共查询到20条相似文献,搜索用时 15 毫秒
1.
Inna N. Golubovskaya Zinaida K. Grebennikova Donald L. Auger William F. Sheridan 《Genesis (New York, N.Y. : 2000)》1997,21(2):146-159
In most eukaryotes, homologous chromosomes undergo synapsis during the first meiotic prophase. A consequence of mutations that interfere with the fidelity or completeness of synapsis can be failure in the formation or maintenance of bivalents, resulting in univalent formation at diakinesis and production of unbalanced spores or gametes. Such mutations, termed desynaptic mutations, can result in complete or partial sterility. We have examined the effect of the maize desynaptic1-9101 mutation on synapsis, using the nuclear spread technique and electron microscopy to examine microsporocytes ranging from early pachytene until the diplotene stage of prophase I. Throughout the pachytene stage, there was an average of about 10 sites of lateral element divergence (indicating nonhomologous synapsis), and during middle and late pachytene, an average of two and three sites of foldback (intrachromosomal) synapsis, per mutant nucleus, respectively. By the diplotene stage, the number of sites of lateral element divergence had decreased to seven, and there was an average of one foldback synapsis site per nucleus. Lateral element divergence and foldback synapsis were not found in spread pachytene nuclei from normal plants. These results imply that the normal expression of the dsy1 gene is essential for the restriction of chromosome synapsis to homologues. The abundance of nonhomologous synapsis and the persistence of extended stretches of unsynapsed axial elements throughout the pachytene stage of dsy1–9101 meiocytes suggests that this mutation disrupts both the fidelity of homology search and the forward course of the synaptic process. This mutation may identify a maize mismatch repair gene. Dev. Genet. 21:146–159, 1997. © 1997 Wiley-Liss, Inc. 相似文献
2.
在普通小麦地方品种自然群体中天然存在促进小麦-外源杂种部分同源染色体配对的基因phKL。本研究比较了phKL基因与人工Ph基因突变系诱导小麦-Aegilops variabilis及小麦-黑麦杂种部分同源染色体配对的作用大小。研究结果表明,诱导小麦- Ae. variabilis(或黑麦)部分同源染色体配对作用的顺序是ph1b > phKL > ph2b > ph2a,即phKL基因的作用介于Ph1与Ph2突变体之间。 相似文献
3.
Jian Li Feng Dong Ying-Chun Ouyang Qing-Yuan Sun Wei-Ping Qian 《Journal of cellular physiology》2020,235(10):7136-7145
Mammalian cyclin A1 is prominently expressed in testis and essential for meiosis in the male mouse, however, it shows weak expression in ovary, especially during oocyte maturation. To understand why cyclin A1 behaves in this way in the oocyte, we investigated the effect of cyclin A1 overexpression on mouse oocyte meiotic maturation. Our results revealed that cyclin A1 overexpression triggered meiotic resumption even in the presence of germinal vesicle breakdown inhibitor, milrinone. Nevertheless, the cyclin A1-overexpressed oocytes failed to extrude the first polar body but were completely arrested at metaphase I. Consequently, cyclin A1 overexpression destroyed the spindle morphology and chromosome alignment by inducing premature separation of chromosomes and sister chromatids. Therefore, cyclin A1 overexpression will prevent oocyte maturation although it can promote meiotic resumption. All these results show that decreased expression of cyclin A1 in oocytes may have an evolutional significance to keep long-lasting prophase arrest and orderly chromosome separation during oocyte meiotic maturation. 相似文献
4.
5.
Meiosis is a specialized cell division that occurs in sexually reproducing organisms, generating haploid gametes containing half the chromosome number through two rounds of cell division. Homologous chromosomes pair and prepare for their proper segregation in subsequent divisions. How homologous chromosomes recognize each other and achieve pairing is an important question. Early studies showed that in most organisms, homologous pairing relies on homologous recombination. However, pairing mechanisms differ across species. Evidence indicates that chromosomes are dynamic and move during early meiotic stages, facilitating pairing. Recent studies in various model organisms suggest conserved mechanisms and key regulators of homologous chromosome pairing. This review summarizes these findings and compare similarities and differences in homologous chromosome pairing mechanisms across species. 相似文献
6.
Sutton T Whitford R Baumann U Dong C Able JA Langridge P 《The Plant journal : for cell and molecular biology》2003,36(4):443-456
Colinearity in gene content and order between rice and closely related grass species has emerged as a powerful tool for gene identification. Using a comparative genetics approach, we have identified the rice genomic region syntenous to the region deleted in the wheat chromosome pairing mutant ph2a, with a view to identifying genes at the Ph2 locus that control meiotic processes. Utilising markers known to reside within the region deleted in ph2a, and data from wheat, barley and rice genetic maps, markers delimiting the region deleted on wheat chromosome 3DS in the ph2a mutant were used to locate the syntenous region on the short arm of rice chromosome 1. A contig of rice genomic sequence was identified from publicly available sequence information and used in blast searches to identify wheat expressed sequence tags (ESTs) exhibiting significant similarity. Southern analysis using a subset of identified wheat ESTs confirmed a syntenous relationship between the rice and wheat genomic regions and defined precisely the extent of the deleted segment in the ph2a mutant. A 6.58-Mb rice contig generated from 60 overlapping rice chromosome 1 P1 artificial chromosome (PAC) clones spanning the syntenous rice region has enabled identification of 218 wheat ESTs putatively located in the region deleted in ph2a. What seems to be a terminal deletion on chromosome 3DS is estimated to be 80 Mb in length. Putative candidate genes that may contribute to the altered meiotic phenotype of ph2a are discussed. 相似文献
7.
VE161小麦促进部分同源染色体配对的遗传 总被引:7,自引:3,他引:4
VE161小麦包括具有一对长穗偃麦草染色体的雄性不育代换系、可育附加系和杂育系,杂育系由其代换系×附加系产生。VE161小麦在与其它小麦品系的杂交F1中,具有促进部分同源染色体配对的作用,但其本身部分同源配对频率较低。研究结果表明,VE161小麦本身部分同源染色体配对水平较低,是因其小麦染色体组中存在有一对纯合隐性上位基因,它能够抑制E染色体(Eph基因),促进部分同源染色体配对作用的表达,而一般小麦品系中具有该基因的相对显性基因。同时,在促进小麦部分同源染色体配对作用上,E染色体(Eph基因)具有剂量效应 相似文献
8.
《Cell cycle (Georgetown, Tex.)》2013,12(21):3645-3651
High expression of the mitotic kinase Bub1 is associated with a variety of human cancers and correlates with poor clinical prognosis, but whether Bub1 alone can drive tumorigenesis was unknown. We provided conclusive evidence that Bub1 has oncogenic properties by generating transgenic mice that overexpress Bub1 in a wide variety of tissues, resulting in aneuploidization. Consistently, Bub1 transgenic mice developed various kinds of spontaneous tumors as well as accelerated Myc-induced lymphomagenesis. While the mitotic checkpoint was robust in Bub1 overexpressing cells, misaligned and lagging chromosomes were observed. These defects originated from increased Aurora B activity and could be suppressed by inhibition of Aurora B. Taken together, this indicates that Bub1 has oncogenic properties and imply that aneuploidization and tumorigenesis result from Aurora B-dependent missegregation. Here, we focus on the complex relationship between Bub1 and Aurora B and discuss the broader implications of Bub1-dependent Aurora B activation in mediating error correction. 相似文献
9.
M. Martinez N. Cuñado N. Carcelén C. Romero 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2001,103(2-3):398-405
Triticum aestivum is an allohexaploid wheat (AABBDD) that shows diploid-like behaviour at metaphase-I. This behaviour is influenced by the
action of several loci, Ph1 and Ph2 being the main loci involved. To study the effect of these two loci on chromosome pairing in T. aestivum we have analysed the synaptic pattern in fully traced spread nuclei at mid- and late-zygotene, and at pachytene, of three
different genotypes of cv Chinese Spring: standard line, ph1b and ph2b mutants. The analysis of the synaptic progression showed that only a few nuclei accomplish synapsis in the ph2b genotype, whereas most nuclei completed synapsis in the standard and ph1b genotypes. This result indicates that the Ph2 locus affects synaptic progression. The number of synaptonemal complex (SC) bivalents and of the different SC multivalent
associations were determined in each nucleus. The mean number of lateral elements involved in SC multivalent associations
(LEm) at mid- zygotene was relatively high and showed similar values in the three genotypes. These values decreased progressively
between mid-zygotene and pachytene in the genotypes with the Ph1 locus because of the transformation of multivalents into bivalents. In the ph1b genotype, this value only decreased between late-zygotene and pachytene. Therefore, multivalent correction was more efficient
in the presence than in the absence of the Ph1 locus.It is concluded that the Ph1 and Ph2 loci bring about diploidization of allohexaploid wheat via a different mechanism.
Received: 31 July 2000 / Accepted: 15 November 2000 相似文献
10.
The role of OsCOM1 in homologous chromosome synapsis and recombination in rice meiosis 总被引:1,自引:0,他引:1
Ji J Tang D Wang K Wang M Che L Li M Cheng Z 《The Plant journal : for cell and molecular biology》2012,72(1):18-30
COM1/SAE2 is a highly conserved gene from yeast to higher eukaryotes. Its orthologs, known to cooperate with the MRX complex (Mre11/Rad50/Xrs2), are required for meiotic DNA double‐strand break (DSB) ends resection and specific mitotic DSB repair events. Here, the rice (Oryza sativa, 2n = 2x = 24) COM1/SAE2 homolog was identified through positional cloning, termed OsCOM1. Four independent mutants of OsCOM1 were isolated and characterized. In Oscom1 mutants, synaptonemal complex (SC) formation, homologous pairing and recombination were severely inhibited, whereas aberrant non‐homologous chromosome entanglements occurred constantly. Several key meiotic proteins, including ZEP1 and OsMER3, were not loaded normally onto chromosomes in Oscom1 mutants, whereas the localization of OsREC8, PAIR2 and PAIR3 seemed to be normal. Moreover, OsCOM1 was loaded normally onto meiotic chromosomes in Osrec8, zep1 and Osmer3 mutants, but could not be properly loaded in Osam1, pair2 and OsSPO11‐1RNAi plants. These results provide direct evidence for the functions of OsCOM1 in promoting homologous synapsis and recombination in rice meiosis. 相似文献
11.
12.
Na Li Feng Yan Yuda Huo Xing Liu Xuebiao Yao 《Biochemical and biophysical research communications》2009,384(1):76-404
Mitotic chromosome movements are orchestrated by interactions between spindle microtubules and chromosomes. It is well known that kinetochore is the major site where microtubule-chromosome attachment occurs. However, the functions of other domains of chromosome such as chromosome periphery have remained elusive. Our previous studies show that PinX1 distributes to chromosome periphery and kinetochore during mitosis, and harbors the microtubule binding activity. Here we report that PinX1 interacts with Nucleolin, a chromosome periphery protein, through its C-termini. Deconvolution microscopic analyses show PinX1 mainly co-localizes with Nucleolin at chromosome periphery in prometaphase. Moreover, depletion of Nucleolin abolishes chromosome periphery localizations of PinX1, suggesting a functional interrelationship between PinX1 and Nucleolin. Importantly, repression of PinX1 and Nucleolin abrogates chromosome segregation in real-time mitosis, validating the functional importance of PinX1-Nucleolin interaction. We propose PinX1 is recruited to chromosome periphery by Nucleolin and a complex of PinX1 and Nucleolin is essential for faithful chromosome congression. 相似文献
13.
The identity of the chromosomes involved in the multiple sex system of Alouatta caraya (Aca) and the possible distribution of this system among other Ceboidea were investigated by chromosome painting of mitotic cells from five species and by analysis of meiosis at pachytene in two species. The identity of the autosome #7 (X2) involved in the multiple system of Aca and its breakage points were demonstrated by both meiosis and chromosome painting. These features are identical to those described by Consigliere et al. [1996] in Alouatta seniculus sara (Assa) and Alouatta seniculus arctoidea (Asar). This multiple system was absent in the other four Ceboidea species studied here. However, data from the literature strongly suggest the presence of this multiple in other members of this genus. The presence of this multiple system among several species and subspecies that show high levels of chromosome rearrangements may suggest a special selective value of this multiple. The meiotic features of the sex systems of Aca and Cebus apella paraguayanus (Cap) are strikingly different at pachytene, as the latter system is similar to the sex pair of man and other primates. The relatively large genetic distances between species presently showing this multiple system suggest that its origin is not recent. Other members of the same genus should be investigated at meiosis and by chromosome painting in order to know the extent and distribution of this complex sex-chromosome system. 相似文献
14.
15.
Meiotic recombination requires pairing of homologous chromosomes, the mechanisms of which remain largely unknown. When pairing occurs during meiotic prophase in fission yeast, the nucleus oscillates between the cell poles driven by astral microtubules. During these oscillations, the telomeres are clustered at the spindle pole body (SPB), located at the leading edge of the moving nucleus and the rest of each chromosome dangles behind. Here, we show that the oscillatory nuclear movement of meiotic prophase is dependent on cytoplasmic dynein. We have cloned the gene encoding a cytoplasmic dynein heavy chain of fission yeast. Most of the cells disrupted for the gene show no gross defect during mitosis and complete meiosis to form four viable spores, but they lack the nuclear movements of meiotic prophase. Thus, the dynein heavy chain is required for these oscillatory movements. Consistent with its essential role in such nuclear movement, dynein heavy chain tagged with green fluorescent protein (GFP) is localized at astral microtubules and the SPB during the movements. In dynein-disrupted cells, meiotic recombination is significantly reduced, indicating that the dynein function is also required for efficient meiotic recombination. In accordance with the reduced recombination, which leads to reduced crossing over, chromosome missegregation is increased in the mutant. Moreover, both the formation of a single cluster of centromeres and the colocalization of homologous regions on a pair of homologous chromosomes are significantly inhibited in the mutant. These results strongly suggest that the dynein-driven nuclear movements of meiotic prophase are necessary for efficient pairing of homologous chromosomes in fission yeast, which in turn promotes efficient meiotic recombination. 相似文献
16.
STAG3‐mediated stabilization of REC8 cohesin complexes promotes chromosome synapsis during meiosis 下载免费PDF全文
Tomoyuki Fukuda Nanaho Fukuda Ana Agostinho Abrahan Hernández‐Hernández Anna Kouznetsova Christer Höög 《The EMBO journal》2014,33(11):1243-1255
Cohesion between sister chromatids in mitotic and meiotic cells is promoted by a ring‐shaped protein structure, the cohesin complex. The cohesin core complex is composed of four subunits, including two structural maintenance of chromosome (SMC) proteins, one α‐kleisin protein, and one SA protein. Meiotic cells express both mitotic and meiosis‐specific cohesin core subunits, generating cohesin complexes with different subunit composition and possibly separate meiotic functions. Here, we have analyzed the in vivo function of STAG3, a vertebrate meiosis‐specific SA protein. Mice with a hypomorphic allele of Stag3, which display a severely reduced level of STAG3, are viable but infertile. We show that meiocytes in homozygous mutant Stag3 mice display chromosome axis compaction, aberrant synapsis, impaired recombination and developmental arrest. We find that the three different α‐kleisins present in meiotic cells show different dosage‐dependent requirements for STAG3 and that STAG3‐REC8 cohesin complexes have a critical role in supporting meiotic chromosome structure and functions. 相似文献
17.
Cytogenetic studies on two F1 hybrids of autotetraploid rice varieties showing extremely high level of heterosis 总被引:1,自引:0,他引:1
L. Luan S. B. Tu W. B. Long X. Wang Y. H. Liu F. L. Kong T. He W. G. Yan M. Q. Yu 《Plant Systematics and Evolution》2007,267(1-4):205-213
Mechanisms of two F1 hybrids (D46A × DTP-4 and D46A × Dminghui63) of autotetraploid rice (2n = 4x = 48) showing extremely
high pollen fertility 87.40% and 85.97%, respectively, seed set 82.00% and 79.00%, respectively and extremely high level of
heterosis were analyzed cytologically. The chromosome pairing of D46A × DTP-4 and D46A × Dminghui63 was normal at metaphase
I(MI), and had almost no I or III, with an average of 0.020I +14.36 II 6.44rod+7.91ring) +0.01III + 4.80 IV + 0.01VIII and
0.06 I + 17.67 II (11.01rod + 6.67ring)] + 0.06 III +3.10IV+0.01VI, respectively. The most frequent chromosome configurations
were 10II+7IV and 12II+bIV. The bivalent frequency was less frequent in hybrids than that in restoring parents, and the same
results were gained from univalents, trivalent and multivalents. However, the quadrivalent frequency was significantly higher
in hybrids than that in restoring parents at MI. The other meiotic phases progressed normally, except for low percentages
of PMCs with lagging chromosomes at AI and low percentages of PMCs with micronuclei at telophaseI (TI) and telophaseII (TII).
PMCs with lagging chromosomes at AI and PMCs with micronuclei at TI and TII showed negative correlation between pollen fertility
and seed set. Above 90% of the PMCs could form normal microspores, which resulted in the production of viable pollen grains,
abnormal microspores were observed including penta-fission and hexa-fission. Based on these results we suggest that the two
F1 hybrids had better behaviors of chromosome pairing and genetic stability than autotetraploid rice and other autotetraploid
plants ever studied. 相似文献
18.
Martinez-Perez E Shaw P Aragon-Alcaide L Moore G 《The Plant journal : for cell and molecular biology》2003,36(1):21-29
Hexaploid wheat possesses 42 chromosomes derived from its three ancestral genomes. The 21 pairs of chromosomes can be further divided into seven groups of six chromosomes (one chromosome pair being derived from each of the three ancestral genomes), based on the similarity of their gene order. Previous studies have revealed that, during anther development, the chromosomes associate in 21 pairs via their centromeres. The present study reveals that, as a prelude to meiosis, these 21 chromosome pairs in hexaploid (and tetraploid) wheat associate via the centromeres into seven groups as the telomeres begin to cluster. This results in the association of multiple chromosomes, which then need to be resolved as meiosis progresses. The formation of the seven chromosome clusters now explains the occasional occurrence of remnants of multiple associations, which have been reported at later stages of meiosis in hexaploid (and tetraploid) wheat. Importantly, the chromosomes have the opportunity to be resorted via these multiple interactions. As meiosis progresses, such interactions are resolved through the action of loci such as Ph1, leaving chromosomes as homologous pairs. 相似文献
19.
A chromosome 1 (Cr1) pericentric inversion is described in six of seven species in the genus Ctenomys (tuco-tucos) from Uruguay. The inversion was inferred from G-band analyses of subtelocentric Cr1 hypothesised to be derived
from the ancestral metacentric condition. Cr1 varies across species in heterochromatin amount and localisation including a
metacentric chromosome without positive C-bands in C. torquatus, a subtelocentric chromosome with heterochromatic short arms in C. rionegrensis, and a subtelocentric chromosome negative after C-banding in five of the species analysed here. Pachytene chromosomes from
C. rionegrensis, a species with the highest heterochromatin content, and C. torquatus, one of the species with the lowest heterochromatin content, were analysed in order to assess possible mechanisms of heterochromatin
evolution. This analysis revealed the presence of three heterochromatic chromocenters in C. rionegrensis where bivalents converge, while in C. torquatus only one chromocenter was observed. In both species, highly repetitive DNA was observed, localised in chromocenters after
“in situ” hybridisation. Heterochromatin associated protein M31 was localised in chromocenters of both species after immuno-detection.
The spread of heterochromatin in Ctenomys chromosomes could be produced by chromatin exchanges at the chromocenter level. We propose the exchange of this DNA associated
proteins between non-homologous chromosomes in pachytene to be the responsible for the spread of heterochromatin through the
karyotypes of species like C. rionegrensis 相似文献