首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
GANGLIOSIDE COMPOSITION AND CONTENT OF RAT-BRAIN SUBCELLULAR FRACTIONS   总被引:4,自引:3,他引:1  
Abstract— The composition and content of gangliosides from rat-brain microsomal, synaptosomal, mitochondrial and myelin fractions were studied. Outer membranes of synaptosomes were also isolated, separated into subfractions and investigated. Of all the fractions studied the outer membranes of synaptosomes are richest in gangliosides, in one of their sub-fractions the concentration of gangliosides per mg of protein is five times higher than in the homogenate. Microsomes are rich in gangliosides as well, but to a lesser degree, whereas the mitochondrial fraction contains considerably smaller amounts of gangliosides per mg of protein than does the homogenate. The ganglioside pattern of outer membranes of synaptosomes and of their subfractions is somewhat different from that of the homogenate; the outer membranes contain approximately one-third less monosialogangliosides. On the contrary a very high content of monosialogangliosides is characteristic of the ganglioside pattern of the myelin fraction. In this fraction monosialoganglioside GMI (nomenclature of Svennerholm, 1963) constitutes 60–63 per cent of ganglioside sialic acid, or 75–80 molar per cent of gangliosides, the content of di- and trisialogangliosides being much lower than in other fractions. Fatty acid and long chain base composition of gangliosides from synaptosomal and microsomal fractions and homogenate is very similar, almost identical. In gangliosides from myelin fractions the relaitve content of palmitic and monoenoic acids is higher and that of arachinic acid and C20-sphingosine—lower than in other fractions studied. The difference in ganglioside composition of synaptosomes and their outer membranes and on the other hand of myelin appears to reflect the difference in ganglioside composition of neuronal and oligodendroglial plasma membranes.  相似文献   

2.
The isotope labeling method was used to study the influence of phospholipases C of different origin and specificity on Ca2+ accumulation in rat brain synaptosomes. It was found that phospholipases C specific to phosphatidylinositides (PI) stimulate Ca2+ transport into synaptosomes, while non-specific phospholipase C, which hydrolyzes different membrane lipid fractions, decreases the Ca2+ content in synaptosomes. It is supposed that the stimulating effect of PI-specific phospholipases C is determined by the activation of PI metabolism, which results in an increase in the content of some PI metabolism products serving as Ca2+ ionophores in synaptosomal membranes. The inhibition of Ca2+ uptake by synaptosomes treated with non-specific phospholipase C is thought to result from partial disruption of synaptosomal membranes.  相似文献   

3.
The content and composition of phospholipids is determined in beef microsomal and synaptosomal fractions and also in these fractions preparations solubilized with triton X-100 (0.1%) and digitonin (0.2%). It is shown that the microsomal fraction is richer in phospholipids. The solubilized fragments of microsomes have less or the same amount of phospholipids per protein unit than the initial fraction of microsomes, and the solubilized fragments of synaptosomes contain a higher quantity of phospholipids than the initial fraction. The content of phospholipids in "the riton" fragments of synaptosomes is higher than in "those" of microsomes. Contrary to digitonin which solubilizes the active Na+, K+-ATPase complex of microsomes and synaptosomes, triton X-100 solubilizes the active enzyme of microsomes only. A higher total content of phospholipids in "the triton" extracts of synaptosomes does not probably correlate with the presence of Na+, K+-ATPase activity in them. But these extracts are found to contain less phosphatidylserine whose addition recovers Mg2+, Na+, K+-ATPase activity in them. The effect of phosphatidylserine is not strictly specific for "the triton" extracts of synaptosomes, this lipid activates to a definite extent the extracts of microsomes as well. It is shown that at the first stages of bull brain Na+, K+-ATPase purification the total content of phospholipids and cholesterol in the preparations increases but the composition of phospholipids remains unchanged.  相似文献   

4.
Brain membrane lipid fatty acid composition and consequently membrane fluidity change with increasing age. Intracellular fatty acid binding proteins (FABPs) such as heart H-FABP and the brain specific B-FABP, detected by immunoblotting of brain tissue, are thought to be involved in fatty acid uptake, metabolism, and differentiation in brain. Yet, almost nothing is known regarding the effect of age on the expression of the cytosolic fatty acid binding proteins (FABPs) or their content in brain subfractions. Electrophoresis and quantitative immunoblotting were used to examine the content of these FABPs in synaptosomes in brains from 4, 15, and 25 month old C57BL/6NNia male mice. Brain H-FABP and B-FABP were differentially expressed in mouse brain subcellular fractions. Brain H-FABP was highly concentrated in synaptosomal cytosol. The level of brain H-FABP in synaptosomes, synaptosomal cytosol, and intrasynaptosomal membranes was decreased 33, 35, and 43%, respectively, in 25 month old mice. B-FABP was detected in lower quantity than H-FABP. More important, B-FABP decreased in synaptosomes, synaptic plasma membranes, and synaptosomal cytosol from brains of 25 month old mice. In contrast to H-FABP, B-FABP was not detectable in the intrasynaptosomal membranes in any of the three age groups of mice. In conclusion, expression of both H-FABP and B-FABP was markedly reduced in aged mouse brain. Age differences in brain H-FABP and B-FABP levels in synaptosomal plasma membranes and synaptosomal cytosol may be important factors modulating neuronal differentiation and function.  相似文献   

5.
Human neutrophils were fractionated on Percoll gradients and the various subcellular fractions were analyzed for phospholipid and fatty acid composition. The results showed that plasma membranes and azurophilic granules were enriched with ethanolamine-(PE) relative to choline-(PC) containing phosphoglycerides. A remarkable degree of uniformity existed throughout the gradient with respect to the subclass composition of the subcellular PC and PE components. In each fraction 50-60% of the PC was diacyl, 40-45% was 1-O-alkyl-2-acyl (ether linked), and 2-5% was 1-O-alk-1'-enyl-2-acyl (plasmalogenic). For PE, 20-25% was diacyl, 7-12% ether linked, and 64-76% plasmalogenic. When neutrophils were incubated for 15 min with [1-14C]arachidonic acid and subfractionated most of the PC-associated label was intracellularly localized. A similar result was observed in PE, however, when the cells were allowed to stand for 2 h in fatty acid-free buffer following the 15 min of labeling and then subfractionated there was a sizable migration of [14C]arachidonate into plasma membrane PE. In all cases the diacyl subclass was labeled most heavily after 15 min but after an additional 2 h of incubation in fatty acid-free buffer there was a direct transfer of label to the ether- and plasmalogenic-linked PC and PE subclasses. It was also found that arachidonoyl-coenzyme A 1-acyl-lysophosphatide acyltransferase activity was inherent in all three major membrane types but was enriched in the endoplasmic reticulum/secondary granule fraction. Arachidonate consistently accounted for roughly 5% of the PC and 17% of the PE fatty chain composition in each subcellular fraction. These findings demonstrate that, despite the uniform arachidonate and PC and PE subclass composition within the various neutrophil subcellular fractions, the bulk of the PC- and PE-associated arachidonate is localized in intracellular membranes.  相似文献   

6.
Proteolipid complex of Folch-Lees has been obtained and purified from the myelin and synaptosomes of the brain of the frog Rana temporaria and hen Gallus domesticus. Relative content of this proteolipid and glycolipids in the myelin is almost twice higher, whereas that of phospholipids--1 1/2 times lower than in the synaptosomal membranes of the same animal. Protein content of this complex is higher for myelin than for synaptosomal membranes; opposite relation was found with respect to phospholipid content. Within this complex, lipids are presented mainly by phospholipids, especially by acid ones which amount to 30-60%. Proteolipid complexes fro the myelin and synaptosomes differ from each other by their lipid component. Myelin proteolipid complex contains mainly phosphatidylserine and phosphatid acid, whereas synaptosomal one--phosphatidylserine and diphosphatediglycerol. No significant differences were found in fatty acid composition of phospholipids from proteolipid complex from myelin and synaptosomes as compared to this composition in the initial membranes.  相似文献   

7.
The influence of the lipid environment on docking and fusion of synaptobrevin 2 (Syb2) vesicles with target SNARE complex membranes was examined in a planar supported membrane fusion assay with high time-resolution. Previously, we showed that approximately eight SNARE complexes are required to fuse phosphatidylcholine (PC) and cholesterol model membranes in ∼20 ms. Here we present experiments, in which phosphatidylserine (PS) and phosphatidylethanolamine (PE) were added to mixtures of PC/cholesterol in different proportions in the Syb2 vesicle membranes only or in both the supported bilayers and the Syb2 vesicles. We found that PS and PE both reduce the probability of fusion and that this reduction is fully accounted for by the lipid composition in the vesicle membrane. However, the docking efficiency increases when the PE content in the vesicle (and target membrane) is increased from 0 to 30%. The fraction of fast-activating SNARE complexes decreases with increasing PE content. As few as three SNARE complexes are sufficient to support membrane fusion when at least 5% PS and 10% PE are present in both membranes or 5% and 30% PE are present in the vesicle membrane only. Despite the smaller number of required SNAREs, the SNARE activation and fusion rates are almost as fast as previously reported in reconstituted PC/cholesterol bilayers, i.e., of 10 and ∼20 ms, respectively.  相似文献   

8.
The effect of elevated heliox pressure (101 ATA) on activity of Na+,K+-ATP-ase and some characteristics of fatty acid composition was studied in membrane phospholipids of trout and rat brain synaptosomal and mitochondrial fractions. The Na+,K+-ATP-ase activity was shown to decrease by 25% in both fractions of the rat brain; in mitochondrial fraction of the trout brain it decreased by 47%, while in synaptosomal fraction, only by 11%. It has also been established that under experimental conditions, the unsaturation index of fatty acids of phosphatidylcholine and phosphatidylethanolamine of trout synaptosomes decreased, with no changes in these lipids in mitochondrial fraction. The phosphatidylcholine unsaturation index in rats did not practically change in both fractions, while in rat phosphatidylethanolamine it increased in mitochondrial fraction and slightly decreased in synaptosomal fraction. Thus, under conditions of high pressure the reduction of the enzyme activity is also determined, specifically, by peculiarities of the phospholipid fatty acid composition in the subcellular fractions studied. A possibility of changes of the enzyme activity as a result of transition of its lipid component from the liquid crystalline to the gel state under effect of an enhancement of lipid peroxidation under conditions of elevated pressure is discussed.  相似文献   

9.
Gangliosides in the external surface of intact synaptosomes from rat brain cortex have been studied by oxidation of exposed galactose and galactosamine groups with galactose oxidase followed by reduction with labeled sodium borohydride. Purified synaptosomes were labeled, disrupted by osmotic shock, and the particulate components fractionated on diatrizoate to give four synaptosomal membrane fractions (A-D) and a mitochondrial pellet (E). Fractions A and B represent synaptosomal plasma membranes. When intact synaptosomes were labeled, the major portion of the total radioactivity incorporated into ganglioside fraction was found to be in G M1 3 species. With isolated membrane fractions little selectivity was seen: (1) more label was present compared to intact synaptosomes, and (2) zones corresponding to GM2, GM1, GD1a, GD1b were the major gangliosides labeled. The results confirm the conclusion that membrane fractions A and B are derived from the exposed synaptosome surface and also show that GM1 is the major ganglioside species available for enzyme oxidation at the surface.  相似文献   

10.
A technique has recently been developed for the isolation of synaptosomes by centrifugation through percoll gradients. Utilizing this procedure, striatal synaptosomes were separated into two fractions, termed fractions 3 and 4, by their different sedimentation characteristics in percoll. The aim of this investigation was to determine whether there were any neurotransmitter differences between these fractions. The content of endogenous neurotransmitters dopamine (DA) and serotonin (5-HT) significantly differed between these fractions. Fraction 3 contained greater levels of 5-HT, while fraction 4 was enriched for DA. Both fractions were capable of releasing DA or 5-HT upon K+ depolarization. The results raise the possibility that a relative enrichment of dopaminergic synaptosomes in fraction 4 and of serotonergic synaptosomes in fraction 3 has been achieved.  相似文献   

11.
The ability of chronic ethanol treatment to alter CNS membrane lipids was tested. Adult male C57/BL6 mice were given a liquid diet containing ethanol for eight days. This regimen produced strong physical dependence as judged by withdrawal seizures, tremors and concomitant hypothermia. Analyses were performed on cholesterol, total phospholipid content and total phospholipid acyl composition of myelin, crude (P2), light and heavy synaptosomes as well as synaptosomal plasma membranes. Chronic ethanol treatment had no effect on total phospholipid levels nor phospholipid acyl composition in any of the above subcellular fractions. In ethanol dependent mice, significant increases in cholesterol content and cholesterol/ phospholipid ratios were observed only in synaptosomal plasma membranes.  相似文献   

12.
Chick brain synaptosomes incorporated phosphate into proteins when incubated in physiological buffer containing energy sources. Sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that three synaptosomal polypeptides were significantly phosphorylated after 15 sec incubation while at least fifteen polypeptides were active kinase substrates after 15 min incubation. Labeled synaptosomes were hypotonically lysed and separated by centrifugation into soluble, membrane, and mitochondrial fractions. Every fraction exhibited significant phosphate incorporation. Electrophoresis revealed that each fraction had several unique phosphorylated polypeptides and a distinctive phosphorylation pattern. The same polypeptides appear to be labeled whether MgATP was added to synaptic plasma membranes or synaptic plasma membranes were isolated after synaptosomal autophosphorylation.  相似文献   

13.
A zinc-deficient diet caused an increase in microsomal membrane phospholipid levels compared to ad libitum controls. Cholesterol levels were found to be decreased 50% compared to either pair-fed or ad libitum controls, resulting in a sharp decline in the cholesterol/phospholipid ratio. No differences were observed in the distribution of phospholipid classes among all three groups, either in mitochondrial or microsomal membrane fractions. Fatty acid analysis of PC and PE revealed a rise in the 18:2 fraction from zinc-deficient mitochondrial and microsomal membrane fractions. Mitochondrial PE and PC from zinc-deficient animals revealed a rise in the 22:6 fatty acid fraction while microsomal PC also revealed a corresponding decrease in 20:4. None of the zinc-deficient preparations differed significantly from either ad libitum or pair-fed controls in the content of long-chain alk-l-enyl ethers. The results of this study point to an effect of a zinc-deficient diet on lipid metabolism in tumor subcellular membranes which may account for the decreased rate of tumor growth observed in zinc-deficient animals.  相似文献   

14.
A phosphatidylcholine (PC) exchange protein from bovine liver was used to exchange endogenous synaptosomal membrane PC's with PC's of defined fatty-acid composition from phospholipid vesicles. Up to 50% of the total synaptosomal PC could be exchanged during a 3 h incubation with PC's which were in the liquid-crystalline state at the temperature of incubation (dimyristoyl-, dioleoyl- and dielaidoyl-PC). The biphasic kinetics of the exchange of 14C-labeled 1-palmitoyl-2-oleoyl-PC into isolated synaptic plasma membrane vesicles indicated that the half-time for transbilayer equilibrium of PC in these membranes was about 10 h. Hence, the observed 50% exchange of total synaptosomal PC probably represented nearly complete exchange of PC in the outer face of the synaptosomal plasma membrane. This extensive exchange was accomplished without apparent loss of synaptosomal function, including membrane potential and high-affinity uptake of choline and gamma-aminobutyric acid. PC's in the gel state (dipalmitoyl- and distearoyl-PC) could not be exchanged extensively into the synaptosomal membranes. However, from within gel-state distearoyl-PC liposomes, a trace amount of fluid 1-palmitoyl-2-oleoyl-PC (Tm less than 10 degrees C) could be preferentially exchanged into the synaptosomes at 32 degrees C with little transfer of the saturated PC.  相似文献   

15.
Murine leukemia EL4 cells were modified by supplementation of culture media with fatty acids for 24 h. A plasma membrane-enriched fraction was prepared from substituted and normal cells. Analyses were performed to determine fatty acyl composition, phospholipid headgroup composition and cholesterol content. The two major membrane phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were isolated by thin-layer chromatography and ESR measurements were done on liposomes prepared from these lipids as well as on the intact plasma membrane preparations. Slight perturbations in overall plasma membrane lipid composition were observed when EL4 cells were supplemented with a single exogenous fatty acid. This may be consistent with the idea that the incorporation of exogenous fatty acid induces compensatory changes in membrane lipid composition. On the other hand, we observed no significant difference in two ESR motional parameters between the unsubstituted control and various fatty acid-substituted plasma membranes. ESR measurements carried out on PE and PC liposomes derived from 17:0- and 18:2c-substituted membranes also failed to detect major differences between these liposomes and those made from normal EL4 phospholipids. In the case of liposomes prepared from 18:2t,-substituted membranes, the order parameter was significantly changed from the normal. However, the change was in opposite directions in PE and PC, perhaps accounting for the fact that no change parameter is seen in intact 18:2t-substituted plasma membrane. Measurements of order parameter (S) in mixed lipid vesicles showed that at up to 50 mol% mixture of a synthetic PC with plasma membrane PC, the value of S was only marginally different from that of the plasma membrane PC vesicles. We interpret these data as an indication that the two ESR parameters used are not sufficiently sensitive to detect changes due to modifications of the acyl chain composition of a complex biological membrane.  相似文献   

16.
A method is described for the preparation of synaptosomes and synaptosomal membranes from chicken brain. Procedures for isolating rat synaptosomal membranes could not be used directly; several modifications of existing procedures are reported. Purity of the subcellular and subsynaptosomal fractions was monitored by electron microscopy and measurements of ferrocytochrome c: oxygen oxidoreductase (EC 1.9.3.)), monoamine: oxygen oxidoreductase (deaminating) EC 1.4.3.4), rotenone-insensitive NADH: cytochrome c oxidoreductase (EC 1.6.99.3), NADPH: cytochrome c oxidoreductase (EC 1.6.99.1), orthophosphoric monoester phosphohydrolase (EC 3.1.3.2), ATP phosphohydrolase (EC 3.6.1.4), and levels of RNA. Microsomes are the main contaminant of the synaptosomal membrane fraction. Mitochondrial and lysosomal enzymes occur in lesser amounts. No myelin contamination was observed. Marker enzymes for contaminants suggest that these synaptosomal membranes are as pure as membranes described by others, and the specific activity of a neuronal membrane marker, (Na+ -K+)-activated ATPase, is as high as other preparations. Levels of this enzyme in the membrane fraction are enriched 13-fold over homogenate ATPase levels.  相似文献   

17.
(1) The characteristics of protein synthesis in microsomal and synaptosomal fractions from rat brain were examined. A high sensitivity to ribonuclease and to cycloheximide, and the need for the presence of pH5 enzymes distinguished protein synthesis in microsomal fractions from protein synthesis in synaptosomes. (2) Under various conditions of incubation synaptosomal fractions prepared in sucrose showed limited protein synthesis compared with synaptosomal fractions prepared by using Ficoll. Such discrepancies could not be attributed to: (i) animal age, (ii) the metabolic state of the synaptosomal fraction, (iii) the absence of bivalent cations in the incubation medium or (iv) the temperature. (3) Protein synthesis in synaptosomal fractions was inhibited 50-65% by cycloheximide, 38-50% by chloramphenicol, 95% by puromycin, 70% by azide and 40% by deoxyglucose; ribonuclease had only a negligible inhibitory effect. (4) As a first approximation to the localization of the protein-synthetic machinery present in the synaptosomal fraction, the distribution of enzymes and radioactivity in subfractions of prelabelled synaptosomes was determined after osmotic shock with water. Approximately 60% of the total protein synthesis in the synaptosomal fraction occurred in the intraterminal mitochondria. (5) Protein synthesis in the intraterminal mitochondria did not show any fundamental difference from synthesis in somatic mitochondria, with respect to inhibition by cycloheximide and chloramphenicol. (6) It was concluded that if extramitochondrial protein synthesis occurs in synaptosomes, it must be very low.  相似文献   

18.
Gangliosides were isolated from four subcellular fractions of the electric organ ofTorpedo marmorata: synaptosomes, presynaptic membranes, postsynaptic membranes, and synaptic vesicle membranes. This exploited a principal advantage offered by this tissue: facile separation of pre-and postyynaptic elements. Total ganglioside concentration in presynaptic membranes was approximately twice that of synaptosomes and 15 times that of postsynaptic membranes (47.7, 24.4, and 3.21 g of lipid sialic acid per mg protein, respectively). Synaptic vesicle membranes had the highest overall concentration (78.9) relative to protein, but a concentration approximately comparable to that of presynaptic membranes when expressed relative to phospholipid. The thin-layer patterns of these two fractions were similar, both in terms of total pattern and the specific pattern of gangliotetraose structures as revealed by overlay with cholera toxin B subunit; these were notable for the paucity of monosialo structures and the virtual absence of GM1. Postsynaptic membranes, on the other hand, had a significantly higher content of monosialogangliosides including the presence of GM1. The synaptosomal pattern resembled that of the presynaptic membranes and synaptic vesicles. Thus, a clear difference in ganglioside pattern could be discerned between the pre- and postsynaptic elements of the electric organ.Abbreviations SVs synaptic vesicles - TLC thin-layer chromatography - cholera B-HRP B subunit of cholera toxin linked to horseradish peroxidase  相似文献   

19.
Homeoviscous adaptation of biological membranes to high hydrostatic pressure has been investigated by determining the differences in lipid composition of membranes from fish obtained from depths between 200 and 4000 m. The fatty acid composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine/inositol and cardiolipin from a liver mitochondrial fraction was analysed by capillary gas-liquid chromatography. The ratio of saturated to unsaturated fatty acids significantly and negatively related to depth in PC and PE as predicted by homeoviscous adaptation to pressure. Thus, deep sea species possess greater proportions of unsaturated fatty acids than shallow species. Cardiolipin showed the opposite trend. An unsaturation index was not significantly related to depth in any phospholipid fraction.  相似文献   

20.
The effect of cold stress on the ganglioside fatty acid composition and sialic acid content of brain subcellular fractions and homogenate of rats was studied, the animals were kept in a cold room with 12h light-dark cycles at 3 and 10 degrees C for 2 weeks. (1) The rat brain homogenate, synaptosomes and myelin of rats exposed to 3 degrees C contained significantly higher amounts of ganglioside-bound sialic acid per mg of protein than these fractions of control rats kept at 23 degrees C; the differences were less pronounced in rats exposed to 10 degrees C. (2) A small, but significant, diminution of relative palmitic acid content and an increase of stearic acid content was found to take place in gangliosides from rat brain synaptosomes, synaptosomal plasma membranes and homogenate as a result of the exposure of animals to 3 degrees C and to a lesser extent to 10 degrees C. (3) The content of unsaturated fatty acids in gangliosides from brain subcellular fractions was approximately the same in cold exposed and control rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号