首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.  相似文献   

2.
Neurotrophins promote multiple actions on neuronal cells including cell survival and differentiation. The best-studied neurotrophin, nerve growth factor (NGF), is a major survival factor in sympathetic and sensory neurons and promotes differentiation in a well-studied model system, PC12 cells. To mediate these actions, NGF binds to the TrkA receptor to trigger intracellular signaling cascades. Two kinases whose activities mediate these processes include the mitogen-activated protein (MAP) kinase (or extracellular signal-regulated kinase [ERK]) and phosphoinositide 3-kinase (PI3-K). To examine potential interactions between the ERK and PI3-K pathways, we studied the requirement of PI3-K for NGF activation of the ERK signaling cascade in dorsal root ganglion cells and PC12 cells. We show that PI3-K is required for TrkA internalization and participates in NGF signaling to ERKs via distinct actions on the small G proteins Ras and Rap1. In PC12 cells, NGF activates Ras and Rap1 to elicit the rapid and sustained activation of ERKs respectively. We show here that Rap1 activation requires both TrkA internalization and PI3-K, whereas Ras activation requires neither TrkA internalization nor PI3-K. Both inhibitors of PI3-K and inhibitors of endocytosis prevent GTP loading of Rap1 and block sustained ERK activation by NGF. PI3-K and endocytosis may also regulate ERK signaling at a second site downstream of Ras, since both rapid ERK activation and the Ras-dependent activation of the MAP kinase kinase kinase B-Raf are blocked by inhibition of either PI3-K or endocytosis. The results of this study suggest that PI3-K may be required for the signals initiated by TrkA internalization and demonstrate that specific endocytic events may distinguish ERK signaling via Rap1 and Ras.  相似文献   

3.
MAP kinases have important role in PC12 cell differentiation, since the activities of both extracellular regulated protein kinase (ERK) and p38 have been indicated as necessary signal for PC12 cell differentiation. Epidermal growth factor (EGF) and NGF both activate ERK and p38 in PC12 cells, but only NGF trigger differentiation. It has been proposed that the duration of ERK activation determines the switch from proliferation to differentiation, since EGF causes more transient activation of ERK than NGF in PC12 cells. Here we report that treatment of PC12 cells with EGF in the presence of SB203580, a widely used p38 inhibitor, caused differentiation. The pro-differentiation effect of SB203580 in EGF-treated PC12 cells was found to be independent of its function of p38 inhibition but was through an effect on the ERK pathway that has been recently reported (Kalmes et al. [1999] FEBS Lett. 444: 71-74; Hall-Jackson et al. [1999] Onc. 18: 2047-2054). We found that SB203580 by itself did not affect the activity of ERK1/2 but significantly extended EGF-induced ERK activation in PC12 cells, which resulted in early morphological differentiation. Our data indicated that although both ERK and p38 are required for PC12 cell differentiation, activation of p38 is not required when ERK is superactivated. Our data provided further evidence for the threshold theory that differentiation is determined by the duration of ERK activation.  相似文献   

4.
Although peroxynitrite appears to contribute to neuronal dysfunction in several neurodegenerative disorders, little is known about how peroxynitrite affects cellular signaling processes. This study investigated if peroxynitrite affects the mitogen-activated protein kinases, extracellular-regulated kinases 1 and 2 (ERK1/2) and p38. Exposure of PC12 cells to 500 microM peroxynitrite activated ERK1/2 and p38 within 5 min and this was followed by gradual decreases in activation over the next 25 min. Activation of ERK1/2 by peroxynitrite was mediated by activation of the epidermal growth factor (EGF) receptor in a calcium/calmodulin-dependent kinase II- and src family tyrosine kinase-dependent manner, as it was blocked by the selective EGF receptor inhibitor AG1478, by KN62, an inhibitor of calcium/calmodulin-dependent kinase II, and by PP1, a src family tyrosine kinase inhibitor. Activation of p38 by peroxynitrite was independent of the EGF receptor, required activation of calcium/calmodulin-dependent kinase II and src family tyrosine kinases, and was modulated by nerve growth factor (NGF) in a time-dependent manner. Pretreatment with NGF (2 h) attenuated, whereas cotreatment with NGF potentiated, peroxynitrite-induced activation of p38. Thus, peroxynitrite activates ERK1/2 and p38, activation of EGF receptors, calcium/calmodulin-dependent kinase II, and src family tyrosine kinases participate in these signaling responses to peroxynitrite, and peroxynitrite- and NGF-induced signaling activities converge on p38.  相似文献   

5.
Dividing neuroendocrine cells differentiate into a neuronal-like phenotype in response to ligands activating G protein-coupled receptors, leading to the elevation of the second messenger cAMP. Growth factors that act at receptor tyrosine kinases, such as nerve growth factor, also cause differentiation. We report here that two aspects of cAMP-induced differentiation, neurite extension and growth arrest, are dissociable at the level of the sensors conveying the cAMP signal in PC12 and NS-1 cells. Following cAMP elevation, neuritogenic cyclic AMP sensor/Rapgef2 is activated for signaling to ERK to mediate neuritogenesis, whereas Epac2 is activated for signaling to the MAP kinase p38 to mediate growth arrest. Neither action of cAMP requires transactivation of TrkA, the receptor for NGF. In fact, the differentiating effects of NGF do not require activation of any of the cAMP sensors protein kinase A, Epac, or neuritogenic cyclic AMP sensor/Rapgef2 but, rather, depend on ERK and p38 activation via completely independent signaling pathways. Hence, cAMP- and NGF-dependent signaling for differentiation are also completely insulated from each other. Cyclic AMP and NGF also protect NS-1 cells from serum withdrawal-induced cell death, again by two wholly separate signaling mechanisms, PKA-dependent for cAMP and PKA-independent for NGF.  相似文献   

6.
Neuronal precursor cells have the capacity to engage the Raf-MEK-ERK signal module to drive either of two distinctly different regulatory programs, proliferation and differentiation. This is, at least in part, a consequence of stimulus-specific shaping of the kinase cascade response. For example, the mitogen EGF induces a transient ERK activation, whereas the neurotrophin NGF induces prolonged ERK activation. Here we define a novel component of the regulatory machinery contributing to the selective integration of MAP kinase signaling with discrete biological responses. We show that the scaffold/adaptor protein CNK2/MAGUIN-1 is required for NGF- but not EGF-induced ERK activation. In addition, CNK2 makes a separate, essential contribution to the coupling of NGF signaling to membrane/cytoskeletal remodeling. We propose that CNK2 integrates multiple regulatory pathways that must function in concert to drive an appropriate biological response to external stimuli.  相似文献   

7.
In several neuronal cell systems, fibroblast-derived growth factor (FGF) and nerve growth factor (NGF) act as neurogenic agents, whereas epidermal growth factor (EGF) acts as a mitogen. The mechanisms responsible for these different cellular fates are unclear. We report here that although FGF, NGF, and EGF all activate mitogen-activated protein (MAP) kinase (extracellular signal-related kinase [ERK]) in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells, the activation of ERK by the neurogenic agents FGF and NGF is dependent upon protein kinase Cdelta (PKCdelta), whereas ERK activation in response to the mitogenic EGF is independent of PKCdelta. Antisense PKCdelta oligonucleotides or the PKCdelta-specific inhibitor rottlerin inhibited FGF- and NGF-induced, but not EGF-induced, ERK activation. In contrast, EGF-induced ERK activation was inhibited by the phosphatidylinositol-3-kinase inhibitor wortmannin, which had no effect upon FGF-induced ERK activation. Rottlerin also inhibited the activation of MAP kinase kinase (MEK) in response to activated Raf, but had no effect upon c-Raf activity or ERK activation by activated MEK. These results indicate that PKCdelta functions either downstream from or in parallel with c-Raf, but upstream of MEK. Inhibition of PKCdelta also blocked neurite outgrowth induced by FGF and NGF in PC12 cells and by activated Raf in H19-7 cells, indicating a role for PKCdelta in the neurogenic effects of FGF, NGF, and Raf. Interestingly, the PKCdelta requirement is apparently cell type specific, since FGF-induced ERK activation was independent of PKCdelta in NIH 3T3 murine fibroblasts, in which FGF is a mitogen. These data demonstrate that PKCdelta contributes to growth factor specificity and response in neuronal cells and may also promote cell-type-specific differences in growth factor signaling.  相似文献   

8.
Treatment of PC12 pheochromocytoma cells with nerve growth factor (NGF) or bradykinin leads to the activation of extracellular signal-regulated kinases ERK1 and ERK2, two isozymes of microtubule-associated protein 2 (MAP) kinase that are present in numerous cell lines and regulated by diverse extracellular signals. The activation of MAP kinase is associated with its phosphorylation on tyrosine and threonine residues, both of which are required for activity. In the present studies, we have identified a factor in extracts of PC12 cells treated with NGF or bradykinin, named MAP kinase activator, that, when reconstituted with inactive MAP kinase from untreated cells, dramatically increased MAP kinase activity. Activation of MAP kinase in vitro by this factor required MgATP and was associated with the phosphorylation of a 42- (ERK1) and 44-kDa (ERK2) polypeptide. Incorporation of 32P into ERK1 and ERK2 occurred primarily on tyrosine and threonine residues and was associated with a single tryptic peptide, which is identical to one whose phosphorylation is increased by treatment of intact PC12 cells with NGF. Thus, the MAP kinase activator identified in PC12 cells is likely to be a physiologically important intermediate in the signaling pathways activated by NGF and bradykinin. Moreover, stimulation of the activator by NGF and bradykinin suggests that tyrosine kinase receptors and guanine nucleotide-binding protein-coupled receptors are both capable of regulating these pathways.  相似文献   

9.
The signaling pathway that triggers morphological differentiation of PC12 cells is mediated by extracellular signal-regulated kinase (ERK), the classic mitogen-activated protein (MAP) kinase. However, mediators of the pathway downstream of ERK have not been identified. We show here that phospholipase D2 (PLD2), which generates the pleiotropic signaling lipid phosphatidic acid (PA), links ERK activation to neurite outgrowth in nerve growth factor (NGF)-stimulated PC12 cells. Increased expression of wild type PLD2 (WT-PLD2) dramatically elongated neurites induced by NGF stimulation or transient expression of the active form of MAP kinase-ERK kinase (MEK-CA). The response was activity-dependent, because it was inhibited by pharmacological suppression of the PLD-mediated PA production and by expression of a lipase-deficient PLD2 mutant. Furthermore, PLD2 was activated by MEK-CA, whereas NGF-stimulated PLD2 activation and hypertrophic neurite extension were blocked by an MEK-specific inhibitor. Taken together, these results provide evidence that PLD2 functions as a downstream signaling effector of ERK in the NGF signaling pathway, which leads to neurite outgrowth by PC12 cells.  相似文献   

10.
11.
12.
13.
Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase kinase kinase that activates the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase signaling cascades. We report here that expression of constitutively active ASK1 (ASK1DeltaN) induces neurite outgrowth in the rat pheochromocytoma cell line PC12. We found that p38 and to a lesser extent JNK, but not ERK, were activated by the expression of ASK1DeltaN in PC12 cells. ASK1DeltaN-induced neurite outgrowth was strongly inhibited by treatment with the p38 inhibitor SB203580 but not with the MEK inhibitors, suggesting that activation of p38, rather than of ERK, is required for the neurite-inducing activity of ASK1 in PC12 cells. We also observed that ASK1DeltaN induced expression of several neuron-specific proteins and phosphorylation of neurofilament proteins, confirming that PC12 cells differentiated into mature neuronal cells by ASK1. Moreover, ASK1DeltaN-expressing PC12 cells survived in serum-starved condition. ASK1 thus appears to mediate signals leading to both differentiation and survival of PC12 cells. Together with previous reports indicating that ASK1 functions as a pro-apoptotic signaling intermediate, these results suggest that ASK1 has a broad range of biological activities depending on cell types and/or cellular context.  相似文献   

14.
The rat pheochromocytoma PC12 cell line is a widely used system to study neuronal differentiation for which sustained activation of the extracellular signaling related kinase (ERK) pathway is required. Here, we investigate the function of MK-STYX [MAPK (mitogen-activated protein kinase) phosphoserine/threonine/tyrosine-binding protein] in neuronal differentiation. MK-STYX is a member of the MAPK phosphatase (MKP) family, which is generally responsible for dephosphorylating the ERKs. However, MK-STYX lacks catalytic activity due to the absence of the nucleophilic cysteine in the active site signature motif HC(X5)R that is essential for phosphatase activity. Despite being catalytically inactive, MK-STYX has been shown to play a role in important cellular pathways, including stress responses. Here we show that PC12 cells endogenously express MK-STYX. In addition, MK-STYX, but not its catalytically active mutant, induced neurite-like outgrowths in PC12 cells. Furthermore, MK-STYX dramatically increased the number of cells with neurite extensions in response to nerve growth factor (NGF), whereas the catalytically active mutant did not. MK-STYX continued to induce neurites in the presence of a MEK (MAP kinase kinase) inhibitor suggesting that MK-STYX does not act through the Ras-ERK/MAPK pathway but is involved in another pathway whose inactivation leads to neuronal differentiation. RhoA activity assays indicated that MK-STYX induced extensions through the Rho signaling pathway. MK-STYX decreased RhoA activation, whereas RhoA activation increased when MK-STYX was down-regulated. Furthermore, MK-STYX affected downstream players of RhoA such as the actin binding protein cofilin. The presence of MK-STYX decreased the phosphorylation of cofilin in non NGF stimulated cells, but increased its phosphorylation in NGF stimulated cells, whereas knocking down MK-STYX caused an opposite effect. Taken together our data suggest that MK-STYX may be a regulator of RhoA signaling, and implicate this pseudophosphatase as a regulator of neuronal differentiation.  相似文献   

15.
Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) is a potent neuropeptide that acts through G-protein-coupled receptors. While it is well established that PACAP mediates both neurotrophic and neurodevelopmental effects, the signaling cascades that underlie these diverse actions remain incompletely characterized. Here we show that the Ras-related Rin GTP-binding protein, a GTPase that is expressed predominantly in neurons, is regulated by PACAP38 signaling, and loss-of-function analysis demonstrates that Rin makes an essential contribution to PACAP38-mediated pheochromocytoma cell differentiation. Rin is activated following stimulation of both Gsalpha and Gialpha cascades but does not rely upon cyclic AMP (cAMP)-, Ca(2+)-, or Epac-dependent signaling pathways. Instead, Rin is activated in a Src kinase-dependent manner. Surprisingly, Rin knockdown significantly inhibits PACAP38-mediated neurite outgrowth, without affecting mitogen-activated protein kinase signaling cascades. Instead, Rin loss attenuates PACAP38-mediated HSP27 activation by disrupting a cAMP-protein kinase A cascade. RNA interference-mediated HSP27 silencing suppresses both PACAP38- and Rin-mediated neurite outgrowth, while expression of a constitutively active Rin mutant increases both HSP27 protein and phospho-HSP27 levels, supporting a role for Rin-HSP27 signaling in neuronal differentiation. Together, these observations identify an unsuspected role for Rin in neuronal PACAP signaling and establish a novel Galpha-Src-Rin-HSP27 signal transduction pathway as a critical element in PACAP38-mediated neuronal differentiation signaling.  相似文献   

16.
MAPK-dependent activation of AP-1 protein c-Jun is involved in PC12 cell differentiation and apoptosis. However, the role of other AP-1 proteins and their connection to MAPKs during growth, differentiation and apoptosis has remained elusive. Here we studied the activation of AP-1 proteins in response to ERK, JNK, and p38 signaling upon NGF, EGF and anisomycin exposures. All treatments caused different kinetics and strength of MAPK and AP-1 activities. NGF induced persistent ERK and AP-1 activities, whereas upon EGF and anisomycin exposures, their activities were only weakly and transiently induced. The sustained AP-1 activity was associated with concomitant c-Fos and c-Jun expression and phoshorylation, which were JNK and ERK dependent. While inhibition of the ERK, JNK, and p38 activities partially prevented AP-1 activity and suppressed differentiation, none of them was required for anisomycin-induced apoptosis. The importance of c-Fos and c-Jun as mediators of differentiation was demonstrated by the findings that the corresponding siRNAs suppressed NGF-induced neurite outgrowth. However, the capacity of c-Fos to promote differentiation required cooperation with Jun proteins. In contrast, Fra-2 expression was not required for the differentiation response. Together, the results show that sustained c-Jun and c-Fos activities mediate MAPK signaling and are essential for differentiation of PC12 cells.  相似文献   

17.
Rit is a novel member of the Ras superfamily of small GTP-binding proteins that regulates signaling pathways controlling cellular fate determination. Constitutively activated mutants of Rit induce terminal differentiation of pheochromocytoma (PC6) cells resulting in a sympathetic neuron-like phenotype characterized by the development of highly-branched neurites. Rit signaling has been found to activate several downstream pathways including MEK/ERK, p38 MAPK, Ral-specific guanine nucleotide exchange factors (GEFs), and Rit associates with the Par6 cell polarity machinery. In this study, a series of Rit effector loop mutants was generated to test the importance of these cellular targets to Rit-mediated neuronal differentiation. We find that Rit-mediated neuritogenesis is dependent upon MEK/ERK MAP kinase signaling but independent of RalGEF activation. In addition, in vivo binding studies identified a novel mechanism of Par6 interaction, suggesting that the cell polarity machinery may serve to spatially restrict Rit signaling.  相似文献   

18.
19.
We have studied the role of MAP kinase pathways in neuronal nitric oxide synthase (nNOS) induction during the differentiation of PC12 cells. In nerve growth factor (NGF)-treated PC12 cells, we find nNOS induced at RNA and protein levels, resulting in increased NOS activity. We note that neither nNOS mRNA, nNOS protein nor NOS activity is induced by NGF treatment in cells that have been infected with a dominant negative Ras adenovirus. We have also used drugs that block MAP kinase pathways and assessed their ability to inhibit nNOS induction. Even though U0126 and PD98059 are both MEK inhibitors, we find that U0126, but not PD98059, blocks induction of nNOS protein and NOS activity in NGF-treated PC12 cells. Also, the p38 kinase inhibitor, SB203580, does not block nNOS induction in our clone of PC12 cells. Since the JNK pathway is not activated in NGF-treated PC12 cells, we conclude that the Ras-ERK pathway and not the p38 or JNK pathway is required for nNOS induction in NGF-treated PC12 cells. We find that U0126 is much more effective than PD98059 in blocking the Ras-ERK pathway, thereby explaining the discrepancy in nNOS inhibition. We conclude that the Ras-ERK pathway is required for nNOS induction.  相似文献   

20.
The Rit and Rin proteins comprise a distinct and evolutionarily conserved subfamily of Ras-related small GTPases. Although we have defined a role for Rit-mediated signal transduction in the regulation of cell proliferation and transformation, the function of Rin remains largely unknown. Because we demonstrate that Rin is developmentally regulated and expressed in adult neurons, we examined its role in neuronal signaling. In this study, we show that stimulation of PC6 cells with either epidermal growth factor or nerve growth factor (NGF) results in rapid activation of Rin. This activation correlates with the onset of Ras activation, and dominant-negative Ras completely inhibits Rin activation induced by NGF. Further examination of Ras-mediated Rin activation suggests that this process is dependent upon neuronally expressed regulatory factors. Expression of mutationally activated H-Ras fails to activate Rin in non-neuronal cells, but results in potent stimulation of Rin-GTP levels in a variety of neuronal cell lines. Furthermore, although constitutively activated Rin does not induce neurite outgrowth on its own, both NGF-induced and oncogenic Ras-induced neurite outgrowth were inhibited by the expression of dominant-negative Rin. Together, these studies indicate that Rin activation is a direct downstream effect of growth factor-dependent signaling in neuronal cells and suggest that Rin may function to transduce signals within the mature nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号