首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 696 毫秒
1.
Toxin-antitoxin (TA) systems are widely represented on mobile genetic elements as well as in bacterial chromosomes. TA systems encode a toxin and an antitoxin neutralizing it. We have characterized a homolog of the ccd TA system of the F plasmid (ccd(F)) located in the chromosomal backbone of the pathogenic O157:H7 Escherichia coli strain (ccd(O157)). The ccd(F) and the ccd(O157) systems coexist in O157:H7 isolates, as these pathogenic strains contain an F-related virulence plasmid carrying the ccd(F) system. We have shown that the chromosomal ccd(O157) system encodes functional toxin and antitoxin proteins that share properties with their plasmidic homologs: the CcdB(O157) toxin targets the DNA gyrase, and the CcdA(O157) antitoxin is degraded by the Lon protease. The ccd(O157) chromosomal system is expressed in its natural context, although promoter activity analyses revealed that its expression is weaker than that of ccd(F). ccd(O157) is unable to mediate postsegregational killing when cloned in an unstable plasmid, supporting the idea that chromosomal TA systems play a role(s) other than stabilization in bacterial physiology. Our cross-interaction experiments revealed that the chromosomal toxin is neutralized by the plasmidic antitoxin while the plasmidic toxin is not neutralized by the chromosomal antitoxin, whether expressed ectopically or from its natural context. Moreover, the ccd(F) system is able to mediate postsegregational killing in an E. coli strain harboring the ccd(O157) system in its chromosome. This shows that the plasmidic ccd(F) system is functional in the presence of its chromosomal counterpart.  相似文献   

2.
"Addiction modules" consist of two genes; the product of the second is long lived and toxic, while the product of the first is short lived and antagonizes the lethal action of the toxin. The extrachromosomal addiction module phd-doc, located on the P1 prophage, is responsible for the postsegregational killing effect (death of plasmid-free cells). The Escherichia coli chromosomal addiction module analogue, mazEF, is responsible for the induction of programmed cell death. Here we show that the postsegregational killing mediated by the P1 phd-doc module depends on the presence of the E. coli mazEF system. In addition, we demonstrate that under conditions of postsegregational killing, mediated by phd-doc, protein synthesis of E. coli is inhibited. Based on our findings, we suggest the existence of a coupling between the phd-doc and mazEF systems.  相似文献   

3.
Bacterial toxin–antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes.  相似文献   

4.
Toxin-antitoxin (TA) systems are genetic modules composed of a pair of genes encoding a stable toxin and an unstable antitoxin that inhibits toxin activity. They are widespread among plasmids and chromosomes of bacteria and archaea. TA systems are known to be involved in the stabilization of plasmids but there is no consensus about the function of chromosomal TA systems. To shed light on the role of chromosomally encoded TA systems we analyzed the distribution and functionality of type II TA systems in the chromosome of two strains from Acidithiobacillus ferrooxidans (ATCC 23270 and 53993), a Gram-negative, acidophilic, environmental bacterium that participates in the bioleaching of minerals. As in other environmental microorganisms, A. ferrooxidans has a high content of TA systems (28-29) and in twenty of them the toxin is a putative ribonuclease. According to the genetic context, some of these systems are encoded near or within mobile genetic elements. Although most TA systems are shared by both strains, four of them, which are encoded in the active mobile element ICEAfe1, are exclusive to the type strain ATCC 23270. We demostrated that two TA systems from ICEAfe1 are functional in E. coli cells, since the toxins inhibit growth and the antitoxins counteract the effect of their cognate toxins. All the toxins from ICEAfe1, including a novel toxin, are RNases with different ion requirements. The data indicate that some of the chromosomally encoded TA systems are actually part of the A. ferrooxidans mobile genome and we propose that could be involved in the maintenance of these integrated mobile genetic elements.  相似文献   

5.
Certain type II restriction modification gene systems can kill host cells when these gene systems are eliminated from the host cells. Such ability to cause postsegregational killing of host cells is the feature of bacterial addiction modules, each of which consists of toxin and antitoxin genes. With these addiction modules, the differential stability of toxin and antitoxin molecules in cells plays an essential role in the execution of postsegregational killing. We here examined in vivo stability of the EcoRI restriction enzyme (toxin) and modification enzyme (antitoxin), the gene system of which has previously been shown to cause postsegregational host killing in Escherichia coli. Using two different methods, namely, quantitative Western blot analysis and pulse-chase immunoprecipitation analysis, we demonstrated that both the EcoRI restriction enzyme and modification enzyme are as stable as bulk cellular proteins and that there is no marked difference in their stability. The numbers of EcoRI restriction and modification enzyme molecules present in a host cell during the steady-state growth were estimated. We monitored changes in cellular levels of the EcoRI restriction and modification enzymes during the postsegregational killing. Results from these analyses together suggest that the EcoRI gene system does not rely on differential stability between the toxin and the antitoxin molecules for execution of postsegregational cell killing. Our results provide insights into the mechanism of postsegregational killing by restriction-modification systems, which seems to be distinct from mechanisms of postsegregational killing by other bacterial addiction modules.  相似文献   

6.
7.
Toxin-antitoxin (TA) systems are small genetic modules that are abundant in bacterial genomes. Three types have been described so far, depending on the nature and mode of action of the antitoxin component. While type II systems are surprisingly highly represented because of their capacity to move by horizontal gene transfer, type I systems appear to have evolved by gene duplication and are more constrained. Type III is represented by a unique example located on a plasmid. Type II systems promote stability of mobile genetic elements and might act at the selfish level. Conflicting hypotheses about chromosomally encoded systems, from programmed cell death and starvation-induced stasis to protection against invading DNA and stabilization of large genomic fragments have been proposed.  相似文献   

8.
Type II toxin-antitoxin (TA) systems are generally composed of two genes organized in an operon, encoding a labile antitoxin and a stable toxin. They were first discovered on plasmids where they contribute to plasmid stability by a phenomenon denoted as 'addiction', and subsequently in bacterial chromosomes. To discover novel families of antitoxins and toxins, we developed a bioinformatics approach based on the 'guilt by association' principle. Extensive experimental validation in Escherichia coli of predicted antitoxins and toxins increased significantly the number of validated systems and defined novel toxin and antitoxin families. Our data suggest that toxin families as well as antitoxin families originate from distinct ancestors that were assembled multiple times during evolution. Toxin and antitoxin families found on plasmids tend to be promiscuous and widespread, indicating that TA systems move through horizontal gene transfer. We propose that due to their addictive properties, TA systems are likely to be maintained in chromosomes even though they do not necessarily confer an advantage to their bacterial hosts. Therefore, addiction might play a major role in the evolutionary success of TA systems both on mobile genetic elements and in bacterial chromosomes.  相似文献   

9.
10.
Toxin-antitoxin (TA) systems are prevalent in many bacterial genomes and have been implicated in biofilm and persister cell formation, but the contribution of individual chromosomally encoded TA systems during bacterial pathogenesis is not well understood. Of the known TA systems encoded by Escherichia coli, only a subset is associated with strains of extraintestinal pathogenic E. coli (ExPEC). These pathogens colonize diverse niches and are a major cause of sepsis, meningitis, and urinary tract infections. Using a murine infection model, we show that two TA systems (YefM-YoeB and YbaJ-Hha) independently promote colonization of the bladder by the reference uropathogenic ExPEC isolate CFT073, while a third TA system comprised of the toxin PasT and the antitoxin PasI is critical to ExPEC survival within the kidneys. The PasTI TA system also enhances ExPEC persister cell formation in the presence of antibiotics and markedly increases pathogen resistance to nutrient limitation as well as oxidative and nitrosative stresses. On its own, low-level expression of PasT protects ExPEC from these stresses, whereas overexpression of PasT is toxic and causes bacterial stasis. PasT-induced stasis can be rescued by overexpression of PasI, indicating that PasTI is a bona fide TA system. By mutagenesis, we find that the stress resistance and toxic effects of PasT can be uncoupled and mapped to distinct domains. Toxicity was specifically linked to sequences within the N-terminus of PasT, a region that also promotes the development of persister cells. These results indicate discrete, multipurpose functions for a TA-associated toxin and demonstrate that individual TA systems can provide bacteria with pronounced fitness advantages dependent on toxin expression levels and the specific environmental niche occupied.  相似文献   

11.
Toxin–antitoxin (TA) systems are commonly found on bacterial plasmids. The antitoxin inhibits toxin activity unless the system is lost from the cell. Then the shorter lived antitoxin degrades and the cell becomes susceptible to the toxin. Selection for plasmid-encoded TA systems was initially thought to result from their reducing the number of plasmid-free cells arising during growth in monoculture. However, modelling and experiments have shown that this mechanism can only explain the success of plasmid TA systems under a restricted set of conditions. Previously, we have proposed and tested an alternative model explaining the success of plasmid TA systems as a consequence of competition occurring between plasmids during co-infection of bacterial hosts. Here, we test a further prediction of this model, that competition between plasmids will lead to the biased accumulation of TA systems on plasmids relative to chromosomes. Transposon-encoded TA systems were added to populations of plasmid-containing cells, such that TA systems could insert into either plasmids or chromosomes. These populations were enriched for transposon-containing cells and then incubated in environments that did, or did not, allow effective within-host plasmid competition to occur. Changes in the ratio of plasmid- to chromosome-encoded TA systems were monitored. In agreement with our model, we found that plasmid-encoded TA systems had a competitive advantage, but only when host cells were sensitive to the effect of TA systems. This result demonstrates that within-host competition between plasmids can select for TA systems.  相似文献   

12.
毒性分子-抗毒性分子系统(toxin-antitoxin systems,TA systems)被发现广泛存在于细菌染色体、质粒以及古细菌基因组中。TA系统是由2个基因组成的操纵子,这2个基因分别编码稳定的毒性分子和不稳定的抗毒性分子。毒性分子总是蛋白质,抗毒性分子可能是蛋白质或RNA。因此,根据抗毒性分子的性质和作用方式的不同可将TA系统家族分为5种类型。Ⅰ型和Ⅲ型的抗毒性分子是RNA,能抑制毒性分子的合成或者与其隔离;II、IV和V型的抗毒性分子是蛋白质,能隔离、平衡毒性分子作用或抑制其合成。TA系统具有多种生物学功能。目前研究表明,TA系统可能在细菌应激应答、程序化细胞死亡、多重耐药的形成、防止DNA入侵、稳定大基因组片段等方面有重要的作用。  相似文献   

13.
A 3.2-kb fragment encoding five genes, parCBA/DE, in two divergently transcribed operons promotes stable maintenance of the replicon of the broad-host-range plasmid RK2 in a vector-independent manner in Escherichia coli. The parDE operon has been shown to contribute to stabilization through the postsegregational killing of plasmid-free daughter cells, while the parCBA operon encodes a resolvase, ParA, that mediates the resolution of plasmid multimers through site-specific recombination. To date, evidence indicates that multimer resolution alone does not play a significant role in RK2 stable maintenance by the parCBA operon in E. coli. It has been proposed, instead, that the parCBA region encodes an additional stability mechanism, a partition system, that ensures that each daughter cell receives a plasmid copy at cell division. However, studies carried out to date have not directly determined the plasmid stabilization activity of the parCBA operon alone. An assessment was made of the relative contributions of postsegregational killing (parDE) and the putative partitioning system (parCBA) to the stabilization of mini-RK2 replicons in E. coli. Mini-RK2 replicons carrying either the entire 3.2-kb (parCBA/DE) fragment or the 2.3-kb parCBA region alone were found to be stably maintained in two E. coli strains tested. The stabilization found is not due to resolution of multimers. The stabilizing effectiveness of parCBA was substantially reduced when the plasmid copy number was lowered, as in the case of E. coli cells carrying a temperature-sensitive mini-RK2 replicon grown at a nonpermissive temperature. The presence of the entire 3.2-kb region effectively stabilized the replicon, however, under both low- and high-copy-number-conditions. In those instances of decreased plasmid copy number, the postsegregational killing activity, encoded by parDE, either as part of the 3.2-kb fragment or alone played the major role in the stabilization of mini-RK2 replicons within the growing bacterial population. Our findings indicate that the parCBA operon functions to stabilize by a mechanism other than cell killing and resolution of plasmid multimers, while the parDE operon functions solely to stabilize plasmids by cell killing. The relative contribution of each system to stabilization depends on plasmid copy number and the particular E. coli host.  相似文献   

14.
A number of plasmid-encoded gene systems are thought to stabilize plasmids by killing plasmid-free cells (also termed post-segregational killing or plasmid addiction). Here we analyse the mechanisms of plasmid stabilization by ccd of F, parDE of RP4 and parD of R1, and compare them to hok/sok of R1. To induce synchronous plasmid loss we constructed a novel plasmid replication-arrest system, which possesses the advantage that plasmid replication can be completely arrested by the addition of IPTG, a non-metabolizable inducer. Using isogenic plasmid constructions we have found, for the first time, consistent correlation between the effect on steady-state loss rates and the effect on cell proliferation in the plasmid replication-arrest assay for all three systems. The parDE system had the most pronounced effect both on plasmid stabilization and on plasmid retention after replication arrest. In contrast, ccd and parD both exhibited weaker effects than anticipated from previously published results. Thus, our results indicate that the function and efficiencies of some of the systems should be reconsidered. Our results are consistent with the previously postulated hypothesis that ccd and parDE act by killing plasmid-free segregants, whereas parD seems to act by inhibiting cell division of plasmid-free segregants.  相似文献   

15.
Toxin-antitoxin (TA) systems are unique modules that effect plasmid stabilization via post-segregational killing of the bacterial host. The genes encoding TA systems also exist on bacterial chromosomes, and it has been speculated that these are involved in a variety of cellular processes. Interest in TA systems has increased dramatically over the past 5 years as the ubiquitous nature of TA genes on bacterial genomes has been revealed. The exploitation of TA systems as an antibacterial strategy via artificial activation of the toxin has been proposed and has considerable potential; however, efforts in this area remain in the early stages and several major questions remain. This review investigates the tractability of targeting TA systems to kill bacteria, including fundamental requirements for success, recent advances, and challenges associated with artificial toxin activation.  相似文献   

16.
Several type II restriction-modification gene complexes can force their maintenance on their host bacteria by killing cells that have lost them in a process called postsegregational killing or genetic addiction. It is likely to proceed by dilution of the modification enzyme molecule during rounds of cell division following the gene loss, which exposes unmethylated recognition sites on the newly replicated chromosomes to lethal attack by the remaining restriction enzyme molecules. This process is in apparent contrast to the process of the classical types of postsegregational killing systems, in which built-in metabolic instability of the antitoxin allows release of the toxin for lethal action after the gene loss. In the present study, we characterize a mutant form of the EcoRII gene complex that shows stronger capacity in such maintenance. This phenotype is conferred by an L80P amino acid substitution (T239C nucleotide substitution) mutation in the modification enzyme. This mutant enzyme showed decreased DNA methyltransferase activity at a higher temperature in vivo and in vitro than the nonmutated enzyme, although a deletion mutant lacking the N-terminal 83 amino acids did not lose activity at either of the temperatures tested. Under a condition of inhibited protein synthesis, the activity of the L80P mutant was completely lost at a high temperature. In parallel, the L80P mutant protein disappeared more rapidly than the wild-type protein. These results demonstrate that the capability of a restriction-modification system in forcing maintenance on its host can be modulated by a region of its antitoxin, the modification enzyme, as in the classical postsegregational killing systems.  相似文献   

17.
Toxin-antitoxin (TA) systems are two-component genetic modules widespread in bacterial and archaeal genomes, in which the toxin module is rendered inactive under resting conditions by its antitoxin counterpart. Under stress conditions, however, the antitoxin is degraded, freeing the toxin to exert its lethal effects. Although not evolved to function in eukaryotes, some studies have established the lethal activity of these bacterial toxins by inducing apoptosis in mammalian cells, an effect that can be neutralized by its cognate antitoxin. Inspired by the way the toxin can become active in eukaryotes cells, we produced an engrained yoeB-yefM TA system to selectively kill human breast cancer cells expressing a high level of miR-21. Accordingly, we generated an engineered yefM antitoxin gene with eight miR-21 target sites placed in its 3′untranslated region. The resulting TA system acts autonomously in human cells, distinguishing those that overexpress miR-21, killed by YoeB, from those that do not, remaining protected by YefM. Thus, we indicated that microRNA-control of the antitoxin protein of bacterial TA systems constitutes a novel strategy to enhance the selective killing of human cancer cells by the toxin module. The present study provides significant insights for developing novel anticancer strategies avoiding off-target effects, a challenge that has been pursued by many investigators over the years.  相似文献   

18.
Plasmids maintain themselves in their bacterial host through several different mechanisms, one of which involves the synthesis of plasmid-encoded toxin and antitoxin proteins. When the plasmid is present, the antitoxin binds to and neutralizes the toxin. If a plasmid-free daughter cell arises, however, the labile antitoxin is degraded (and not replenished) and the toxin kills the cell from within. These toxin-antitoxin (TA) systems thereby function as postsegregational killing systems, and the disruption of the TA interaction represents an intriguing antibacterial strategy. It was recently discovered that the genes for one particular TA system, MazEF, are ubiquitous on plasmids isolated from clinical vancomycin-resistant enterococci (VRE) strains. Thus, it appears that small molecule disruptors of the MazEF interaction have potential as antibacterial agents. The MazF toxin protein is known to be a ribonuclease. Unfortunately, traditional methods for the assessment of MazF activity rely on the use of radiolabeled substrates followed by analysis with polyacrylamide gel electrophoresis. This article describes a simple and convenient continuous assay for the assessment of MazF activity. The assay uses an oligonucleotide with a fluorophore on the 5' end and a quencher on the 3' end, and processing of this substrate by MazF results in a large increase in the fluorescence signal. Through this assay, we have for the first time determined K(M) and V(max) values for this enzyme and have also found that MazF is not inhibited by standard ribonuclease inhibitors. This assay will be useful to those interested in the biochemistry of the MazF family of toxins and the disruption of MazE/MazF.  相似文献   

19.
F plasmid ccd mechanism in Escherichia coli.   总被引:9,自引:7,他引:2       下载免费PDF全文
The ccd mechanism specified by the ccdA and ccdB genes of the mini-F plasmid determines fate of plasmid-free segregants in Escherichia coli (Jaffé et al., J. Bacteriol. 163:841-849, 1985). The killing function in plasmid-free segregants by the ccd mechanism did not affect cell growth of coexisting cells in the same culture. Elongated cells and anucleate cells caused by the ccd mechanism were clearly detected by flow cytometry in cultures of bacterial strains harboring Ccd+ Sop- mini-F plasmids defective in partitioning. This indicates that the defect in correct partitioning of plasmid DNA molecules into daughter cells also induces the ccd mechanism to operate.  相似文献   

20.
Proteic toxin-antitoxin (TA) loci were first identified in bacterial plasmids, and they were regarded as involved in stable plasmid maintenance by a so-called 'addiction' mechanism. Later, chromosomally encoded TA loci were identified and their function ascribed to survival mechanisms when bacteria were subjected to stress. In the search for chromosomally encoded TA loci in Gram-positive bacteria, we identified various in the pathogen Streptococcus pneumoniae. Two of these cassettes, sharing homology with the Escherichia coli relBE locus were cloned and tested for their activity. The relBE2Spn locus resulted to be a bona fide TA locus. The toxin exhibited high toxicity towards E. coli and S. pneumoniae, although in the latter, the chromosomal copy of the antitoxin relB2Spn gene had to be inactivated to detect full toxicity. Cell growth arrest caused by expression of the relE2Spn toxin gene could be reverted by expression of the cognate antitoxin, relB2Spn, although prolonged exposition to the toxin led to cell death. The pneumococcal relBE2Spn locus is the first instance of a chromosomally encoded TA system from Gram-positive bacteria characterized in its own host. We have developed a bioluminescence resonance energy transfer (BRET) assay to detect the interactions between the RelB2Spn antitoxin and the RelE2Spn toxin in vivo. This technique has shown to be amenable to a high-throughput screening (HTS), opening new avenues in the search of molecules with potential antibacterial activity able to inhibit TA interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号