首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Earlier work from this laboratory demonstrated that apoptosis of alveolar epithelial cells (AECs) requires autocrine generation of angiotensin (ANG) II. More recent studies showed that angiotensin converting enzyme-2 (ACE-2), which degrades ANGII to form ANG1-7, is protective but severely downregulated in human and experimental lung fibrosis. Here it was theorized that ACE-2 and its product ANG1-7 might therefore regulate AEC apoptosis. To evaluate this hypothesis, the AEC cell line MLE-12 and primary cultures of rat AECs were exposed to the profibrotic apoptosis inducers ANGII or bleomycin (Bleo). Markers of apoptosis (caspase-9 or -3 activation and nuclear fragmentation), steady-state ANGII and ANG1-7, and JNK phosphorylation were measured thereafter. In the absence of Bleo, inhibition of ACE-2 by small interfering RNA or by a competitive inhibitor (DX600 peptide) caused a reciprocal increase in autocrine ANGII and corresponding decrease in ANG1-7 in cell culture media (both P < 0.05) and, moreover, induced AEC apoptosis. At baseline (without inhibitor), ANG1-7 in culture media was 10-fold higher than ANGII (P < 0.01). Addition of purified ANGII or bleomycin-induced caspase activation, nuclear fragmentation, and JNK phosphorylation in cultured AECs. However, preincubation with ANG1-7 (0.1 μM) prevented JNK phosphorylation and apoptosis. Moreover, pretreatment with A779, a specific blocker of the ANG1-7 receptor mas, prevented ANG1-7 blockade of JNK phosphorylation, caspase activation, and nuclear fragmentation. These data demonstrate that ACE-2 regulates AEC survival by balancing the proapoptotic ANGII and its antiapoptotic degradation product ANG1-7. They also suggest that ANG1-7 inhibits AEC apoptosis through the ANG1-7 receptor mas.  相似文献   

2.
3.
Prior work has shown that transforming growth factor-β (TGF-β) can mediate transition of alveolar type II cells into mesenchymal cells in mice. Evidence this occurs in humans is limited to immunohistochemical studies colocalizing epithelial and mesenchymal proteins in sections of fibrotic lungs. To acquire further evidence that epithelial-to-mesenchymal transition occurs in the lungs of patients with idiopathic pulmonary fibrosis (IPF), we studied alveolar type II cells isolated from fibrotic and normal human lung. Unlike normal type II cells, type II cells isolated from the lungs of patients with IPF express higher levels of mRNA for the mesenchymal proteins type I collagen, α-smooth muscle actin (α-SMA), and calponin. When cultured on Matrigel/collagen, human alveolar type II cells maintain a cellular morphology consistent with epithelial cells and expression of surfactant protein C (SPC) and E-cadherin. In contrast, when cultured on fibronectin, the human type II cells flatten, spread, lose expression of pro- SPC, and increase expression of vimentin, N-cadherin, and α-SMA; markers of mesenchymal cells. Addition of a TGF-β receptor kinase inhibitor (SB431542) to cells cultured on fibronectin inhibited vimentin expression and maintained pro-SPC expression, indicating persistence of an epithelial phenotype. These data suggest that alveolar type II cells can acquire features of mesenchymal cells in IPF lungs and that TGF-β can mediate this process.  相似文献   

4.
Transforming growth factor-beta (TGF-beta) signaling plays an important regulatory role during lung fibrogenesis. Smad3 was identified in the pathway for transducing TGF-beta signals from the cell membrane to the nucleus. Using mice without Smad3 gene expression, we investigated whether Smad3 could regulate bleomycin-induced pulmonary fibrosis in vivo. Mice deficient in Smad3 demonstrated suppressed type I procollagen mRNA expression and reduced hydroxyproline content in the lungs compared with wild-type mice treated with bleomycin. Furthermore, loss of Smad3 greatly attenuated morphological fibrotic responses to bleomycin in the mouse lungs, suggesting that Smad3 is implicated in the pathogenesis of pulmonary fibrosis. These results show that Smad3 contributes to bleomycin-induced lung injury and that Smad3 may serve as a novel target for potential therapeutic treatment of lung fibrosis.  相似文献   

5.

Background

Catalase is preferentially expressed in bronchiolar and alveolar epithelial cells, and acts as an endogenous antioxidant enzyme in normal lungs. We thus postulated epithelial damage would be associated with a functional deficiency of catalase during the development of lung fibrosis.

Methods

The present study evaluates the expression of catalase mRNA and protein in human interstitial pneumonias and in mouse bleomycin-induced lung injury. We examined the degree of bleomycin-induced inflammation and fibrosis in the mice with lowered catalase activity.

Results

In humans, catalase was decreased at the levels of activity, protein content and mRNA expression in fibrotic lungs (n = 12) compared to control lungs (n = 10). Immunohistochemistry revealed a decrease in catalase in bronchiolar epithelium and abnormal re-epithelialization in fibrotic areas. In C57BL/6J mice, catalase activity was suppressed along with downregulation of catalase mRNA in whole lung homogenates after bleomycin administration. In acatalasemic mice, neutrophilic inflammation was prolonged until 14 days, and there was a higher degree of lung fibrosis in association with a higher level of transforming growth factor-β expression and total collagen content following bleomycin treatment compared to wild-type mice.

Conclusions

Taken together, these findings demonstrate diminished catalase expression and activity in human pulmonary fibrosis and suggest the protective role of catalase against bleomycin-induced inflammation and subsequent fibrosis.  相似文献   

6.
Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2–4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent with in vitro studies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP''s protective effects in the lung.  相似文献   

7.
目的:探讨表皮生长因子受体(EGFR)在肺内的表达对博莱霉素(BLM)诱导小鼠肺纤维化中上皮-间质转分化的影响。方法:将40只4~6周龄C57BLB/c雄性小鼠随机分为正常对照组(气管滴入PBS),纤维化组(气管滴入BLM 3 mg/kg),EGFRRNAi组(气管滴入BLM 3 mg/kg+气管滴入siRNA 20μl)和RNAi阴性对照组(气管滴入BLM 3 mg/kg+气管滴入siRNA阴性对照20μl)。实验第10天处死小鼠,收获肺组织,检测羟脯氨酸含量;采用逆转录-聚合酶链反应(RT-PCR)法检测EGFR和α平滑肌肌动蛋白(α-SMA)mRNA的表达;肺组织切片行HE染色观察肺组织病理改变,免疫组化染色检测EGFR和α-SMA表达。结果:纤维化组EGFR和α-SMA两者的mRNA和蛋白表达均较正常对照组显著增加;RNAi组肺病理损伤较纤维化组减轻,气道上皮下胶原沉积及肺羟脯氨酸含量减少(P<0.05),肺组织EGFR和α-SMA两者的mRNA和蛋白表达均较纤维化组显著下降(P<0.05)。结论:在博来霉素诱导的肺纤维化中EGFR RNAi抑制EGFR活化,下调α-SMA的表达,减轻了博莱霉素诱导的肺纤维化病理改变。其抑制肺纤维化病理过程可能与其抑制上皮-间质转分化(EMT)有关。  相似文献   

8.
9.
Angiotensin-converting enzyme (ACE)-2 is a newly described enzyme with antagonistic effects to those of the classical ACE (ACE-1). Both ANG II and aldosterone play an important role in the pathophysiology of congestive heart failure (CHF) and in the adverse cardiac remodeling during its development. In this study, we examined the effects of experimental CHF induced by an aortocaval fistula (ACF) and of its treatment with ANG II and aldosterone inhibitors on the relative levels of ACE-1 and ACE-2. We also compared the effects of spironolactone, an aldosterone antagonist, and eprosartan, an ANG II receptor antagonist, on heart hypertrophy and fibrosis in rats with ACF. Spironolactone (15 mg x kg(-1) x day(-1) ip, via minipump) or eprosartan (5 mg x kg(-1) x day(-1) ip, via minipump) was administered into rats with ACF for 14 and 28 days. Specific antibodies were used to determine the protein levels of myocardial ACE-1 and ACE-2. ACF increased the cardiac levels of ACE-1 and decreased those of ACE-2. Heart-to-body weight ratio significantly increased from 0.30 +/- 0.004% in sham-operated controls to 0.50 +/- 0.018% and 0.56 +/- 0.044% (P < 0.001) in rats with ACF, 2 and 4 wk after surgery, respectively, in association with increased plasma levels of aldosterone. The area occupied by collagen increased from 2.33 +/- 0.27% to 6.85 +/- 0.65% and 8.03 +/- 0.93% (P < 0.01), 2 and 4 wk after ACF, respectively. Both spironolactone and eprosartan decreased cardiac mass and collagen content and reversed the shift in ACE isoforms. ACF alters the ratio between ACE isoforms in a manner that increases local ANG II and aldosterone levels. Early treatment with both ANG II and aldosterone antagonists is effective in reducing this effect. Thus ACE isoform shift may represent an important component of the development of cardiac remodeling in response to hemodynamic overload, and its correction may contribute to the beneficial therapeutic effects of renin-angiotensin-aldosterone system inhibitors.  相似文献   

10.

Background

Recent evidence has underscored the role of hypoxia and angiogenesis in the pathogenesis of idiopathic fibrotic lung disease. Inhibitor of growth family member 4 (ING4) has recently attracted much attention as a tumor suppressor gene, due to its ability to inhibit cancer cell proliferation, migration and angiogenesis. The aim of our study was to investigate the role of ING4 in the pathogenesis of pulmonary fibrosis both in the bleomycin (BLM)-model and in two different types of human pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF) and cryptogenic organizing pneumonia (COP).

Methods

Experimental model of pulmonary fibrosis was induced by a single tail vein injection of bleomycin in 6- to 8-wk-old C57BL/6mice. Tissue microarrays coupled with qRT-PCR and immunohistochemistry were applied in whole lung samples and paraffin-embedded tissue sections of 30 patients with IPF, 20 with COP and 20 control subjects.

Results

A gradual decline of ING4 expression in both mRNA and protein levels was reported in the BLM-model. ING4 was also found down-regulated in IPF patients compared to COP and control subjects. Immunolocalization analyses revealed increased expression in areas of normal epithelium and in alveolar epithelium surrounding Masson bodies, in COP lung, whereas showed no expression within areas of active fibrosis within IPF and COP lung. In addition, ING4 expression levels were negatively correlated with pulmonary function parameters in IPF patients.

Conclusion

Our data suggest a potential role for ING4 in lung fibrogenesis. ING4 down-regulation may facilitate aberrant vascular remodelling and fibroblast proliferation and migration leading to progressive disease.  相似文献   

11.
Pulmonary fibrosis is an interstitial disorder of the lung parenchyma whose mechanism is poorly understood. Potential mechanisms include the infiltration of inflammatory cells to the lungs and the generation of pro-inflammatory mediators. In particular, idiopathic pulmonary fibrosis is a progressive and fatal form of the disorder characterized by alveolar inflammation, fibroblast proliferation and collagen deposition. Here, we investigated the role of cytosolic phospholipase A(2) (cPLA(2)) in pulmonary fibrosis using cPLA(2)-null mutant mice, as cPLA(2) is a key enzyme in the generation of pro-inflammatory eicosanoids. Disruption of the gene encoding cPLA(2) (Pla2g4a) attenuated IPF and inflammation induced by bleomycin administration. Bleomycin-induced overproduction of thromboxanes and leukotrienes in lung was significantly reduced in cPLA(2)-null mice. Our data suggest that cPLA(2) has an important role in the pathogenesis of pulmonary fibrosis. The inhibition of cPLA(2)-initiated pathways might provide a novel therapeutic approach to pulmonary fibrosis, for which no pharmaceutical agents are currently available.  相似文献   

12.
Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic lung disease of unknown etiology. A viral pathogenesis in IPF has been suggested since >95% of IPF patients have evidence of chronic pulmonary infection with one or more herpesviruses. To determine whether pulmonary infection with herpesvirus can cause lung fibrosis, we infected mice with the murine gamma-herpesvirus 68 (MHV68). Because IPF patients have a T helper type 2 (Th2) pulmonary phenotype, we used IFN-gammaR-/-, a strain of mice biased to develop Th2 responses. Chronic MHV68 infection of IFN-gammaR-/- mice resulted in progressive deposition of interstitial collagen as shown by light and electron microscopy. A significant decrease in tidal volume paralleled the collagen deposition. Five features typically seen in IPF, increased transforming growth factor-beta expression, myofibroblast transformation, production of Th2 cytokines, hyperplasia of type II cells, and increased expression of matrix metalloproteinase-7, were also present in chronically infected IFN-gammaR-/- mice. There also was altered synthesis of surfactant proteins, which is seen in some patients with familial IPF. MHV68 viral protein was found in type II alveolar epithelial cells, especially in lung areas with extensive alveolar remodeling. In summary, chronic herpesvirus pulmonary infection in IFN-gammaR-/- mice causes progressive pulmonary fibrosis and many of the pathological features seen in IPF.  相似文献   

13.
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal lung disease characterized by the overgrowth, hardening, and scarring of lung tissue. The exact mechanisms of how IPF develops and progresses are unknown. IPF is characterized by extracellular matrix remodeling and accumulation of active TGFβ, which promotes collagen expression and the differentiation of smooth muscle α-actin (SMA)-positive myofibroblasts. Aortic carboxypeptidase-like protein (ACLP) is an extracellular matrix protein secreted by fibroblasts and myofibroblasts and is expressed in fibrotic human lung tissue and in mice with bleomycin-induced fibrosis. Importantly, ACLP knockout mice are significantly protected from bleomycin-induced fibrosis. The goal of this study was to identify the mechanisms of ACLP action on fibroblast differentiation. As primary lung fibroblasts differentiated into myofibroblasts, ACLP expression preceded SMA and collagen expression. Recombinant ACLP induced SMA and collagen expression in mouse and human lung fibroblasts. Knockdown of ACLP slowed the fibroblast-to-myofibroblast transition and partially reverted differentiated myofibroblasts by reducing SMA expression. We hypothesized that ACLP stimulates myofibroblast formation partly through activating TGFβ signaling. Treatment of fibroblasts with recombinant ACLP induced phosphorylation and nuclear translocation of Smad3. This phosphorylation and induction of SMA was dependent on TGFβ receptor binding and kinase activity. ACLP-induced collagen expression was independent of interaction with the TGFβ receptor. These findings indicate that ACLP stimulates the fibroblast-to-myofibroblast transition by promoting SMA expression via TGFβ signaling and promoting collagen expression through a TGFβ receptor-independent pathway.  相似文献   

14.
Previous work from this laboratory demonstrated de novo synthesis of angiotensin (ANG) peptides by apoptotic pulmonary alveolar epithelial cells (AEC) and by lung myofibroblasts in vitro and in bleomycin-treated rats. To determine whether these same cell types also synthesize ANG peptides de novo within the fibrotic human lung in situ, we subjected paraffin sections of normal and fibrotic (idiopathic pulmonary fibrosis, IPF) human lung to immunohistochemistry (IHC) and in situ hybridization to detect ANG peptides and angiotensinogen (AGT) mRNA. These were analyzed both alone and in combination with cell-specific markers of AEC [monoclonal antibody (MAb) MNF-116] and myofibroblasts [alpha-smooth muscle actin (alpha-SMA) MAb] and an in situ DNA end labeling (ISEL) method to detect apoptosis. In normal human lung, IHC detected AGT protein in smooth muscle underlying normal bronchi and vessels, but not elsewhere. Real-time RT-PCR and Western blotting revealed that AGT mRNA and protein were 21-fold and 3.6-fold more abundant, respectively, in IPF lung biopsies relative to biopsies of normal human lung (both P < 0.05). In IPF lung, both AGT protein and mRNA were detected in AEC that double-labeled with MAb MNF-116 and with ISEL, suggesting AGT expression by apoptotic epithelia in situ. AGT protein and mRNA also colocalized to myofibroblast foci detected by alpha-SMA MAb, but AGT mRNA was not detected in smooth muscle. These data are consistent with earlier data from isolated human lung cells in vitro and bleomycin-induced rat lung fibrosis models, and they suggest that apoptotic AEC and myofibroblasts constitute key sources of locally derived ANG peptides in the IPF lung.  相似文献   

15.
Idiopathic pulmonary fibrosis (IPF) is a progressive disease thought to result from impaired lung repair following injury and is strongly associated with aging. While vascular alterations have been associated with IPF previously, the contribution of lung vasculature during injury resolution and fibrosis is not well understood. To compare the role of endothelial cells (ECs) in resolving and non‐resolving models of lung fibrosis, we applied bleomycin intratracheally to young and aged mice. We found that injury in aged mice elicited capillary rarefaction, while injury in young mice resulted in increased capillary density. ECs from the lungs of injured aged mice relative to young mice demonstrated elevated pro‐fibrotic and reduced vascular homeostasis gene expression. Among the latter, Nos3 (encoding the enzyme endothelial nitric oxide synthase, eNOS) was transiently upregulated in lung ECs from young but not aged mice following injury. Young mice deficient in eNOS recapitulated the non‐resolving lung fibrosis observed in aged animals following injury, suggesting that eNOS directly participates in lung fibrosis resolution. Activation of the NO receptor soluble guanylate cyclase in human lung fibroblasts reduced TGFβ‐induced pro‐fibrotic gene and protein expression. Additionally, loss of eNOS in human lung ECs reduced the suppression of TGFβ‐induced lung fibroblast activation in 2D and 3D co‐cultures. Altogether, our results demonstrate that persistent lung fibrosis in aged mice is accompanied by capillary rarefaction, loss of EC identity, and impaired eNOS expression. Targeting vascular function may thus be critical to promote lung repair and fibrosis resolution in aging and IPF.  相似文献   

16.

Background

Lung fibrosis is a devastating pulmonary disorder characterized by alveolar epithelial injury, extracellular matrix deposition and scar tissue formation. Due to its potent collagenolytic activity, cathepsin K, a lysosomal cysteine protease is an interesting target molecule with therapeutic potential to attenuate bleomycin-induced pulmonary fibrosis in mice. We here tested the hypothesis that over-expression of cathepsin K in the lungs of mice is protective in bleomycin-induced pulmonary fibrosis.

Methods

Wild-type and cathepsin K overexpressing (cathepsin K transgenic; cath K tg) mice were challenged intratracheally with bleomycin and sacrificed at 1, 2, 3 and 4 weeks post-treatment followed by determination of lung fibrosis by estimating lung collagen content, lung histopathology, leukocytic infiltrates and lung function. In addition, changes in cathepsin K protein levels in the lung were determined by immunohistochemistry, real time RT-PCR and western blotting.

Results

Cathepsin K protein levels were strongly increased in alveolar macrophages and lung parenchymal tissue of mock-treated cathepsin K transgenic (cath K tg) mice relative to wild-type mice and further increased particularly in cath K tg but also wild-type mice in response to bleomycin. Moreover, cath K tg mice responded with a lower collagen deposition in their lungs, which was accompanied by a significantly lower lung resistance (RL) compared to bleomycin-treated wild-type mice. In addition, cath K tg mice responded with a lower degree of lung fibrosis than wild-type mice, a process that was found to be independent of inflammatory leukocyte mobilization in response to bleomycin challenge.

Conclusion

Over-expression of cathepsin K reduced lung collagen deposition and improved lung function parameters in the lungs of transgenic mice, thereby providing at least partial protection against bleomycin-induced lung fibrosis.  相似文献   

17.
Coagulation activation accompanied by reduced anticoagulant activity is a key characteristic of patients with idiopathic pulmonary fibrosis (IPF). Although the importance of coagulation activation in IPF is well studied, the potential relevance of endogenous anticoagulant activity in IPF progression remains elusive. We assess the importance of the endogenous anticoagulant protein C pathway on disease progression during bleomycin‐induced pulmonary fibrosis. Wild‐type mice and mice with high endogenous activated protein C APC levels (APChigh) were subjected to bleomycin‐induced pulmonary fibrosis. Fibrosis was assesses by hydroxyproline and histochemical analysis. Macrophage recruitment was assessed immunohistochemically. In vitro, macrophage migration was analysed by transwell migration assays. Fourteen days after bleomycin instillation, APChigh mice developed pulmonary fibrosis to a similar degree as wild‐type mice. Interestingly, Aschcroft scores as well as lung hydroxyproline levels were significantly lower in APChigh mice than in wild‐type mice on day 28. The reduction in fibrosis in APChigh mice was accompanied by reduced macrophage numbers in their lungs and subsequent in vitro experiments showed that APC inhibits thrombin‐dependent macrophage migration. Our data suggest that high endogenous APC levels inhibit the progression of bleomycin‐induced pulmonary fibrosis and that APC modifies pulmonary fibrosis by limiting thrombin‐dependent macrophage recruitment.  相似文献   

18.

Background

Epithelial cell death is a major contributor to fibrogenesis in the lung. In this study, we sought to determine the function of mitochondria and their clearance (mitophagy) in alveolar epithelial cell death and fibrosis.

Methods

We studied markers of mitochondrial injury and the mitophagy marker, PTEN-induced putative kinase 1 (PINK1), in IPF lung tissues by Western blotting, transmission electron microscopy (TEM), and immunofluorescence. In vitro experiments were carried out in lung epithelial cells stimulated with transforming growth factor-β1 (TGF-β1). Changes in cell function were measured by Western blotting, flow cytometry and immunofluorescence. In vivo experiments were performed using the murine bleomycin model of lung fibrosis.

Results

Evaluation of IPF lung tissue demonstrated increased PINK1 expression by Western blotting and immunofluorescence and increased numbers of damaged mitochondria by TEM. In lung epithelial cells, TGF-β1 induced mitochondrial depolarization, mitochondrial ROS, and PINK1 expression; all were abrogated by mitochondrial ROS scavenging. Finally, Pink1 -/- mice were more susceptible than control mice to bleomycin induced lung fibrosis.

Conclusion

TGF-β1 induces lung epithelial cell mitochondrial ROS and depolarization and stabilizes the key mitophagy initiating protein, PINK1. PINK1 ameliorates epithelial cell death and may be necessary to limit fibrogenesis.  相似文献   

19.
The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice that express β-galactosidase (β-gal) in cells of lung epithelial lineage. Mice were given intratracheal bleomycin (0.08 U), and the following parameters were assessed: AEC death by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay, inflammation by total and differential cell counts from bronchoalveolar lavage, fibrosis by scoring of trichrome-stained lung sections, and total lung collagen content. Mice with lung epithelial deficiency of TGFβR2 had improved AEC survival, despite greater lung inflammation, after bleomycin administration. At 3 wk after bleomycin administration, mice with epithelial TGFβR2 deficiency showed a significantly attenuated fibrotic response in the lungs, as determined by semiquantitatve scoring and total collagen content. The reduction in lung fibrosis in these mice was associated with a marked decrease in the lung fibroblast population, both total lung fibroblasts and epithelial-to-mesenchymal transition-derived (S100A4(+)/β-gal(+)) fibroblasts. Attenuation of TGFβ signaling in lung epithelium provides protection from bleomycin-induced fibrosis, indicating a critical role for the epithelium in transducing the profibrotic effects of this cytokine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号