首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The concentrations of metabolites which reflect energy production or use ( P -creatine, ATP. ADP. 5'AMP, glucose, glycogen and lactate) and cyclic nucleotides (cyclic AMP and cyclic GMP) were measured in gerbil cortex during ischemia and recirculation. Bilateral ischemia of the gerbil brain was chosen as a model to ensure the assessment of short periods of ischemia without ambiguity. The metabolites and cyclic nucleotides were measured after, 1, 5. 20. 30 and 60 min of ischemia; and 1, 5, 30, 60 and 360 min after circulation was reestablished. The greatest changes in metabolites and cyclic nucleotides due to ischemia occurred during the 1st min; ischemia of longer duration had little further effect. However, the restoration of the metabolic profile was altered by the duration of the ischemic period. In general, the longer the period of ischemia, the slower the replenishment of high-energy phosphate compounds and energy sources. Cyclic AMP increased 5- to 13-fold during ischemia; cyclic GMP decreased to as little as one-fifth control values 60min after occlusion. During recirculation, cyclic AMP increased as much as 100-fold, while cyclic GMP increased up to 6-fold. The temporal derangements in cyclic nucleotide concentrations coincide with the loss and restoration of cortical activity; a possible mechanism has been suggested.  相似文献   

2.
The concentrations of cyclic AMP, noradrenaline, glycogen, glucose, lactate, pyruvate, labile phosphate compounds, and free fatty acids were investigated in the rat neocortex and hippocampus during and following cerebral ischemia. An incomplete ischemia of 5 and 15 min duration was induced by bilateral carotid clamping combined with hypotension. The postischemic events were studied after 5, 15, and 60 min of recirculation. Five minutes of ischemia did not significantly alter the neocortical or hippocampal concentrations of cyclic AMP. After 15 min of ischemia the neocortical levels decreased significantly below control values. In the recirculation period following ischemia a significant elevation of the cyclic AMP concentrations was observed. Following 5 min of recirculation after 5 min of ischemia the levels increased from 2.53 +/- 0.21 nmol X g-1 to 5.18 +/- 0.09 nmol X g-1 in the neocortex and from 2.14 +/- 0.16 nmol X g-1 to 3.52 +/- 0.35 nmol X g-1 in the hippocampus. Five minutes of recirculation following 15 min of ischemia led to a significant increase in the levels of cyclic AMP, to 12.86 +/- 1.43 nmol X g-1 in the neocortex to 5.58 +/- 0.57 nmol X g-1 in the hippocampus. With longer recirculation periods the cyclic AMP levels progressively decreased and were similar to control values after 60 min. Depletion of cortical noradrenaline by at least 95% was performed by injections of 6-hydroxydopamine into the ascending axon bundles from the locus ceruleus. The lesion did not significantly change the ischemic or post-ischemic neocortical and hippocampal levels of cyclic AMP, glycogen, or free fatty acids including arachidonic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract— Several enzyme activities were determined in gerbil cerebral cortex during unilateral ischemia or in the post-ischemic period following 1 h of ischemia. Adenylate cyclase and Na + -K + -activated ATPase showed essentially the same pattern. Neither enzyme changed during ischemia but the activities decreased on recirculation to 40–60% of right side control by 5 h. The ATPase had returned to control level by 20h; the adenylate cyclase by 7 days of recirculation. Particulate cyclic AMP-dependent protein kinase in the ischemic left hemisphere decreased throughout the 6h of ischemia. It remained depressed in the first 5 h of the post-ischemic period but returned to control by 20 h. The soluble protein kinase activity, the soluble cyclic AMP and cyclic GMP phosphodiesterase and the Mg2+ dependent ATPase did not change significantly during the ischemic or post-ischemic periods. The results suggest that ischemia and/or recirculation may affect cellular membranes and membrane-bound enzymes, in particular. Furthermore, the results imply that despite apparent metabolite recovery during the post-ischemic period, enzymatic changes are occurring that may be important for both the quality of recovery and the response to further ischemic insult.  相似文献   

4.
The purpose of this investigation was to investigate pathomechanisms responsible for the deleterious effects of repeated episodes of brief forebrain ischemia. Halothane-anesthetized male Wistar rats were subjected to either (a) a single 15-min period or (b) three 5-min periods (separated by 1 h) of global forebrain ischemia by bilateral carotid artery occlusions plus hypotension (50 mm Hg), followed by various periods of recirculation. Brain temperature was normothermic throughout. In one series of rats, extracellular levels of glutamate, glycine, and gamma-aminobutyric acid (GABA) were measured in the dorsolateral striatum (n = 6-8 per group) and lateral thalamus (n = 4-6 per group) by microdialysis and HPLC before and during ischemia and during 3-5 h of recirculation. In a parallel series of rats (n = 6 per group), ischemic cell change was quantified at 2 (dark neurons), 24, or 72 h following either single or multiple ischemic insults. A single 15-min ischemic period led to massive glutamate release (13-fold increase; p = 0.001), which returned to normal by 20-30 min of recirculation and remained normal thereafter. By contrast, in rats with three 5-min periods of ischemia, the glutamate level rise with each repeated insult (four- to 4.5-fold; p < or = 0.02) was smaller than that observed during the single 15-min insult, but a late sustained rise (five- to six-fold; p < 0.05) occurred at 2-3 h of recirculation. Brief ischemia-induced elevations of glycine and GABA levels were detected in both the single- and multiple-insult groups, with normalization during recirculation. In contrast, the excitotoxic index, a composite measure of neurotransmitter release ([glutamate] x [glycine]/[GABA]), differed markedly following single versus multiple insults (p = 0.002 by repeated-measures analysis of variance) and increased by seven- to 12-fold (p < 0.05) at 1-3 h following the third insult. The total amount of glutamate released was 3.3-fold higher in the multiple-insult than in the single-insult group (p < 0.02). At 2 h of recirculation, histopathological analysis of dorsolateral striatum showed a significantly greater frequency of dark neurons in the multiple- than in the single-insult group (p < 0.05 by analysis of variance). In the thalamus, a higher frequency of ischemic neurons was seen in the multiple-than in the single-insult group at all intervals studied. Thus, in rats with multiple ischemic insults, accelerated ischemic damage was found in the striatum, and severe ischemic injury was documented in the thalamus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Severe hypoglycemia was induced by insulin in lightly anaesthetized (70°o N2O) and artificially ventilated rats. Brain tissue was frozen in situ after spontaneous EEG potentials had disappeared for 5. 10. 15 or 30 min and cerebral cortex concentrations of labile organic phosphates, glycolytic metabolites, ammonia and amino acids were determined. In other experiments, recovery was induced by glucose injection at the end of the period of EEG silence. All animals with an isoelectric EEG showed extensive deterioration of the cerebral energy state. and gross perturbation of amino acid concentrations. The latter included a 4-fold rise in aspartate concentration and reductions in glutamate and glutamine concentrations to 20 and 5oo of control levels respectively. There was an associated rise in ammonia concentration to about 3μmol-g-1. Administration of glucose brought about extensive recovery of cerebral energy metabolism. For example, after an isoelectric period of 30 min tissue concentrations of phosphocreatine returned to or above normal, the accumulation of ADP and AMP was reversed, there was extensive resynthesis of glycogen and glutamine and full normalisation of tissue concentrations of pyruvate. α-ketoglutarate. GABA and ammonia. However, even after 3 h of recovery there was a reduction in the ATP concentration and thereby in adenine nucleotide pool, moderate elevations of lactate content and the lactate pyruvate ratio, and less than complete restoration of the amino acid pool. It is concluded that some cells may have been irreversibly damaged by the hypoglycemia.  相似文献   

6.
–Adenosine 3′,5′-cyclic monophosphate (cyclic AMP) levels increase about 5-fold in the cerebral cortex and 2-fold in the cerebellum following electroconvulsive shock (ECS). The peak levels of cyclic AMP occur at 45 s after ECS in the cerebral cortex, and at 15 s in the cerebellum. In the cerebral cortex, ECS produces twice the cyclic AMP accumulation as does decapitation in a comparable time period; however, the relative effect of a number of neurotropic agents on the cyclic AMP accumulation is essentially the same, whether stimulated by decapitation or by ECS. In the cerebellum, the levels of guanosine 3′,5′-cyclic monophosphate (cyclic GMP) also increase following ECS. The cyclic GMP levels are greatest at 60 s after ECS during the postictal depression. An association between elevated cerebellar cyclic GMP and depression seems unlikely, since CNS depressants either lowered or had no effect on cyclic GMP levels. From these results, cyclic nucleotide profiles following treatments such as ECS or decapitation may be useful in elucidating the molecular events involved in seizures, brain injury and ischemia.  相似文献   

7.
Metabolic recovery in herring larvae following strenuous activity   总被引:2,自引:0,他引:2  
Larvae of spring spawning Clyde herring Clupea harengus L. were reared at 5 and 12° C. Metabolism following burst swimming was studied in 7-day-old larvae at their respective rearing temperatures. Escape responses were repeatedly elicited using tactile stimulation for a period of 3 min. Larval herring were hard to fatigue and still responded to tactile stimuli after 3 min. Whole larvae were freeze-quenched in liquid nitrogen, either immediately after exercise, or after periods of recovery of up to 24 h. Samples were freeze-dried and analysed for whole body creatine (Cr), phosphocreatine (PCr), ATP, ADP, AMP, lactate, glucose, and glycogen using high performance liquid chromatography and enzymatic methods. The exercise regime resulted in a marked decrease in PCr, ATP and glycogen concentrations and an increase in creatine, glucose and lactate concentrations whereas there was no significant change in either AMP or ADP concentrations. The extent of phosphagen hydrolysis (approx. 110 to 15μmol PCr g −1 dry body mass) and lactate accumulation (approx. 7 to 40 μmol lactate g−1 dry body mass) over the exercise period was similar at the two temperatures, consistent with a relatively constant degree of effort. The rates of recovery of PCr and ATP were essentially the same at 5 and 12° C; returning to resting levels after approximately 30 min. Lactate and glycogen concentrations were restored 60 min after exercise at both temperatures. Maximum lactate clearance rates (1.2 μmol min −1 g −1 wet muscle mass) were an order of magnitude faster than reported for adult fish in the literature.  相似文献   

8.
We tested the hypothesis that glycogen levels at the beginning of ischemia affect lactate production during ischemia and postischemic contractile function.Isolated working rat hearts were perfused at physiological workload with bicarbonate buffer containing glucose (10 mmol/L). Hearts were subjected to four different preconditioning protocols, and cardiac function was assessed on reperfusion. Ischemic preconditioning was induced by either one cycle of 5 min ischemia followed by 5, 10, or 20 min of reperfusion (PC5/5, PC5/10, PC5/20), or three cycles of 5 min ischemia followed by 5 min of reperfusion (PC3 × 5/5). All hearts were subjected to 15 min total, global ischemia, followed by 30 min of reperfusion. We measured lactate release, timed the return of aortic flow, compared postischemic to preischemic power, and determined tissue metabolites at selected time points.Compared with preischemic function, cardiac power during reperfusion improved in groups PC5/10 and PC5/20, but was not different from control in groups PC5/5 and PC3 × 5/5. There was no correlation between preischemic glycogen levels and recovery of function during reperfusion. There was also no correlation between glycogen breakdown (or resynthesis) and recovery of function. Lactate accumulation during ischemia was lowest in group PC5/20 and highest in the group with three cycles of preconditioning (PC3 × 5/5). Lactate release during reperfusion was significantly higher in the groups with low recovery of power than in the groups with high recovery of power.In glucose-perfused rat heart recovery of function is independent from both pre- and postischemic myocardial glycogen content over a wide range of glycogen levels. The ability to utilize lactate during reperfusion is an indicator for postischemic return of contractile function.  相似文献   

9.
Muscle glycogen levels in the perfused rat hemicorpus preparation were reduced two-thirds by electrical stimulation plus exposure to epinephrine (10(-7) M) for 30 min. During the contraction period muscle lactate concentrations increased from a control level of 3.6 +/- 0.6 to a final value of 24.1 +/- 1.6 mumol/g muscle. To determine whether the lactate that had accumulated in muscle during contraction could be used to resynthesize glycogen, glycogen levels were determined after 1-3 h of recovery from the contraction period during which time the perfusion medium (flow-through system) contained low (1.3 mmol/l) or high (10.5 or 18 mmol/l) lactate concentrations but no glucose. With the low perfusate lactate concentration, muscle lactate levels declined to 7.2 +/- 0.8 mumol/g muscle by 3 h after the contraction period and muscle glycogen levels did not increase (1.28 +/- 0.07 at 3 h vs. 1.35 +/- 0.09 mg glucosyl U/g at end of exercise). Lactate disappearance from muscle was accounted for entirely by output into the venous effluent. With the high perfusate lactate concentrations, muscle lactate levels remained high (13.7 +/- 1.7 and 19.3 +/- 2.0 mumol/g) and glycogen levels increased by 1.11 and 0.86 mg glucosyl U/g, respectively, after 1 h of recovery from exercise. No more glycogen was synthesized when the recovery period was extended. Therefore, it appears that limited resynthesis of glycogen from lactate can occur after the contraction period but only when arterial lactate concentrations are high; otherwise the lactate that builds up in muscle during contraction will diffuse into the bloodstream.  相似文献   

10.
Abstract The glutamate (Glu) terminals in rat neostriatum were removed by a unilateral frontal decortication. One to two weeks later the effects of insulin-induced hypoglycemia on the steady-state levels of amino acids [Glu, glutamine (Gin), aspartate (Asp), γ-aminobutyric acid (GABA), tau-rine] and energy metabolites (glucose, glycogen, α-ketoglu-tarate, pyruvate, lactate, ATP, ADP, AMP, phosphocre-atine) were examined in the intact and decorticated neostriatum from brains frozen in situ. The changes in the metabolite levels were examined during normoglycemia, hypoglycemia with burst-suppression (BS) EEG, after 5 and 30 min of hypoglycemic coma with isoelectric EEG, and 1 h of recovery following 30 min of isoelectric EEG. In normoglycemia Glu decreased and Gin and glycogen increased significantly on the decorticated side. During the BS period no significant differences in the measured compounds were noted between the two sides. After 5 min of isoelectric EEG Glu, Gin, GABA, and ATP levels were significantly lower and Asp higher on the intact than on the decorticated side. No differences between the two sides were found after 30 min of isoelectric EEG. After 1 h of recovery from 30 min of isoelectric EEG Glu, Gin, and glycogen had not reached their control levels. Glu was significantly lower, and Gin and glycogen higher on the decorticated side. The Asp and GABA levels were not significantly different from control levels. The results indicate that the turnover of Glu is higher in the intact than in decorticated neostriatum during profound hypoglycemia.  相似文献   

11.
The time course of the reduction in brain protein synthesis following transient bilateral ischemia in the gerbil was characterized and compared with changes in a number of metabolites related to brain energy metabolism. The recovery of brain protein synthesis was similar following ischemic periods of 5, 10, or 20 min; in vitro incorporation activity of brain supernatants was reduced to approximately 10% of control at 10 or 30 min recirculation, showed slight recovery at 60 min, and returned to 60% of control activity by 4 h. Protein synthesis activity was indistinguishable from control at 24 h. One minute of ischemia produced no detectable effect on protein synthesis measured after 30 min reperfusion; longer periods of ischemia resulted in progressive inhibition, with 5 min producing the maximal effect. Pentobarbital (50 mg/kg) increased by 1-2 min the threshold ischemic duration required to produce a given effect. Whereas most metabolites recovered quickly following 5 min ischemia, glycogen showed a delayed recovery comparable to that seen for protein synthesis. These results are discussed in relation to possible mechanisms for the coordinate regulation of brain energy metabolism and protein synthesis. An improved method for the fluorimetric measurement of guanine nucleotides is described.  相似文献   

12.
In incubated slices of guinea-pig cerebral cortex depolarizing agents such as veratridine and high potassium ions caused 50 to 80-fold increases of adenosine 3', 5'-cyclic monophosphate (cyclic AMP) levels and these responses were inhibited about 50% by 2, 3-diaminopropionate and 2'-deoxyadenosine: the former is a specific antagonist for glutamate-elicited accumulation of cyclic AMP and the latter selectively for adenosine-elicited accumulation. Methylxanthines were powerful ‘inhibitors’toward the responses not only to depolarizing agents but also to glutamate and adenosine. These findings are consistent with the hypothesis that releases of both glutamate and adenosine are involved in the depolarization-elicited increases of cyclic AMP levels. Guanosine 3', 5'-cyclic monophosphate (cyclic GMP) levels in the slices were also elevated by veratridine as well as by glutamate, but always to a lesser extent (8 ~ 12 times the control value) than cyclic AMP levels were. The responses for cyclic GMP both to veratridine and glutamate were ‘augmented’by methylxanthines and were not inhibited by 2, 3-diaminopropionate. Thus, glutamate appears to cause the increase of cyclic GMP levels through a different mechanism or site of action from that for cyclic AMP.  相似文献   

13.
A rat four vessel occlusion model was utilized to examine the effects of ischemia/reperfusion on cortical window superfusate levels of amino acids, glucose, and lactate. Superfusate aspartate, glutamate, phosphoethanolamine, taurine, and GABA were significantly elevated by cerebral ischemia, then declined during reperfusion. Other amino acids were affected to a lesser degree. Superfusate lactate rose slightly during the initial ischemic period, declined during continued cerebral ischemia and then was greatly elevated during reperfusion. Superfusate glucose levels declined to near zero levels during ischemia and then rebounded beyond basal levels during the reperfusion period. Inhibition of neuronal lactate uptake with alpha-cyano-4-hydroxycinnamate dramatically elevated superfusate lactate levels, enhanced the ischemia/reperfusion evoked release of aspartate but reduced glutamine levels. Topical application of an alternative metabolic fuel, glutamine, had a dose dependent effect. Glutamine (1 mM) elevated basal superfusate glucose levels, diminished the decline in glucose during ischemia, and accelerated its recovery during reperfusion. Lactate levels were elevated during ischemia and reperfusion. These effects were not evident at 5 mM glutamine. At both concentrations, glutamine significantly elevated the superfusate levels of glutamate. Topical application of sodium pyruvate (20 mM) significantly attenuated the decline in superfusate glucose during ischemia and enhanced the levels of both glucose and lactate during reperfusion. However, it had little effect on the ischemia-evoked accumulation of amino acids. Topical application of glucose (450 mg/dL) significantly elevated basal superfusate levels of lactate, which continued to be elevated during both ischemia and reperfusion. The ischemia-evoked accumulations of aspartate, glutamate, taurine and GABA were all significantly depressed by glucose, while phosphoethanolamine levels were elevated. These results support the role of lactate in neuronal metabolism during ischemia/reperfusion. Both glucose and glutamine were also used as energy substrates. In contrast, sodium pyruvate does not appear to be as effectively utilized by the ischemic/reperfused rat brain since it did not reduce ischemia-evoked amino acid efflux.  相似文献   

14.
—Complete cerebral ischemia was produced in normothermic anaesthetized cats by clamping the innominate and the left subclavian arteries combined with lowering the blood pressure. After 1 h of ischemia, ATP was no longer present in detectable amounts. Total adenine nucleotides were reduced to 34 per cent of the normal level. The breakdown of guanine nucleotides was less marked, with small amounts of GTP still being present at the end of the ischemic period. In animals with signs of functional recovery after 3–7 h of recirculation, ATP was resynthesized to 62 per cent of the control level. Total adenine nucleotides increased to 68 per cent and the adenylate energy change—[ATP + 1/2 ADP]/[AMP + ADP + ATP]—was re-established to within 7 per cent of the pre-ischemic value. Radiochromatography of nucleotides following intravenous injection of [14C]formate indicated a marked enhancement of postischemic purine de novo synthesis. Purine nucleosides and free bases which accumulated during ischemia, were partially re-utilized by salvage pathways: adenosine was rephosphorylated to AMP by adenosine kinase (EC 2.7.1.20); inosine and hypoxanthine were re-used via IMP in a reaction mediated by hypoxanthine phosphoribosyltransferase (EC 2.4.2.8).  相似文献   

15.
This study addresses the possible involvement of an agonist-induced postischemic hyperactivity in the delayed neuronal death of the CA1 hippocampus in the rat. In two sets of experiments, dialytrodes were implanted into the CA1 either acutely or chronically (24 h of recovery). During 20 min of cerebral ischemia (four-vessel occlusion model) and 8 h of reflow, we followed extracellular amino acids and multiple-unit activity. Multiple-unit activity ceased within 20 sec of ischemia and remained zero during the ischemic insult and for the following 1 h of reflow. During ischemia, extracellular aspartate, glutamate, taurine, and gamma-aminobutyric acid increased in both acute and chronic experiments (seven- to 26-fold). Multiple-unit activity recovered to preischemic levels following 4-6 h of reflow. In the group with dialytrodes implanted acutely, the continuous increase in multiple-unit activity reached 110% of basal at 8 h of reflow. In the group with dialytrodes implanted chronically, multiple-unit activity recovered faster and reached 140% of control at 8 h, paralleled by an increase in extracellular aspartate (5.5-fold) and glutamate (twofold). In conclusion, the postischemic increase of excitatory amino acids and the recovery of the neuronal activity may stress the CA1 pyramidal cells, which could be detrimental in combination with, e.g., postsynaptic impairments.  相似文献   

16.
Mononucleotide Metabolism in the Rat Brain After Transient Ischemia   总被引:3,自引:2,他引:1  
Nucleotide metabolism was studied in rats during and following the induction of 10 min of forebrain ischemia (four-vessel occlusion model). Purine and pyrimidine nucleotides, nucleotides, and bases in forebrain extracts were quantitated by HPLC with an ultraviolet detector. Ischemia resulted in a severe reduction in the concentration of nucleoside triphosphates (ATP, GTP, UTP, and CTP) and an increase in the concentration of AMP, IMP, adenosine, inosine, hypoxanthine, and guanosine. During the recovery period, both the phosphocreatine level and adenylate energy charge were rapidly and completely restored to the normal range. ATP was only 78% of the control value at 180 min after ischemic reperfusion. Levels of nucleosides and bases were elevated during ischemia but decreased to values close to those of control animals following recirculation. Both the decrease in the adenine nucleotide pool and the incomplete ATP recovery were caused by insufficient reutilization of hypoxanthine via the purine salvage system. The content of cyclic AMP, which transiently accumulated during the early recirculation period, returned to the control level, paralleling the decrease of adenosine concentration, which suggested that adenylate cyclase activity during reperfusion is modulated by adenosine A2 receptors. The recovery of CTP was slow but greater than that of ATP, GTP, and UTP. The GTP/GDP ratio was higher than that of the control animals following recirculation.  相似文献   

17.
Abstract— In slices of adult rabbit cerebral cortex histamine at 5 μM produced a detectable rise in adenosine 3',5'-monophosphate (cyclic AMP). A maximum (20-fold) increase was observed in response to 0–5 mM histamine, with higher concentrations being less effective. The antihistaminic agent, tripelennamine, inhibited the response to 50 μM histamine in a dose-related manner. No effect on basal levels of cyclic AMP was noted with the highest dose of tripelennamine. The cyclic AMP response to 50 μM histamine was sustained for up to 1 h of incubation whether the slices and included medium were assayed together or the slices were assayed separately, although after 60 min of incubation cyclic AMP levels were higher when the medium was included in the assay. During development of the rabbit cerebral cortex, the first detectable increase of cyclic AMP in response to histamine occurred at fetal day 25, and from day 28 to birth the response was a 4-to 5-fold increase. A maximal (10-fold) response was observed at 4–8 days postpartum and by 20 days of postnatal age the response had decreased to the adult levels.  相似文献   

18.
Endogenous glycogen stores are essential to maintain cell functions during myocardial ischemia.. Fasting and L-glutamate improve left ventricular function after an ischemic episode. We studied their effects on myocardial glycogen depletion during ischemia and on left ventricular function and glycogen resynthesis during reperfusion. We allocated 185 Wistar rats to 4 groups: 1) Control, 2) Fasting, 16-20 hours (Fast) 3) L-glutamate supplementation [100 mM] (Glt) or 4) Fasting + L-glutamate supplementation [100 mM]. n = 8-10 in each group. Hearts were mounted in an isolated perfused rat hearts model for 20 min stabilisation, 10/20/30 min ischemia and 60 min reperfusion. At each time point hearts were frozen in liquid nitrogen (-196 degrees C) within 2 seconds and myocardial contents of glycogen, lactate, alanine and glutamate were determined. Left ventricular pressure was measured continuously. Fasting and L-glutamate supplementation improved LV function after ischemia (Fast: p < 0.05, Glt: p < 0.01) and delayed myocardial glycogen depletion (Fast: p < 0.05, Glt: p < 0.01) compared to control. Decreased lactate accumulation and increased alanine content during ischemia were found in fasted (lactate: p < 0.05, alanine: p < 0.05) and L-glutamate supplemented (lactate: p < 0.01, alanine: p < 0.01) hearts compared to control. We did not find any additive effects of fasting and L-glutamate supplementation. In conclusion fasting and L-glutamate supplementation improve left ventricular function during reperfusion and delay myocardial glycogen depletion during ischemia. There were no additive effects of Fasting and L-glutamate supplementation. These finding suggest common metabolic pathways underlying the effects of L-glutamate supplementation and fasting.  相似文献   

19.
The objective of the present study was to assess metabolic changes in the neocortex and hippocampus of well-oxygenated or moderately hypoxic rats in which fluorothyl-induced seizures were sustained for 5 or 20 min, or which were allowed recovery periods of 5, 15, or 45 min following cessation of 20-min seizure activity by withdrawal of the convulsant gas. Sustained fluorothyl-induced seizures were found to cause metabolic alterations qualitatively and quantitatively similar to those previously observed with other commonly used convulsants. Thus, although the phosphorylation state of the adenine nucleotide pool remained only moderately perturbed, if at all, there were decreases in tissue concentrations of phosphocreatine and glycogen, and increases in those of cyclic AMP, lactate, and pyruvate, with a calculated fall in intracellular pH of about 0.15 units and a rise in the cytoplasmic NADH/NAD+ ratio. The enhanced metabolic rate was reflected in a marked reduction in the tissue-to-plasma glucose concentration ratio. Induced moderate hypoxia (arterial PO2 40-50 mm Hg) had no metabolic effect after 5 min of seizures but moderately increased lactate concentrations after 20 min (from about 10 to about 15 mumol X g-1). On cessation of seizure discharge cyclic AMP and phosphocreatine concentrations normalized already within 5 min, whereas glycogen and lactate concentrations normalized more slowly. In the neocortex (but not the hippocampus) postepileptic tissue-to-plasma glucose concentration ratios rose above control, probably reflecting metabolic depression. The results suggest that intracellular pH promptly returned to control, and that postepileptic alkalosis developed. They also suggest that some elevation of the NADH/NAD+ ratio persisted even after 45 min of recovery.  相似文献   

20.
Abstract— –The rates of incorporation of 14C from [U-l4C]glucose into intermediary metabolites have been measured in rat brain in vivo. The time course of labelling of glycogen was similar to that of glutamate and of glucose, which were all maximally labelled between 20 and 40min, but different from lactate, which lost radioactivity rapidly after 20min. The extent of labelling of glycogen (d.p.m./ μ mol of glucose) was of the same order as that of glutamate at 20 and 40 min after injection of [14C]glucose. However, calculations of turnover rates showed that glutamate turns over some 8-10 times faster than glycogen. Insulin, intracisternally applied, produced after 4-5 h a 60 per cent increase in glucose-6-P and a 50 per cent increase in glycogen. There was no change in the levels of glucose, glutamate or lactate, nor in the activity or properties of the particulate and soluble hexokinase of the brain. The injection of insulin affected neither the glycogen nor glucose contents of skeletal muscle from the same animals. The effects of insulin on the incorporation of l4C into the metabolites contrasted with its effects on their levels. The specific activities of glycogen and glucose were unchanged and there was a slight but non-significant increase in the specific activity of glutamate. The time course of incorporation into lactate was unaffected up to 20 min, but a significant delay in the loss of 14C after 20 min occurred as a result of the insulin injection. At 40 min, the specific activity of cerebral lactate was 60 per cent higher in insulin-treated animals than in control animals. The results are interpreted in terms of an effect of insulin on glucose uptake to the brain, with possibly an additional effect on a subsequent stage in metabolism, which involves lactate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号