首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phthalate is a metabolic intermediate of the pathway of fluorene (FN) degradation via angular dioxygenation. A gene cluster responsible for the conversion of phthalate to protocatechuate was cloned from the dibenzofuran (DF)- and FN-degrading bacterium Terrabacter sp. strain DBF63 and sequenced. The genes encoding seven catabolic enzymes, oxygenase large subunit of phthalate 3,4-dioxygenase (phtA1), oxygenase small subunit of phthalate 3,4-dioxygenase (phtA2), cis-3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase (phtB), [3Fe-4S] or [4Fe-4S] type of ferredoxin (phtA3), ferredoxin reductase (phtA4), 3,4-dihydroxyphthalate decarboxylase (phtC) and putative regulatory protein (phtR), were found in the upstream region of the angular dioxygenase gene (dbfA1A2), encoded in this order. Escherichia coli carrying phtA1A2BA3A4 genes converted phthalate to 3,4-dihydroxyphthalate, and the 3,4-dihydroxyphthalate decarboxylase activity by E. coli cells carrying phtC was finally detected with the introduction of a Shine-Dalgarno sequence in the upstream region of its initiation codon. Homology analysis on the upstream region of the pht gene cluster revealed that there was an insertion sequence (IS) (ISTesp2; ORF14 and its flanking region), part of which was almost 100% identical to the orf1 and its flanking region adjacent to the extradiol dioxygenase gene ( bphC1) involved in the DF degradation of Terrabacter sp. strain DPO360 [Schmid et al. (1997) J Bacteriol 179:53-62]. This suggests that ISTesp2 plays a role in the metabolism of aromatic compounds in Terrabacter sp. strains DBF63 and DPO360.  相似文献   

2.
3.
4.
A gram-positive bacterium Terrabacter sp. strain DBF63 is able to degrade dibenzofuran (DF) via initial dioxygenation by a novel angular dioxygenase. The dbfA1 and dbfA2 genes, which encode the large and small subunits of the dibenzofuran 4,4a-dioxygenase (DFDO), respectively, were isolated by a polymerase chain reaction-based method. DbfA1 and DbfA2 showed moderate homology to the large and small subunits of other ring-hydroxylating dioxygenases (less than 40%), respectively, and some motifs such as the Fe(II) binding site and the [2Fe-2S] cluster ligands were conserved in DbfA1. DFDO activity was confirmed in Escherichia coli cells containing the cloned dbfA1 and dbfA2 genes with the complementation of nonspecific ferredoxin and ferredoxin reductase component of E. coli. Under this condition, these cells exhibited angular dioxygenation of DF and dibenzo-p-dioxin, and monooxygenation of fluorene, but not angular dioxygenation of carbazole, xanthene, and phenoxathiin. Phylogenetic analysis revealed that DbfA1 formed a branch with recently reported large subunits of polycyclic aromatic hydrocarbon (PAH) dioxygenase from gram-positive bacteria but did not cluster with that of other angular dioxygenases, i.e., DxnA1 from Sphingomonas sp. strain RW1 [Armengaud, J., Happe, B., and Timmis, K. N. J. Bacteriol. 180, 3954-3966, 1998] and CarAa from Pseudomonas sp. strain CA10 [Sato, S., Nam, J.-W., Kasuga, K., Nojiri, H., Yamane, H., and Omori, T. J. Bacteriol. 179, 4850-4858, 1997].  相似文献   

5.
Dibenzofuran 4,4a-dioxygenase (DFDO) from Terrabacter sp. strain DBF63 is comprised of three components, i.e., terminal oxygenase (DbfA1, DbfA2), putative [3Fe-4S] ferredoxin (ORF16b product), and unidentified ferredoxin reductase. We produced DbfA1 and DbfA2 using recombinant Escherichia coli BL21(DE3) cells as a native form and purified the complex to apparent homogeneity. We also produced and purified a putative [3Fe-4S] ferredoxin encoded by ORF16b, which is located 2.5 kb downstream of the dbfA1A2 genes, with E. coli as a histidine (His)-tagged form. The reconstructed DFDO system with three purified components, i.e., DbfA1A2, His-tagged ORF16b product, and His-tagged PhtA4 (which is a tentative reductase derived from the phthalate dioxygenase system of strain DBF63) could convert fluorene to 9-fluorenol (specific activity: 14.4 nmol min–1 mg–1) and convert dibenzofuran to 2,2,3-trihydroxybiphenyl. This indicates that the ORF16b product can transport electrons to the DbfA1A2 complex; and therefore it was designated DbfA3. Based on spectroscopic UV-visible absorption characteristics and electron paramagnetic resonance spectra, DbfA3 was elucidated to contain a [3Fe-4S] cluster. Ferredoxin interchangeability analysis using several types of ferredoxins suggested that the redox partner of the DbfA1A2 complex may be rather specific to DbfA3.  相似文献   

6.
A newly isolated Rhodococcus sp. strain p52 could aerobically utilize dibenzofuran as the sole source of carbon and energy, and completely remove dibenzofuran at 500 mg?l?1 within 48 h. The strain metabolizes dibenzofuran by initial angular dioxygenation to yield 2,2′,3-trihydroxybiphenyl. Strain p52 could also remove 70 % of 100 mg?l?1 2-chlorodibenzofuran within 96 h and could metabolize a variety of aromatic compounds, namely dibenzo-p-dioxin, 2,8-dichlorodibenzofuran, dibenzothiophene, biphenyl, naphthalene, fluorene, phenanthrene, anthracene, carbazole, indole, xanthene, phenoxathiin, xanthone, and 9-fluorenone. Two distinct gene clusters encoding angular dioxygenases (DbfA and DfdA) were amplified and sequenced. The dbfA and dfdA gene clusters are located on two circular plasmids, pDF01 and pDF02, respectively. Both plasmids are self-transmissible; that is, they can transfer to the Gram-positive bacterium Bacillus cereus by conjugation.  相似文献   

7.
Thirteen dibenzofuran (DF)-utilizing bacteria carrying the DF terminal dioxygenase genes homologous to those of Terrabacter sp. strain DBF63 (dbfA1A2) were newly isolated from activated sludge samples. The amplified ribosomal DNA restriction analysis and the hybridization analyses showed that these strains were grouped into five genetically different types of bacteria. The sequence analyses of the 16S rRNA genes and the dbfA1A2 homologues from these five selected isolates revealed that the isolates belonged to the genus Rhodococcus, Terrabacter or Janibacter and that they shared 99-100% conserved dbfA1A2 homologues. We investigated the genetic organizations flanking the dbfA1A2 homologues and showed that the minimal conserved DNA region present in all five selected isolates consisted of an approximately 9.0-kb region and that their outer regions became abruptly non-homologous. Among them, Rhodococcus sp. strain DFA3 possessed not only the 9.0-kb region but also the 6.2-kb region containing dbfA1A2 homologues. Sequencing of their border regions suggested that some genetic rearrangement might have occurred with insertion sequence-like elements. Also, within their conserved regions, some insertions or deletions were observed.  相似文献   

8.
Genes involved in the degradation of fluorene to phthalate were characterized in the fluorene degrader Terrabacter sp. strain DBF63. The initial attack on both fluorene and 9-fluorenone was catalyzed by DbfA to yield 9-fluorenol and 1,1a-dihydroxy-1-hydro-9-fluorenone, respectively. The FlnB protein exhibited activities against both 9-fluorenol and 1,1a-dihydroxy-1-hydro-9-fluorenone to produce 9-fluorenone and 2'-carboxy-2,3-dihydroxybiphenyl, respectively. FlnD is a heteromeric protein encoded by flnD1 and ORF16, being a member of the class III two-subunit extradiol dioxygenase. FlnE was identified as a serine hydrolase for the meta-cleavage products that yield phthalate.  相似文献   

9.
Sixteen actinomycetes capable of utilizing dibenzofuran as a sole source of carbon and energy were isolated, including Rhodococcus, Microbacterium, and Terrabacter genera. Heretofore, no dibenzofuran-utilizing strain belonging to the genus Microbacterium has been reported. Five extradiol dioxygenase genes (dfdB, and edil to 4) of the strain Rhodococcus sp. YK2 were cloned and analyzed. The nucleotide sequence of dfdB gene was almost identical to the bphC1 gene of Terrabacter sp. DPO360, which was involved in dibenzofuran metabolism in this strain. Southern and Northern hybridization analyses using these extradiol dioxygenase genes as probes suggest that the dfdB gene in YK2 was conserved in diverse dibenzofuran-utilizing actinomycetes; also, the dfdB gene was the only expressed gene among five extradiol dioxygenase genes in the medium containing DF as a sole carbon source. These results suggest that the dfdB gene is important for dibenzofuran metabolism not only in the strain YK2, but also in diverse dibenzofuran-degrading actinomycetes.  相似文献   

10.
Dioxygenation is one of the important initial reactions of the bacterial degradation of various aromatic compounds. Aromatic compounds, such as biphenyl, toluene, and naphthalene, are dioxygenated at lateral positions of the aromatic ring resulting in the formation of cis-dihydrodiol. This "normal" type of dioxygenation is termed lateral dioxygenation. On the other hand, the analysis of the bacterial degradation of fluorene (FN) analogues, such as 9-fluorenone, dibenzofuran (DF), carbazole (CAR), and dibenzothiophene (DBT)-sulfone, and DF-related diaryl ether compounds, dibenzo-p-dioxin (DD) and diphenyl ether (DE), revealed the presence of the novel mode of dioxygenation reaction for aromatic nucleus, generally termed angular dioxygenation. In this atypical dioxygenation, the carbon bonded to the carbonyl group in 9-fluorenone or to heteroatoms in the other compounds, and the adjacent carbon in the aromatic ring are both oxidized. Angular dioxygenation of DF, CAR, DBT-sulfone, DD, and DE produces the chemically unstable hemiacetal-like intermediates, which are spontaneously converted to 2,2',3-trihydroxybiphenyl, 2'-aminobiphenyl-2,3-diol, 2',3'-dihydroxybiphenyl-2-sulfinate, 2,2',3-trihydroxydiphenyl ether, and phenol and catechol, respectively. Thus, angular dioxygenation for these compounds results in the cleavage of the three-ring structure or DE structure. The angular dioxygenation product of 9-fluorenone, 1-hydro-1,1a-dihydroxy-9-fluorenone is a chemically stable cis-diol, and is enzymatically transformed to 2'-carboxy-2,3-dihydroxybiphenyl. 2'-Substituted 2,3-dihydroxybiphenyls formed by angular dioxygenation of FN analogues are degraded to monocyclic aromatic compounds by meta cleavage and hydrolysis. Thus, after the novel angular dioxygenation, subsequent degradation pathways are homologous to the corresponding part of that of biphenyl. Compared to the bacterial strains capable of catalyzing lateral dioxygenation, few bacteria having angular dioxygenase have been reported. Only a few degradation pathways, CAR-degradation pathway of Pseudomonas resinovorans strain CA10, DF/DD-degradation pathway of Sphingomonas wittichii strain RW1, DF/DD/FN-degradation pathway of Terrabacter sp. strain DBF63, and carboxylated DE-degradation pathway of P. pseudoalcaligenes strain POB310, have been investigated at the gene level. As a result of the phylogenetic analysis and the comparison of substrate specificity of angular dioxygenase, it is suggested that this atypical mode of dioxygenation is one of the oxygenation reactions originating from the relaxed substrate specificity of the Rieske nonheme iron oxygenase superfamily. Genetic characterization of the degradation pathways of these compounds suggests the possibility that the respective genetic elements constituting the entire catabolic pathway have been recruited from various other bacteria and/or other genetic loci, and that these pathways have not evolutionary matured.  相似文献   

11.
Transformation of 3-chlorodibenzofuran by Pseudomonas sp. HH69   总被引:4,自引:0,他引:4  
The dibenzofuran-degrading bacterial strain Pseudomonas sp. HH69 showed high oxidative activity towards 3-chlorodibenzofuran (3CDF). During the co-metabolic turnover of 3CDF large amounts of 4-chlorosalicylate and temporarily small amounts of salicylate were excreted. Simultaneously a yellow colour appeared due to the excretion of two polar products. Conversion of 3CDF by a mutant, derived from Pseudomonas sp. HH69 and defective in 2,3-dihydroxybiphenyl-1,2-dioxygenase led to the formation of equal quantities of 4'-chloro-2,2',3-trihydroxybiphenyl (4'CTHBP) and 4-chloro-2,2',3-trihydroxybiphenyl (4CTHBP). Crude extracts of the wild type transformed 4'CTHBP to 4-chlorosalicylate, whilst 4CTHBP was transformed to salicylate. Hence, we propose a non-selective initial attack on both aromatic rings of 3CDF and a degradative pathway for the resulting chlorotrihydroxybiphenyls.  相似文献   

12.
The dibenzofuran-degrading bacterium Sphingomonas sp. strain RW1 (R.-M. Wittich, H. Wilkes, V. Sinnwell, W. Francke, and P. Fortnagel, Appl. Environ. Microbiol. 58:1005-1010, 1992) attacks 4-chlorodibenzofuran on the unsubstituted aromatic ring via distal dioxygenation adjacent to the ether bridge to produce 3(prm1)-chloro-2,2(prm1),3-trihydroxybiphenyl, which was identified by nuclear magnetic resonance spectroscopy and mass spectrometry. The compound is subsequently meta cleaved, and the respective intermediate is hydrolyzed to form a C-5 moiety, which is further degraded to Krebs cycle intermediates and to 3-chlorosalicylate. This dead-end product is released into the culture medium. A coculture of strain RW1 and the 3,5-dichlorosalicylate-degrading strain Burkholderia sp. strain JWS (A. Schindowski, R.-M. Wittich, and P. Fortnagel, FEMS Microbiol. Lett. 84:63-70, 1991) is able to completely degrade 4-chlorodibenzofuran with concomitant release of Cl(sup-) and formation of biomass.  相似文献   

13.
14.
15.
Rhodococcus sp. strain B4, isolated from a soil sample contaminated with polycyclic aromatic hydrocarbons, grows with naphthalene as the sole source of carbon and energy. Salicylate and gentisate were identified as intermediates in the catabolism of naphthalene. In contrast to the well-studied catabolic pathway encoded by the NAH7 plasmid of Pseudomonas putida, salicylate does not induce the genes of the naphthalene-degradative pathway in Rhodococcus sp. strain B4. The key enzymes of naphthalene degradation in Rhodococcus sp. strain B4 have unusual cofactor requirements. The 1,2-dihydroxynaphthalene oxygenase activity depends on NADH and the salicylate 5-hydroxylase requires NADPH, ATP, and coenzyme A.  相似文献   

16.
The dibenzofuran-degrading bacterial strain DPO360 represents a new species of the genus Terrabacter together with the previously described dibenzofuran-mineralizing bacterial strain DPO1361 (K.-H. Engesser, V. Strubel, K. Christoglou, P. Fischer, and H. G. Rast, FEMS Microbiol. Lett. 65:205-210, 1989; V. Strubel, Ph.D. thesis, University of Stuttgart, Stuttgart, Germany, 1991; V. Strubel, H. G. Rast, W. Fietz, H.-J. Knackmuss, and K.-H. Engesser, FEMS Microbiol. Lett. 58:233-238, 1989). Two 2,3-dihydroxybiphenyl-1,2-dioxygenases (BphC1 and BphC2) and one catechol-2,3-dioxygenase (C23O) were shown to be expressed in Terrabacter sp. strain DPO360 growing with dibenzofuran as a sole source of carbon and energy. These enzymes exhibited strong sensitivity to oxygen. They were purified to apparent homogeneity as homodimers (BphC and BphC2) and as a homotetrameric catechol-2,3-dioxygenase (C23O). According to their specificity constants kcat/Km, both BphC1 and BphC2 were shown to be responsible for the cleavage of 2,2',3-trihydroxybiphenyl, the first metabolite in dibenzofuran mineralization along the angular dioxygenation pathway. With this substrate, BphC2 exhibited a considerably higher kcat/Km, value (183 microM/min) than BphC1 (29 microM/min). Catechol-2,3-dioxygenase was recognized to be not involved in the ring cleavage of 2,2',3-trihydroxybiphenyl (kcat/Km, 1 microM/min). Analysis of deduced amino acid sequence data of bphC1 revealed 36% sequence identity to nahC from Pseudomonas putida PpG7 (S. Harayama and M. Rekik, J. Biol. Chem. 264:15328-15333, 1989) and about 40% sequence identity to various bphC genes from different Pseudomonas and Rhodococcus strains. In addition, another 2,3-dihydroxybiphenyl-1,2-dioxygenase gene (bphC3) was cloned from the genome of Terrabacter sp. strain DPO360. Expression of this gene, however, could not be detected in Terrabacter sp. strain DPO360 after growth with dibenzofuran.  相似文献   

17.
Spore-forming bacterial strains capable of utilizing dibenzofuran (DF) as a sole source of carbon and energy were isolated. Characteristics of the isolates justified their classification into the genus Paenibacillus, and their closest relative was P. naphthalenovorans. Degenerate primers for aromatic hydrocarbon dioxygenase alpha subunit (AhDOa) genes and genomic DNA of the strain YK5 were used for gene isolation. The nucleotide sequences of clones of the PCR products revealed that the strain YK5 carries at least five different AhDOa genes. Northern hybridization analysis showed that one of the AhDOa genes was transcribed under DF-containing culture conditions. A gene cluster encoding the AhDOa was isolated. The genes predicted to encode extradiol dioxygenase (dbfB) and hydrolase (dbfC) were found to be an upstream of genes encoding the alpha and beta subunit of the AhDO (dbfA1 and dbfA2, respectively); the latter two gene products showed 60 and 53% identity to the amino acid sequences of DbfA1 and DbfA2 of Terrabacter sp. DBF63, respectively. Two Paenibacillus validus JCM 9077 strains transformed with the dbf gene clusters acquired the ability to convert DF to 2,2′,3-trihydroxybiphenyl (THBP) and salicylic acid (SAL). These results suggest that the enzymes encoded by the gene cluster isolated in this study are involved in DF metabolism in YK5.  相似文献   

18.
The degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine (2-chloro-4-ethyl-amino-6-isopropylamino-1,3,5-triazine) is associated with an indigenous plasmid in Rhodococcus sp. strain TE1. Plasmid DNA libraries of Rhodococcus sp. strain TE1 were constructed in a Rhodococcus-Escherichia coli shuttle vector, pBS305, and transferred into Rhodococcus sp. strain TE3, a derivative of Rhodococcus sp. strain TE1 lacking herbicide degradation activity, to select transformants capable of growing on EPTC as the sole source of carbon (EPTC+). Analysis of plasmids from the EPTC+ transformants indicated that the eptA gene, which codes for the enzyme required for EPTC degradation, residues on a 6.2-kb KpnI fragment. The cloned fragment also harbored the gene required for atrazine N dealkylation (atrA). The plasmid carrying the cloned fragment could be electroporated into a number of other Rhodococcus strains in which both eptA and atrA were fully expressed. No expression of the cloned genes was evident in E. coli strains. Subcloning of the 6.2-kb fragment to distinguish between EPTC- and atrazine-degrading genes was not successful.  相似文献   

19.
Two kinds of bacteria having different-structured angular dioxygenases-a dibenzofuran (DF)-utilizing bacterium, Terrabacter sp. strain DBF63, and a carbazole (CAR)-utilizing bacterium, Pseudomonas sp. strain CA10-were investigated for their ability to degrade some chlorinated dibenzofurans (CDFs) and chlorinated dibenzo-p-dioxins (CDDs) (or, together, CDF/Ds) using either wild-type strains or recombinant Escherichia coli strains. First, it was shown that CAR 1,9a-dioxygenase (CARDO) catalyzed angular dioxygenation of all mono- to triCDF/Ds investigated in this study, but DF 4,4a-dioxygenase (DFDO) did not degrade 2,7-diCDD. Secondly, degradation of CDF/Ds by the sets of three enzymes (angular dioxygenase, extradiol dioxygenase, and meta-cleavage compound hydrolase) was examined, showing that these enzymes in both strains were able to convert 2-CDF to 5-chlorosalicylic acid but not other tested substrates to the corresponding chlorosalicylic acid (CSA) or chlorocatechol (CC). Finally, we tested the potential of both wild-type strains for cooxidation of CDF/Ds and demonstrated that both strains degraded 2-CDF, 2-CDD, and 2,3-diCDD to the corresponding CSA and CC. We investigated the sites for the attack of angular dioxygenases in each CDF/D congener, suggesting the possibility that the angular dioxygenation of 2-CDF, 2-CDD, 2,3-diCDD, and 1,2,3-triCDD (10 ppm each) by both DFDO and CARDO occurred mainly on the nonsubstituted aromatic nuclei.  相似文献   

20.
The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE(LB400)) is a Rieske-type oxygenase that catalyzes the stereospecific oxygenation of many heterocyclic aromatics including dibenzofuran. In a previous work, we evolved BphAE(LB400) and obtained BphAE(RR41). This variant metabolizes dibenzofuran and 2-chlorodibenzofuran more efficiently than BphAE(LB400). However, the regiospecificity of BphAE(RR41) toward these substrates differs. Dibenzofuran is metabolized principally through a lateral dioxygenation whereas 2-chlorodibenzofuran is metabolized principally through an angular dioxygenation. In order to explain this difference, we examined the crystal structures of both substrate-bound forms of BphAE(RR41) obtained under anaerobic conditions. This structure analysis, in combination with biochemical data for a Ser283Gly mutant provided evidences that the substrate is compelled to move after oxygen-binding in BphAE(RR41):dibenzofuran. In BphAE(RR41):2-chlorodibenzofuran, the chlorine atom is close to the side chain of Ser283. This contact is missing in the BphAE(RR41):dibenzofuran, and strong enough in the BphAE(RR41):2-chlorodibenzofuran to help prevent substrate movement during the catalytic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号