP2 and UBP3. Ubp2 (1,264 residues), Ubp3 (912 residues), and the previously cloned Ubp1 (809 residues) are largely dissimilar except for two short regions containing Cys and His which encompass their putative active sites. Neither of these proteases has sequence similarities to Yuh1. Both Ubp2 and the previously identified Ubp1 cleave in vitro at the C terminus of the ubiquitin moiety in natural and engineered fusions irrespective of their size, poly-Ub being the exception. However, both Ubp1 and Ubp2 are also capable of cleaving poly-Ub when coexpressed with it in E. coli, suggesting that such cleavage is largely cotranslational. Although inactive in E. coli extracts, Ubp3 was active with all of the tested ubiquitin fusions except poly-Ub when coexpressed with them in E. coli. Null yuh1 ubp1 ubp2 ubp3 quadruple mutants are viable and retain the ability to deubiquitinate ubiquitin fusions, indicating the presence of at least one more ubiquitin-specific processing protease in S. cerevisiae.  相似文献   

16.
Ubiquitin-specific processing proteases (UBPs) presently form the largest enzyme family in the ubiquitin system, characterized by a core region containing conserved motifs surrounded by divergent sequences, most commonly at the N-terminal end. The functions of these divergent sequences remain unclear. We identified two isoforms of a novel testis-specific UBP, UBP-t1 and UBP-t2, which contain identical core regions but distinct N termini, thereby permitting dissection of the functions of these two regions. Both isoforms were germ cell specific and developmentally regulated. Immunocytochemistry revealed that UBP-t1 was induced in step 16 to 19 spermatids while UBP-t2 was expressed in step 18 to 19 spermatids. Immunoelectron microscopy showed that UBP-t1 was found in the nucleus while UBP-t2 was extranuclear and was found in residual bodies. For the first time, we show that the differential subcellular localization was due to the distinct N-terminal sequences. When transfected into COS-7 cells, the core region was expressed throughout the cell but the UBP-t1 and UBP-t2 isoforms were concentrated in the nucleus and the perinuclear region, respectively. Fusions of each N-terminal end with green fluorescent protein yielded the same subcellular localization as the native proteins, indicating that the N-terminal ends were sufficient for determining differential localization. Interestingly, UBP-t2 colocalized with anti-gamma-tubulin immunoreactivity, indicating that like several other components of the ubiquitin system, a deubiquitinating enzyme is associated with the centrosome. Regulated expression and alternative N termini can confer specificity of UBP function by restricting its temporal and spatial loci of action.  相似文献   

17.
Nicotiana plumbaginifolia UBP1 is an hnRNP-like protein associated with the poly(A)(+) RNA in the cell nucleus. Consistent with a role in pre-mRNA processing, overexpression of UBP1 in N. plumabaginifolia protoplasts enhances the splicing of suboptimal introns and increases the steady-state levels of reporter mRNAs, even intronless ones. The latter effect of UBP1 is promoter specific and appears to be due to UBP1 binding to the 3' untranslated region (3'-UTR) and protecting the mRNA from exonucleolytic degradation (M. H. L. Lambermon, G. G. Simpson, D. A. Kirk, M. Hemmings-Mieszczak, U. Klahre, and W. Filipowicz, EMBO J. 19:1638-1649, 2000). To gain more insight into UBP1 function in pre-mRNA maturation, we characterized proteins interacting with N. plumbaginifolia UBP1 and one of its Arabidopsis thaliana counterparts, AtUBP1b, by using yeast two-hybrid screens and in vitro pull-down assays. Two proteins, UBP1-associated proteins 1a and 2a (UBA1a and UBA2a, respectively), were identified in A. thaliana. They are members of two novel families of plant-specific proteins containing RNA recognition motif-type RNA-binding domains. UBA1a and UBA2a are nuclear proteins, and their recombinant forms bind RNA with a specificity for oligouridylates in vitro. As with UBP1, transient overexpression of UBA1a in protoplasts increases the steady-state levels of reporter mRNAs in a promoter-dependent manner. Similarly, overexpression of UBA2a increases the levels of reporter mRNAs, but this effect is promoter independent. Unlike UBP1, neither UBA1a nor UBA2a stimulates pre-mRNA splicing. These and other data suggest that UBP1, UBA1a, and UBA2a may act as components of a complex recognizing U-rich sequences in plant 3'-UTRs and contributing to the stabilization of mRNAs in the nucleus.  相似文献   

18.
A general method for purification of any substrate of the ubiquitin pathway, the major eukaryotic proteolytic pathway, should utilize the common characteristic of covalent linkage of ubiquitin to substrate lysyl residues. The utility of a N-terminal histidine-tagged ubiquitin (HisUb) for in vivo conjugation and isolation of ubiquitinated proteins by metal chelation chromatography is conditioned by the requirement that HisUb conjugate to the same set of proteins as wild-type ubiquitin. Stringent in vivo tests with Saccharomyces cerevisiae strains expressing ubiquitins only from plasmids were performed to show that HisUb could substitute for wild-type ubiquitin. The utility of HisUb as a method for purification of proteins ubiquitinated in vivo was demonstrated by metal chelation chromatography of yeast extracts expressing HisUb and immunoblotting for Rpb1, the largest subunit of RNA polymerase II. A fraction of Rpb1 was present in the ubiquitinated form in vivo. The ability to use HisUb expression in transgenic organisms that retain expression of their endogenous ubiquitin genes was demonstrated through transgenic Arabidopsis thaliana expressing HisUb or its variant HisUbK48R. UbK48R is a version of ubiquitin capable of conjugation to proteins, but cannot serve as an attachment site for ubiquitin via the major in vivo interubiquitin linkage. Whereas transgenic plants expressing HisUb showed insignificant enrichment of ubiquitinated proteins, transgenic Arabidopsis lines expressing HisUbK48R gave a much better yield.  相似文献   

19.
When Saccharomyces cerevisiae cells are exposed to high hydrostatic pressure, tryptophan permease Tat2 is degraded in a manner dependent on Rsp5 ubiquitin ligase. Consequently, cell growth is arrested in tryptophan auxotrophic strains. Here we show that of 17 ubiquitin-specific protease genes (UBP), deletion of DOA4, UBP6 or UBP14 causes stabilization of Tat2 and hence the cells can grow at 25 MPa. These disruptant cells displayed marked sensitivity to the arginine analogue canavanine. Internal free ubiquitin decreased 2- to 5-fold upon UBP deletion, although overproduction of ubiquitin did not affect their high-pressure growth and canavanine sensitivity. These results suggest that multiple ubiquitin-specific proteases are involved in pressure-induced degradation of Tat2, rather than free ubiquitin depletion.  相似文献   

20.
With few exceptions, natural proteins are built from only 20 canonical (proteogenic) amino acids which limits the functionality and accordingly the properties they can possess. Genetic code expansion, i.e. the creation of codons and the machinery needed to assign them to non-canonical amino acids (ncAAs), promises to enable the discovery of proteins with novel properties that are otherwise difficult or impossible to obtain. One approach to expanding the genetic code is to expand the genetic alphabet via the development of unnatural nucleotides that pair to form an unnatural base pair (UBP). Semi-synthetic organisms (SSOs), i.e. organisms that stably maintain the UBP, transcribe its component nucleotides into RNA, and use it to translate proteins, would have available to them new codons and the anticodons needed to assign them to ncAAs. This review summarizes the development of a family of UBPs, their use to create SSOs, and the optimization and application of the SSOs to produce candidate therapeutic proteins with improved properties that are now undergoing evaluation in clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号