首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A member of the family of p21-activated protein kinases, gamma-PAK, has cytostatic properties and is activated during apoptosis and in response to DNA damage. To determine whether gamma-PAK is activated by other types of cell stress and to assess its mechanism of activation, the response of gamma-PAK to hyperosmotic stress was examined. In 3T3-L1 mouse fibroblasts, there are two pools of gamma-PAK: the majority of the protein kinase is soluble and has low specific activity, whereas gamma-PAK associated with the particulate fraction has significantly higher specific activity. Hyperosmolarity promotes translocation of gamma-PAK from the soluble to the particulate fraction; this parallels activation of the protein kinase. Activation but not translocation of gamma-PAK is wortmannin-sensitive, suggesting the involvement of a phosphoinositide 3-kinase-related activity. gamma-PAK translocation in response to hyperosmolarity parallels Cdc42 translocation to the particulate fraction in vivo and can be induced in vitro by guanosine 5'-3-O-(thio)triphosphate. Cotransfection of gamma-PAK with constitutively active Cdc42 induces gamma-PAK activation and translocation, whereas inactive Cdc42 inhibits both processes in response to hyperosmotic stress, suggesting that Cdc42 has a role in the translocation and activation of gamma-PAK. alpha-PAK is not activated in response to hyperosmolarity in 3T3-L1 cells. A two-step model of gamma-PAK activation is presented.  相似文献   

2.
p21-activated protein kinase (PAK) is a family of serine/threonine kinases whose activity is stimulated by binding to small G-proteins such as Cdc42 and subsequent autophosphorylation. Focusing on the ubiquitous gamma-isoform of PAK in this study, baculovirus-infected insect cells were used to obtain recombinant gamma-PAK, while native gamma-PAK was isolated from rabbit reticulocytes. Two-dimensional gel electrophoresis of gamma-PAK followed by immunoblot analysis revealed a similar profile for native and recombinant gamma-PAK, both consisting of multiple protein spots. Following Cdc42-stimulated autophosphorylation, the two-dimensional profiles of native and recombinant gamma-PAK were characterized by a similar acidic shift, suggesting a common response to Cdc42. To understand the effect of differential phosphorylation on its activation status, gamma-PAK autophosphorylation was conducted in the presence or absence of activators such as Cdc42 and histone II-AS, followed by tryptic digestion and comparative two-dimensional phosphopeptide mapping. The major phosphopeptides were subjected to a combination of manual and automated amino acid sequencing. Overall, eight autophosphorylation sites were identified in Cdc42-activated gamma-PAK, six of which are in common with those previously reported in alpha-PAK, while Ser-19 and Ser-165 appear to be uniquely phosphorylated in the gamma-form. Further, the phosphorylation of Ser-141, Ser-165, and Thr-402 was found to correlate with gamma-PAK activation.  相似文献   

3.
The p21-activated protein kinase gamma-PAK from rabbit, expressed in insect cells, is activated following binding of Cdc42(GTPgammaS). The rate of autophosphorylation is increased fivefold and the protein kinase activity 13-fold, as measured with the synthetic heptapeptide (AKRESAA). The mutant K278R, where the invariant lysine in the catalytic site is replaced by arginine, shows neither autophosphorylation nor activity. Replacement of the conserved threonine in the catalytic domain with alanine (T402A) reduces autophosphorylation and protein kinase activity to 1% that of the wild-type gamma-PAK, indicating autophosphorylation of Thr402 in the activation loop is essential for protein kinase activity. In contrast, certain protein substrates such as histone 2B, histone 4 and myelin basic protein, stimulate both autophosphorylation and protein kinase activity to levels similar to those observed with Cdc42(GTPgammaS). This substrate-level activation does not require autophosphorylation of Thr402 in the activation loop. As shown with T402A, the protein kinase activity with histone 4 is similar to that observed with recombinant wild-type gamma-PAK. Basic proteins or peptides which are not substrates of gamma-PAK, such as histone 1 and polylysine, do not stimulate autophosphorylation or activity. Other substrates such as the Rous sarcoma virus protein NC are phosphorylated by gamma-PAK following activation by Cdc42(GTPgammaS), but are not phosphorylated by T402A. The data suggest that some substrates can override the requirement for Cdc42(GTPgammaS), by activating gamma-PAK directly.  相似文献   

4.
Li Z  Hannigan M  Mo Z  Liu B  Lu W  Wu Y  Smrcka AV  Wu G  Li L  Liu M  Huang CK  Wu D 《Cell》2003,114(2):215-227
Efficient chemotaxis requires directional sensing and cell polarization. We describe a signaling mechanism involving G beta gamma, PAK-associated guanine nucleotide exchange factor (PIX alpha), Cdc42, and p21-activated kinase (PAK) 1. This pathway is utilized by chemoattractants to regulate directional sensing and directional migration of myeloid cells. Our results suggest that G beta gamma binds PAK1 and, via PAK-associated PIX alpha, activates Cdc42, which in turn activates PAK1. Thus, in this pathway, PAK1 is not only an effector for Cdc42, but it also functions as a scaffold protein required for Cdc42 activation. This G beta gamma-PAK1/PIX alpha/Cdc42 pathway is essential for the localization of F-actin formation to the leading edge, the exclusion of PTEN from the leading edge, directional sensing, and the persistent directional migration of chemotactic leukocytes. Although ligand-induced production of PIP(3) is not required for activation of this pathway, PIP(3) appears to localize the activation of Cdc42 by the pathway.  相似文献   

5.
The p21-activated protein kinase gamma-PAK is activated 2-5-fold in response to ionizing radiation (IR) in 3T3-L1 fibroblasts and U937 leukemia cells. gamma-PAK is activated in a dose- and time-dependent manner. Doses from 1 to 100 Gy result in significant stimulation of activity at 30 min, whereas maximal stimulation is observed at 120 min after irradiation. UV (80 J/m(2)) and the DNA-damaging drugs cytosine beta-D-arabinofuranoside (AraC) and cis-platinum(II)diammine dichloride (cisplatin) also induce gamma-PAK activation. The activation of gamma-PAK in response to IR or AraC is dependent on tyrosine kinase and phosphoinositide 3-kinase activity, as demonstrated by use of the inhibitors genistein and wortmannin; in contrast activation of gamma-PAK by cisplatin and UV is not affected significantly by these inhibitors, suggesting that gamma-PAK can be activated by more than one pathway in response to different types of DNA damage. In contrast to gamma-PAK, alpha-PAK and JNK are activated only by cisplatin and UV in 3T3-L1 cells, suggesting differential regulation of the protein kinases. This is the first time that members of the Ste20/PAK family of protein kinases have been shown to be involved in the cellular response to IR and other DNA-damaging agents.  相似文献   

6.
Cyclic-GMP-dependent protein kinase contains two binding sites for cGMP, which have different affinities for cGMP. Autophosphorylation of the enzyme affects mainly the binding of cGMP to the 'high'-affinity site (site 1). The enzyme binds cAMP and cAMP stimulates the phosphotransferase activity of the native enzyme half-maximally at 44 microM. Autophosphorylation of the enzyme decreases the apparent Ka value to 7 microM. Autophosphorylation does not affect the catalytic rate of the enzyme if measured at a saturating concentration of ATP. Tritiated cAMP apparently binds at 4 degrees C to one site with a Kd value of 3 microM. Binding to the second site is not measurable. Autophosphorylation of the enzyme increases the affinity of the high-affinity site for cAMP sixfold (Kd 0.46 microM) and allows the detection of a second site. In accordance with these data the dissociation rate of [3H]cAMP from the high-affinity site is decreased from 4.5 min-1 to 1.2 min-1 by autophosphorylation. Experiments in which unlabeled cAMP competes with [3H] cGMP for the two binding sites confirmed these results. Recalculation of the competition curves by a computer program for two binding sites indicated that autophosphorylation decreases the Kd value for binding of cAMP to the high-affinity site from 1.9 microM to 0.17 microM. Autophosphorylation does not affect significantly the affinity for the second site. Kd values for site 2 varied from 17 microM to 40 microM. These results suggest that autophosphorylation of cGMP-dependent protein kinase increases the affinity of the enzyme for cAMP by affecting mainly the properties of binding site 1.  相似文献   

7.
The yeast Cdc7 function is required for the G1/S transition and is dependent on passage through START, a point controlled by the Cdc28/cdc2/p34 protein kinase. CDC7 encodes a protein kinase activity, and we now show that this kinase activity varies in the cell cycle but that protein levels appear to remain constant. We present several lines of evidence that periodic activation of CDC7 kinase is at least in part through phosphorylation. First, the kinase activity of the Cdc7 protein is destroyed by dephosphorylation of the protein in vitro with phosphatase. Second, Cdc7 protein is hypophosphorylated and inactive as a kinase in extracts of cells arrested at START but becomes active and maximally phosphorylated subsequent to passage through START. The phosphorylation pattern of Cdc7 protein is complex. Phosphopeptide mapping reveals four phosphopeptides in Cdc7 prepared from asynchronous yeast cells. Both autophosphorylation and phosphorylation in trans appear to contribute to this pattern. Autophosphorylation is shown to occur by using a thermolabile Cdc7 protein. A protein in yeast extracts can phosphorylate and activate Cdc7 protein made in Escherichia coli, and phosphorylation is thermolabile in cdc28 mutant extracts. Cdc7 protein carrying a serine to alanine change in the consensus recognition site for Cdc28 kinase shows an altered phosphopeptide map, suggesting that this site is important in determining the overall Cdc7 phosphorylation pattern.  相似文献   

8.
The p21-activated serine/threonine protein kinase Pak2/gamma-PAK and the nonreceptor type of protein tyrosine kinase Syk are known to be activated when the cells are exposed to osmotic stress. The purpose of the present study was to examine whether Pak2 and Syk functionally cooperate in cellular signaling. Cotransfection studies revealed that Pak2 associates with Syk in COS cells. The constitutively active form of Cdc42 increases the association of Pak2 with Syk. Pak2 coexpressed with an inactive form of Cdc42 or kinase-inactive Pak2 interacts to a lesser extent with Syk, suggesting that Pak2-Syk association is enhanced by Pak2 activation. Interaction with Pak2 enhances the intrinsic kinase activity of Syk. This is supported by in vitro studies showing that Pak2 phosphorylates and activates Syk. Treatment of cells with sorbitol to induce hyperosmolarity results in the translocation of Pak2 and Syk to the region surrounding the nucleus and in dramatic enhancement of their association. Furthermore, cotransfection of Pak2 and Syk leads to the activation of c-Jun N-terminal kinase (JNK) under hyperosmotic conditions. Pak2 short interfering RNA suppresses sorbitol-mediated activation of endogenous Syk and JNK, thus identifying a novel pathway for JNK activation by Cdc42. These results demonstrate that Pak2 and Syk positively cooperate to regulate cellular responses to stress.  相似文献   

9.
The intracellular localization and physiological functions of the p21-activated protein kinase gamma-PAK have been examined in human embryonic kidney 293T and COS-7 cells. At 1-4 days post-transfection, cell division is inhibited by the expression of wild type (WT) gamma-PAK and the mutant S490A, whereas cells expressing S490D and the inactive mutants K278R and T402A grow exponentially, indicating a role for gamma-PAK in the induction of cytostasis. WT gamma-PAK and S490A are localized in a region surrounding the nucleus identified as the endoplasmic reticulum (ER), as determined by immunofluorescence, whereas K278R, T402A, and S490D lack localization. As shown by sucrose density gradient centrifugation, WT gamma-PAK, S490A, and endogenous gamma-PAK are distributed among the high density (ER-associated), intermediate density, and low density fractions, whereas the mutants that do not inhibit cell division are present only as soluble enzyme. The amount of endogenous gamma-PAK associated with the particulate fractions is increased 4-fold when cell division is inhibited by ionizing radiation. gamma-PAK in the ER and intermediate density fractions has high specific activity and is active, whereas the soluble form of gamma-PAK has low activity and is activable. The importance of localization of gamma-PAK is supported by data with the C-terminal mutants S490D and Delta 488; these mutants have high levels of protein kinase activity but do not induce cytostasis and are not bound to the ER. A model for the induction of cytostasis by gamma-PAK through targeting of gamma-PAK to the ER is presented in which gamma-PAK activity and Ser-490 are implicated in the regulation of cytostasis.  相似文献   

10.
Pak2, a member of the p21-activated protein kinase (Pak) family, is activated in response to a variety of stresses and is directly involved in the induction of cytostasis. At the molecular level Pak2 binds Cdc42(GTP), translocating Pak2 to the endoplasmic reticulum where it is autophosphorylated and activated. Pak2 is autophosphorylated at eight sites; Ser-141 and Ser-165 in the regulatory domain and Thr-402 in the activation loop are identified as key sites in activation of the protein kinase. The function of phosphorylation of Ser-141 and Ser-165 on the activation was analyzed with wild-type (WT) and mutants of Pak2. With S141A, the level of autophosphorylation was reduced to 65% as compared with that of WT and S141D with a concomitant 45% reduction in substrate phosphorylation, indicating that phosphorylation at Ser-141 is required for optimal activity. Autophosphorylation inhibited the interaction between WT Pak2 and Cdc42(GTP). In 293T cells, WT Pak2, S141A, and S141D formed a stable complex with the constitutively active mutant Cdc42 L61, but not with the dominant negative Cdc42 N17. As shown in glutathione S-transferase pull-down assays, S141A bound to Cdc42(GTP) at a 6-fold higher level than that of S141D. In contrast, the S165A and S165D mutants had no effect on autophosphorylation, binding to Cdc42, or activation of Pak2. In summary, autophosphorylation of Ser-141 was required for activation of Pak2 and down-regulated the interaction of Pak2 with Cdc42. A model is proposed suggesting that binding of Cdc42 localizes Pak2 to the endoplasmic reticulum, where autophosphorylation alters association of the two proteins.  相似文献   

11.
We purified native WASp (Wiskott-Aldrich Syndrome protein) from bovine thymus and studied its ability to stimulate actin nucleation by Arp2/3 complex. WASp alone is inactive in the presence or absence of 0.5 microM GTP-Cdc42. Phosphatidylinositol 4,5 bisphosphate (PIP(2)) micelles allowed WASp to activate actin nucleation by Arp2/3 complex, and this was further enhanced twofold by GTP-Cdc42. Filaments nucleated by Arp2/3 complex and WASp in the presence of PIP(2) and Cdc42 concentrated around lipid micelles and vesicles, providing that Cdc42 was GTP-bound and prenylated. Thus, the high concentration of WASp in neutrophils (9 microM) is dependent on interactions with both acidic lipids and GTP-Cdc42 to activate actin nucleation by Arp2/3 complex. The results also suggest that membrane binding increases the local concentrations of Cdc42 and WASp, favoring their interaction.  相似文献   

12.
The primary cilium is an important sensory organelle, the regulation of which is not fully understood. We found that in polarized Madin-Darby Canine Kidney cells, the sphingolipid ceramide is specifically distributed to a cis-Golgi compartment at the base of the primary cilium. This compartment immunostained for the centrosome marker γ-tubulin, the Rho type GTPase cell division cycle 42 (Cdc42), and atypical protein kinase Cζ/λ (aPKC), a kinase activated by ceramide and associated with a polarity protein complex consisting of partitioning defective (Par)6 and Cdc42. Inhibition of ceramide biosynthesis with Fumonisin B1 prevented codistribution of aPKC and Cdc42 in the centrosomal/pericentriolar compartment and severely impaired ciliogenesis. Cilium formation and codistribution of aPKC and Cdc42 were restored by incubation with N-acetyl or N-palmitoyl sphingosine (C2 or C16 ceramide), or the ceramide analog N-oleoyl serinol (S18). Cilium formation was also restored by the glycogen synthase kinase-3β (GSK-3β) inhibitor indirubin-3-monoxime, suggesting that regulation of ciliogenesis depends on the inhibition of GSK-3β by ceramide-activated aPKC. Consistently, inhibition of aPKC with a pseudosubstrate inhibitor prevented restoration of ciliogenesis by C2 ceramide or S18. Our data show for the first time that ceramide is required for primary cilium formation.—Wang, G., K. Krishnamurthy, and E. Bieberich. Regulation of primary cilia formation by ceramide.  相似文献   

13.
p21-activated kinases (Pak)/Ste20 kinases are regulated in vitro and in vivo by the small GTP-binding proteins Rac and Cdc42 and lipids, such as sphingosine, which stimulate autophosphorylation and phosphorylation of exogenous substrates. The mechanism of Pak activation by these agents remains unclear. We investigated Pak kinase activation in more detail to gain insight into the interplay between the GTPase/sphingosine binding, an intramolecular inhibitory interaction, and autophosphorylation. We present biochemical evidence that an autoinhibitory domain (ID) contained within amino acid residues 67-150 of Pak1 interacts with the carboxyl-terminal kinase domain and that this interaction is regulated in a GTPase-dependent fashion. Cdc42- and sphingosine-stimulated Pak1 activity can be inhibited in trans by recombinant ID peptide, indicating similarities in their mode of activation. However, Pak1, which was autophosphorylated in response to either GTPase or sphingosine, is highly active and is insensitive to inhibition by the ID peptide. We identified phospho-acceptor site threonine 423 in the kinase activation loop as a critical determinant for the sensitivity to autoinhibition and enzymatic activity. Phosphorylation studies suggested that the stimulatory effect of both GTPase and sphingosine results in exposure of the activation loop, making it accessible for intermolecular phosphorylation.  相似文献   

14.
Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence.  相似文献   

15.
Src homology 3 domain (SH3)-containing proline-rich protein kinase (SPRK)/mixed-lineage kinase (MLK)-3 is a serine/threonine kinase that upon overexpression in mammalian cells activates the c-Jun NH(2)-terminal kinase pathway. The mechanisms by which SPRK activity is regulated are not well understood. The small Rho family GTPases, Rac and Cdc42, have been shown to bind and modulate the activities of signaling proteins, including SPRK, which contain Cdc42/Rac interactive binding motifs. Coexpression of SPRK and activated Cdc42 increases SPRKs activity. SPRKs Cdc42/Rac interactive binding-like motif contains six of the eight consensus residues. Using a site-directed mutagenesis approach, we show that SPRK contains a functional Cdc42/Rac interactive binding motif that is required for SPRKs association with and activation by Cdc42. However, experiments using a SPRK variant that lacks the COOH-terminal zipper region/basic stretch suggest that this region may also contribute to Cdc42 binding. Unlike the PAK family of protein kinases, we find that the activation of SPRK by Cdc42 cannot be recapitulated in an in vitro system using purified, recombinant proteins. Comparative phosphopeptide mapping demonstrates that coexpression of activated Cdc42 with SPRK alters the in vivo serine/threonine phosphorylation pattern of SPRK suggesting that the mechanism by which Cdc42 increases SPRKs catalytic activity involves a change in the in vivo phosphorylation of SPRK. This is, to the best of our knowledge, the first demonstrated example of a Cdc42-mediated change in the in vivo phosphorylation of a protein kinase. These studies suggest an additional component or cellular environment is required for SPRK activation by Cdc42.  相似文献   

16.
The effects of sphingosine and psychosine on phosphoinositide hydrolysis in primary cultured astrocytes were determined. Exposure to sphingosine produced a dose-dependent stimulation of phosphoinositide hydrolysis requiring the presence of external Ca++ for optimal activity. The addition of 10 microM norepinephrine resulted in a stimulation additional to that with sphingosine. The alpha 1-antagonist prazosin completely inhibited norepinephrine-induced phosphoinositide hydrolysis but had no effect on that produced by sphingosine. Psychosine (108 microM), when co-incubated with sphingosine, produced complete inhibition of sphingosine-induced phosphoinositide hydrolysis at all doses of sphingosine tested (33-668 microM). Likewise, psychosine totally inhibited norepinephrine-induced phosphoinositide hydrolysis. The protein kinase C inhibitor staurosporine (1 microM) had no effect on sphingosine-induced phosphoinositide hydrolysis. These findings suggest that lysosphingolipids such as sphingosine and psychosine may play an important role in the regulation of phosphoinositide turnover in astrocytes by a mechanism dependent on extracellular Ca++ and independent of the alpha 1-adrenergic receptor and protein kinase C.  相似文献   

17.
In this study, we report that sphingosine is a potent inhibitor of sarcoplasmic reticulum (SR) calcium release. Evidence is presented demonstrating a direct effect of sphingosine on the SR ryanodine receptor. Calcium release from "skinned" rabbit skeletal muscle fibers and isolated junctional SR derived from the terminal cisternae (TC) was measured in response to caffeine, doxorubicin, 5'-adenylyl-beta,gamma-imidodiphosphate or calcium. Sphingosine inhibited caffeine-induced release in a dose-dependent manner with an IC50 of 0.1 microM for the single muscle fibers and 0.5 microM for the isolated TC vesicles. Near complete blockage of TC calcium release rate was observed with 3 microM sphingosine. Neither sphingomyelin nor sphingosylphosphorylcholine had any effect at the 3 microM level, suggesting that the sphingosine effect was specific. Doxorubicin-induced calcium release and spontaneous calcium release were also blocked by sphingosine. Sphingosine was also capable of stimulating calcium transport in the isolated TC vesicles without an effect on Ca-ATPase activity. Ruthenium red was not capable of substantial additional stimulation of calcium transport nor inhibition of calcium release beyond the action of sphingosine. Sphingosine's blockage of calcium release was not reversed by the protein kinase inhibitor, 1-(5-isoquinolinesulfonyl)-2- methylpiperazine dihydrochloride, suggesting that the action of sphingosine on calcium release was not dependent on ryanodine receptor phosphorylation. Sphingosine significantly increased (8-fold) the Kd for specific [3H]ryanodine binding to TC membranes and decreased the Bmax with a dose dependence similar to the inhibition of calcium release, but sphingosine did not affect the pCa tension relationship of skinned skeletal muscle fibers. These data are consistent with a direct effect of submicromolar sphingosine on the ryanodine receptor. Substantially higher concentrations of sphingosine (30-50 microM) or sphingosylphosphorylcholine (10-20 microM) were capable of inducing calcium release by themselves. Preliminary data indicate that the transverse tubule and not the SR contain substantial sphingomyelinase activity consistent with a transverse tubule source of sphingosine production. Considering that sphingosine is found in micromolar concentrations in some cells, our data indicate that sphingosine generated by the transverse tubule membranes may be a physiologically relevant mechanism for modulating SR calcium release.  相似文献   

18.
Microtubule-associated protein 1 light chain-3 (LC3) plays a critical role in autophagosome formation during autophagy; however, its potential alternative functions remain largely unexplored. Here we demonstrate a discrete role for LC3 in osteoclast, a specialized bone-resorbing cell that requires a dynamic microtubule network for its activity. We found that an increase in the conversion of soluble LC3-I to lipid-bound LC3-II in mature osteoclast was correlated with osteoclast activity, but not with autophagic activity. Knockdown of LC3 using small interfering RNA did not affect TRAP-positive multinucleated cell formation, but suppressed actin ring formation, cathepsin K release, and the subsequent bone-resorbing capacity of osteoclasts. LC3 mediated this function by associating with microtubules and regulating Cdc42 activity. More importantly, LC3-II protein levels were reduced by the Atg5 knockdown, and this knockdown led to decrease in Cdc42 activity, indicating that LC3-II is critical for Cdc42 activity. Overexpression of a constitutively active form of Cdc42 partially rescued the phenotype induced by LC3 knockdown. Our results demonstrate that LC3 contributes to the regulatory link between the microtubule and Cdc42 involved in bone-resorbing activity, providing evidence for a role for LC3 in mediating diverse cellular functions beyond its role as an autophagy protein.  相似文献   

19.
In certain cell systems, including neonatal vascular smooth muscle (VSM) cells, phorbol esters are growth inhibitory. Here we show that 1,2-dioctanoyl-sn-glycerol (DiC8), when added 2 h after alpha-thrombin, reverses by greater than 95% the induction of DNA synthesis in VSM cells by alpha-thrombin. Sphingosine, a naturally occurring lysosphingolipid inhibitor of protein kinase C, and its synthetic analogues N-acetylsphingosine and C11-sphingosine were used to investigate this phenomenon further. Neither phorbol 12-myristate 13-acetate (PMA;200 ng/ml) nor sphingosine (up to 10 microM) alone had any effect upon basal DNA synthesis in VSM cells. Like DiC8, PMA totally blocked the induction of DNA synthesis by alpha-thrombin. This inhibitory effect of PMA was reversed by sphingosine in a dose-dependent manner with complete reversal at 10 microM. Neither N-acetylsphingosine nor C11-sphingosine exhibited any effect on DNA synthesis in VSM cells. The effect of sphingosine and its analogues on the activity of protein kinase C extracted from VSM cells was measured by histone III-S phosphorylation. Protein kinase C activity was inhibited 50% by 300 microM sphingosine, but less than 15% by similar concentrations of N-acetylsphingosine and C11-sphingosine. To assess the effects of sphingosine and analogues on protein kinase C in intact cells, we examined the effect of the lipids on [3H]phorbol dibutyrate binding. Sphingosine (at greater than 5 microM), but not N-acetylsphingosine or C11-sphingosine, blocked [3H]phorbol dibutyrate binding in a dose- and time-dependent fashion. Thus the mechanism of growth inhibition by DiC8 and PMA in neonatal VSM cells appears to be through activation of protein kinase C by these compounds. Sphingosine reverses this growth inhibition through interference with the binding to protein kinase C of phorbol esters or other activators of this enzyme.  相似文献   

20.
Tu SS  Wu WJ  Yang W  Nolbant P  Hahn K  Cerione RA 《Biochemistry》2002,41(41):12350-12358
Cdc42 is a small GTP-binding protein which has been implicated in a number of cellular activities, including cell morphology, motility, cell-cycle progression, and malignant transformation. While GTPase-defective forms of Cdc42 inhibit cell growth, a mutation [Cdc42(F28L)] that allows the constitutive exchange of GDP for GTP and is GTPase-competent induces cellular transformation. These results suggest that Cdc42 must cycle between its GTP- and GDP-bound states to stimulate cell growth. In attempting to design Cdc42 molecules with more potent transforming activity, we set out to generate other types of Cdc42 mutants capable of constitutive GDP-GTP exchange. Here, we describe one such mutant, generated by changing a conserved aspartic acid residue at position 118 to an asparagine. The Cdc42(D118N) protein exchanges GDP for GTP more rapidly than wild-type Cdc42, but significantly more slowly than the Cdc42(F28L) mutant. Despite its slower rate of activation, the Cdc42(D118N) mutant is more potent at inducing cellular transformation than the Cdc42(F28L) protein, and causes a significant loss in actin stress fibers, reminiscent of what is observed with fibroblasts transformed by oncogenic Ras mutants. Effector-loop mutations made within the D118N background inhibit Cdc42-induced transformation and Cdc42-mediated antiapoptotic (survival) activity to similar extents. In addition, mutating aspartic acid 121 (to asparagine), which forms part of a caspase cleavage site (DLRD, residues 118-121 of Cdc42), in combination with the F28L mutation generates a Cdc42 molecule [Cdc42(F28L/D121N)] with transforming activity significantly stronger than that of Cdc42(F28L). Thus, mutations that combine some capacity for cycling between the GTP- and GDP-bound states with increased survival against apoptotic signals yield Cdc42 molecules with the maximum capability for inducing cellular transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号