首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Chemical composition is one of the key characteristics that determines wood quality and in turn its suitability for different end products and applications. The inclusion of chemical compositional traits in forest tree improvement requires high‐throughput techniques capable of rapid, non‐destructive and cost‐efficient assessment of large‐scale breeding experiments. We tested whether Fourier‐transform infrared (FTIR) spectroscopy, coupled with partial least squares regression, could serve as an alternative to traditional wet chemistry protocols for the determination of the chemical composition of juvenile wood in Scots pine for tree improvement purposes. FTIR spectra were acquired for 1,245 trees selected in two Scots pine (Pinus sylvestris L.) full‐sib progeny tests located in northern Sweden. Predictive models were developed using 70 reference samples with known chemical composition (the proportion of lignin, carbohydrates [cellulose, hemicelluloses and their structural monosaccharides glucose, mannose, xylose, galactose, and arabinose] and extractives). Individual‐tree narrow‐sense heritabilities and additive genetic correlations were estimated for all chemical traits as well as for growth (height and stem diameter) and wood quality traits (density and stiffness). Genetic control of the chemical traits was mostly moderate. Of the major chemical components, highest heritabilities were observed for hemicelluloses (0.43–0.47), intermediate for lignin and extractives (0.30–0.39), and lowest for cellulose (0.20–0.25). Additive genetic correlations among chemical traits were, except for extractives, positive while those between chemical and wood quality traits were negative. In both groups (chemical and wood quality traits), correlations with extractives exhibited opposite signs. Correlations of chemical traits with growth traits were near zero. The best strategy for genetic improvement of Scots pine juvenile wood for bioenergy production is to decrease and stabilize the content of extractives among trees and then focus on increasing the cellulose:lignin ratio.  相似文献   

2.
The primary objective of this study was to assess metabolomics for its capacity to discern biological variation among 10 full-sib families of a Douglas-fir tree breeding population, replicated on two sites. The differential accumulation of small metabolites in developing xylem was examined through metabolite profiles (139 metabolites common to 181 individual trees) generated by gas chromatography mass spectrometry and a series of statistical analyses that incorporated family, site, and tree growth and quantitative phenotypic wood traits (wood density, microfibril angle, wood chemistry and fiber morphology). Multivariate discriminant, canonical discriminant and factor analyses and broad-sense heritabilities revealed that metabolic and phenotypic traits alike were strongly related to site, while similar associations relating to genetic (family) structure were weak in comparison. Canonical correlation analysis subsequently identified correlations between specific phenotypic traits (i.e. tree growth, fibre morphology and wood chemistry) and metabolic traits (i.e. carbohydrate and lignin biosynthetic metabolites), demonstrating a coherent relationship between genetics, metabolism, environmental and phenotypic expression in wood-forming tissue. The association between cambial metabolites and tree phenotype, as revealed by metabolite profiling, demonstrates the value of metabolomics for systems biology approaches to understanding tree growth and secondary cell wall biosynthesis in plants.  相似文献   

3.
Understanding the genetic basis of phenotypic variation is essential for predicting the direction and rate of phenotypic evolution. We estimated heritabilities and genetic correlations of morphological (fork length, pectoral and pelvic fin ray counts, and gill arch raker counts) and life-history (egg number and individual egg weight) traits of pink salmon (Oncorhynchus gorbuscha) from Likes Creek, Alaska, in order to characterize the genetic basis of phenotypic variation in this species. Families were created from wild-caught adults, raised to the fry stage in the lab, released into the wild, and caught as returning adults and assigned to families using microsatellite loci and a growth hormone locus. Morphological traits were all moderately to highly heritable, but egg number and egg weight were not heritable, suggesting that past selection has eliminated additive genetic variation in egg number and egg weight or that there is high environmental variance in these traits. Genetic correlations were similar for nonadjacent morphological traits and adjacent traits. Genetic correlations predicted phenotypic correlations fairly accurately, but some pairs of traits with low genetic correlations had high phenotypic correlations, and vice versa, emphasizing the need to use caution when using phenotypic correlations as indices of genetic correlations. This is one of only a handful of studies to estimate heritabilities and genetic correlations for a wild population.  相似文献   

4.
Eucalyptus nitens plantations are generally established for pulpwood production but an increasing area is being managed for solid wood. Genetic variation in, and correlations among, three Kraft pulpwood traits (diameter at breast height, basic density and near-infrared-predicted cellulose content) and three 12-mm wood-core shrinkage traits (recoverable collapse, net shrinkage and gross shrinkage) were examined, utilising data from two 9-year-old first-generation progeny trials in Tasmania. These trials contained approximately 400 open-pollinated families (over 100 of which were sampled for wood properties) representing three central-Victorian E. nitens races. Significant genetic variation at the race and/or within-race level was identified in all traits. Within races, relative levels of additive genetic variation were higher for shrinkage traits, although narrow-sense heritabilities were lower and the expression of genetic variation less stable across sites than for other wood property traits. Heterogeneous intertrait genetic correlations were identified across sites between growth and some wood property traits. However, where significant, genetic correlations indicated that within-race selection for growth would adversely affect core basic density and all core shrinkage traits. Furthermore, results based on cores suggested that within-race selection for higher basic density would favourably impact on cellulose content and collapse but selection for either higher basic density or cellulose content would adversely affect net shrinkage. Most within-race genetic variation in gross shrinkage appeared to be due to genetic variation in collapse. The implications of these results for sawn timber breeding will depend on the strength of genetic correlations between core traits and rotation-age objective traits and objective trait economic weights.  相似文献   

5.
B. Riska  T. Prout    M. Turelli 《Genetics》1989,123(4):865-871
A lower bound on heritability in a natural environment can be determined from the regression of offspring raised in the laboratory on parents raised in nature. An estimate of additive genetic variance in the laboratory is also required. The estimated lower bounds on heritabilities can sometimes be used to demonstrate a significant genetic correlation between two traits in nature, if their genetic and phenotypic correlations in nature have the same sign, and if sample sizes are large, and heritabilities and phenotypic and genetic correlations are high.  相似文献   

6.
Patterns of phenotypic plasticity and genotypic variation in light response of growth and photosynthesis were examined in two species of rain forest shrub that differ in ecological distribution within the forest. We further examined correlations among photosynthetic and growth traits. We hypothesized that the pioneer species, Piper sancti-felicis, would display greater phenotypic plasticity than the shade-tolerant species, Piper arieianum. We further proposed that, in both species, genotypic effects would be more apparent in growth-related traits than photosynthetic traits due to more concentrated selection pressure on gas-exchange traits. P. sancti-felicis did not demonstrate greater phenotypic plasticity of light response. Although many of the traits measured had significant genotype effects, neither species showed any significant effects of genotype on light response of photosynthesis, suggesting little genetic variation for this trait within populations. A principal components analysis clearly illustrated both species and light effects, with the treatments dividing neatly along the axis of the first principal component and the species separating along the second principal component axis. Results indicated general similarities between the species in their trait correlation structure and level of integration among traits, but characteristic differences were observed in the patterns of change between low and high light. Both species had more correlations than expected within groups of growth-related or photosynthetic traits; strong correlations of traits between these two groups were underrepresented. The similar pattern of genetic variation and phenotypic integration observed in these two congeners may be due more to their close phylogenetic relation than to their ecological distributions.  相似文献   

7.
Unfavorable genetic correlations between growth and wood quality traits are one of the biggest challenges in advanced conifer breeding programs. To examine and deal with such correlation, increment cores were sampled at breast height from 5,618 trees in 524 open-pollinated families in two 21-year-old Norway spruce progeny trials in southern Sweden, and age trends of genetic variation, genetic correlation, and efficiency of selection were investigated. Wood quality traits were measured on 12-mm increment cores using SilviScan. Heritability was moderate (~0.4–0.5) for wood density and modulus of elasticity (MOE) but low (~0.2) for microfibril angle (MFA). Different age trends were observed for wood density, MFA, and MOE, and the lower heritability of MFA relative to wood density and MOE in Norway spruce contrasted with general trends of the three wood quality traits in pine. Genetic correlations among growth, wood density, MFA, and MOE increased to a considerably high value from pith to bark with unfavorable genetic correlations (?0.6 between growth and wood density, ?0.74 between growth and MOE). Age–age genetic correlations reached 0.9 after ring 4 for diameter at breast height (DBH), wood density, MFA, and MOE traits. Early selections at ring 10 for diameter and at ring 6 or 7 for wood quality traits had similar effectiveness as selection conducted at reference ring 15. Selection based on diameter alone produced 19.0 % genetic gain in diameter but resulted in 4.8 % decrease in wood density, 9.4 % decrease in MOE, and 8.0 % increase in MFA. Index selection with a restriction of no change in wood density, MOE, and MFA, respectively, produced relatively lower genetic gains in diameter (16.4, 12.2, and 14.1 %, respectively), indicating such index selection could be implemented to maintain current wood density. Index selection using economic weights is, however, recommended for maximum economic efficiency.  相似文献   

8.
Summary In clonus and progenies linear phenotypic and genotypic correlations and interactions between genotypes, years and locations as well as methods for the estimation of the heritability are investigated.The significant correlation coefficients found should facilitate selection for more than one character at one time. With one exception high genotypic correlations correspond to significant phenotypic ones (Table 1). Usually genotype/year and genotype/year/location-interactions were not significant, but genotype/location-interactions were regularly significant in trials carried over more than one season. There were also clear differences in the ability of genotypes to yield consistently in different locations over several seasons (ecovalence).Estimates of heritabilities both in the narrow sense and in the broad sense were relatively high, especially those of flowering date, plant height and leaf number. Both types of heritabilities showed the same ranking (Table 3). Half-sib families from polycrosses were not suitable for half-sib correlations.From the results obtained it has been concluded that one year trials with replicated clones in different locations yield useful estimates of heritability. Therefore, in breeding plants with long generation times, raising of progenies may be dispensed with in the interest of saving time.

Angenommen durch W. Seyffert  相似文献   

9.
Studies on the genetic variation, correlation, correlated response and path analysis were conducted on 8 rice cultivars to bring out the association and channelling of the pathway of different components of resistance to Xanthomonas campestris pv. oryzae. High genotypic coefficient of variation coupled with high heritability and genetic gain was observed for lesion size (LS) and the area under disease progress curve (AUDPC) indicating the predominance of additive gene effects. There was a strong association among all the components both at genotypic and phenotypic levels. Genotypic correlations were higher than the corresponding phenotypic correlations indicating the modifying effect of environment on association of components at genotypic level. Maximum correlated response and relative selection efficiency on AUDPC was observed through indirect selection for LS followed by the number of bacteria per unit leaf area (NB). Path analysis revealed highest direct effect of LS on AUDPCboth at genotypic and phenotypic levels. Indirect effects of fairly high magnitude were also exerted by incubation period (ICP) and NB towards AUDPC.  相似文献   

10.
The evolution of plastic traits requires phenotypic trade-offs and heritable traits, yet the latter requirement has received little attention, especially for predator-induced traits. Using a half-sib design, I examined the narrow-sense heritability of predator-induced behaviour, morphology, and life history in larval wood frogs (Rana sylvatica). Many of the traits had significant additive genetic variation in predator (caged Anax longipes) and no-predator environments. Whereas most traits had moderate to high heritability across environments, tail depth exhibited high heritability with predators but low heritability without predators. In addition, several traits had significant heritability for plasticity, suggesting a potential for selection to act on plasticity per se. Genetic correlations confirmed known phenotypic relationships across environments and identified novel relationships within each environment. This appears to be the first investigation of narrow-sense heritabilities for predator-induced traits and confirms that inducible traits previously shown to be under selection also have a genetic basis and should be capable of exhibiting evolutionary responses.  相似文献   

11.
We estimated heritabilities, and genetic and phenotypic correlations between beak and body traits in the song sparrow ( Melospiza melodia ). We compared these estimates to values for the same traits in the Galápagos finches, Geospiza (Boag, 1983; Grant, 1983). Morphological variance is low in the song sparrow, and our results show that genetic and phenotypic correlations are considerably lower than correlations in the morphologically more variable Geospiza. Comparison using a larger sample of Galapagos populations confirms the existence of an association between variance and correlation for phenotypic values. We suggest two possible explanations for this association. First, most traits studied are functionally related, and the joint evolution of variance and correlation may have resulted from stabilizing selection about a line of optimal allometry between traits. Alternatively, introgression between populations and species could have caused correlation and variance to evolve jointly. Both selection and introgression were probably influential in producing the observed pattern, but it is not possible to estimate their relative importance with current data. Genetic and phenotypic correlations were correlated in the song sparrow, but heritabilities of traits varied greatly. As a result, the genetic variance-covariance matrix for traits is not simply a constant multiple of the phenotypic matrix. Evolutionary response to natural selection cannot, therefore, be predicted from the measurement of phenotypic characteristics alone.  相似文献   

12.
Recent studies have shown that body size is a heritable trait phenotypically correlated with several fitness components in wild populations of the cactophilic fly Drosophila buzzatii. To obtain further information on size-related variation, heritabilities as well as genetic and phenotypic correlations among size-related traits of several body parts (head, thorax and wings) were estimated. The study was carried out on an Argentinean natural population in which size-related selection was previously detected. The genetic parameters were estimated using offspring-parent regressions (105 families) in the laboratory G2 generation of a sample of wild flies. The traits were also scored in Wild-Caught Flies (WCF). Laboratory-Reared Flies (LRF) were larger and less variable than WCF. Although heritability estimates were significant for all traits, heritabilities were higher for thorax-wing traits than for head traits. Phenotypic and genetic correlations were all positive. The highest genetic correlations were found between traits which are both functionally and developmentally related. Genetic and phenotypic correlations estimated in the lab show similar correlation patterns (r = 0.49; TP = 0.02, Mantel's test). However, phenotypic correlations were found to be typically larger in WCF than in LRF. The genetic correlation matrix estimated in the relatively homogeneous lab environment is not simply a constant multiplicative factor of the phenotypic correlation matrix estimated in WCF. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Genetic parameters for stem diameter and wood density were compared at selection (4–5 years) and harvest (16–17 years) age in an open-pollinated progeny trial of Eucalyptus globulus in Tasmania (Australia). The study examined 514 families collected from 17 subraces of E. globulus. Wood density was assessed on a subsample of trees indirectly using pilodyn penetration at both ages and directly by core basic density at harvest age. Significant additive genetic variance and narrow-sense heritabilities ( h\textop2 h_{\text{op}}^2 ) were detected for all traits. Univariate and multivariate estimates of heritabilities were similar for each trait except harvest-age diameter. Comparable univariate estimates of selection- and harvest-age heritabilities for diameter masked changes in genetic architecture that occurred with stand development, whereby the loss of additive genetic variance through size-dependent mortality was countered by the accentuation of additive genetic differences among survivors with age. Regardless, the additive genetic (r a) and subrace (r s) correlations across ages were generally high for diameter (0.95 and 0.61, respectively) and pilodyn penetration (0.77 and 0.96), as were the correlations of harvest-age core basic density with selection- and harvest-age pilodyn (r a −0.83, −0.88; r s −0.96, −0.83). While r s between diameter and pilodyn were close to zero at both ages, there was a significant change in r a from adverse at selection age (0.25) to close to zero (−0.07) at harvest age. We argue that this change in the genetic correlation reflects a decoupling of the genetic association of growth and wood density with age. This result highlights the need to validate the use of selection-age genetic parameters for predicting harvest-age breeding values.  相似文献   

14.
Increases in atmospheric CO2 concentration have an impact on plant communities by influencing plant growth and morphology, species interactions, and ecosystem processes. These ecological effects may be accompanied by evolutionary change if elevated CO2 (eCO2) alters patterns of natural selection or expression of genetic variation. Here, a statistically powerful quantitative genetic experiment and manipulations of CO2 concentrations in a field setting were used to investigate how eCO2 impacts patterns of selection on ecologically important traits in Arabidopsis thaliana; heritabilities, which influence the rate of response to selection; and genetic covariances between traits, which may constrain responses to selection. CO2 had strong phenotypic effects; plants grown in eCO2 were taller and produced more biomass and fruits. Also, significant directional selection was observed on many traits and significant genetic variation was observed for all traits. However, no evolutionary effect of eCO2 was detected; patterns of selection, heritabilities and genetic correlations corresponded closely in ambient and elevated CO2 environments. The data suggest that patterns of natural selection and the quantitative genetic parameters of this A. thaliana population are robust to increases in CO2 concentration and that responses to eCO2 will be primarily ecological.  相似文献   

15.
The objective of the present study was to estimate heritabilities as well as genetic and phenotypic correlations for egg weight, specific gravity, shape index, shell ratio, egg shell strength, egg length, egg width and shell weight in Japanese quail eggs. External egg quality traits were measured on 5864 eggs of 934 female quails from a dam line selected for two generations. Within the Bayesian framework, using Gibbs Sampling algorithm, a multivariate animal model was applied to estimate heritabilities and genetic correlations for external egg quality traits. The heritability estimates for external egg quality traits were moderate to high and ranged from 0.29 to 0.81. The heritability estimates for egg and shell weight of 0.81 and 0.76 were fairly high. The genetic and phenotypic correlations between egg shell strength with specific gravity, shell ratio and shell weight ranging from 0.55 to 0.79 were relatively high. It can be concluded that it is possible to determine egg shell quality using the egg specific gravity values utilizing its high heritability and fairly high positive correlation with most of the egg shell quality traits. As a result, egg specific gravity may be the choice of selection criterion rather than other external egg traits for genetic improvement of egg shell quality in Japanese quails.  相似文献   

16.
Do genetic correlations among phenotypic characters reflect developmental organization or functional coadaptation of the characters? We test these hypotheses for the wing melanin pattern of Pieris occidentalis butterflies, by comparing estimated genetic correlations among wing melanin characters with a priori predictions of the developmental organization and the functional (thermoregulatory) organization of melanin pattern. There were significant broad-sense heritabilities and significant genetic correlations for most melanin characters. Matrix correlation tests revealed significant agreement between the observed genetic correlations and both developmental and functional predictions in most cases; this occurred even when the overlap between developmental and functional predictions was eliminated. These results suggest that both developmental organization and functional coadaptation among melanin characters influence the genetic correlation structure of melanin pattern in this species. These results have two important implications for the evolution of melanin pattern in P. occidentalis and other butterflies: 1) most phenotypic variation in pattern may reflect variation among, rather than within, sets of developmentally homologous wing melanin characters; and 2) in a changing selective environment, genetic correlations may retard the disruption of functionally coupled melanin characters, thus affecting the evolutionary response to selection.  相似文献   

17.
Volume and stem straightness were the main selection criteria for the first two generations of the French maritime pine (Pinus pinaster Ait.) breeding programme. In this article, we investigate the consequences of this selection on wood quality. Wood density, as a predictor of wood quality, is studied both in the breeding populations and in commercial varieties. Phenotypic and genetic correlations between wood density and growth traits are investigated in successive breeding populations with three genetic field experiments of respectively 30, 29 and 12 years old. Correlation estimates were either slightly negative or non-significantly different from zero depending on the test considered. Consequently, a low impact of growth selection on wood quality should be expected in improved seed sources. However, we observed a significant wood density decrease in two improved varieties as compared to unimproved seed sources at age 15. In addition to this first effect on wood density, growth improvement is also expected to reduce the rotation age and thus increase the proportion of juvenile wood, which is known as having a lower density than mature wood. This change was studied and quantified using a growth model. Finally, a wood density decrease reaching up to 6% was predicted in the improved varieties compared to unimproved material, when both the observed decrease in wood density and the predicted increase in juvenile wood proportion were taken into account. Implications for the breeding programme were considered.  相似文献   

18.
Genetic variability studies for needle and wood traits were carried out for the different half sib progenies of Chir pine, raised in 1985 at the main campus of University. There existed a significant variation for these traits among the different half sib progenies, viz., needle length (18.1–24.6 cm), needle thickness (0.53–0.71 mm), number of stomata per mm of a row (7.3–12.0), specific gravity of wood (0.36–0.46), tracheid length (1.51–1.85) and moisture content of wood (47.76–58.81). This variability was found under genetic control, as all these progenies are growing under same environment, and are of same age. Traits having high heritability and genetic gain like, needle thickness, wood specific gravity, tracheid length and others, indicate high genetic control. This variability can be exploited in tree improvement programs through selection and breeding approaches for development of advanced generations. Correlation studies for different traits at genotypic and phenotypic levels provided the basic knowledge of association to chalk out efficient breeding strategy for higher productivity through indirect selection.  相似文献   

19.
This study compares the heritable basis of variation in larval developmental patterns of mountain and lowland populations of the wood frog, Rana sylvatica. Additive genetic variances, heritabilities, and genetic correlations for larval developmental time and size at metamorphosis are estimated from half-sib and full-sib crosses. Considerable additive-genetic variances and high heritabilities are revealed for developmental time in both the mountain and the lowland population. There was a high level of additive-genetic variance and high heritability for body size at metamorphosis in the mountain population, but these were very low in the lowland population. The genetic correlations between developmental rate and larval body size are negative for the mountain population and near zero for the lowland population. It is argued that the differences in genetic structure between these two populations reflect differences in the selective regimes of their respective environments.  相似文献   

20.
Provenance variation and genetic parameters for wood properties of mature radiata pine (Pinus radiata D. Don) were studied by sampling three provenance/progeny trials in southeast Australia. Among the mainland provenances, Monterey and Año Nuevo had higher density and modulus of elasticity (at one site) than Cambria. Basic density and predicted modulus of elasticity (MoE) for the island provenances, Guadalupe and Cedros, were ~20% higher at Billapaloola compared to mainland provenances grown at Green Hills and Salicki, differences that may or may not be linked to site differences. Heritability estimates of density, predicted MoE and microfibril angle were significant and $ {\bar{h}^2} $ ?>?0.45, suggesting moderate to strong genetic control. The estimated genetic correlations between diameter at breast height and wood properties in the current study were weaker (less negative) than the mean estimated from the current breeding population generation in radiata pine. Of the wood properties, density showed the strongest adverse genetic correlations with growth (mean r A ?=??0.23?±?0.09). Selection for MoE may produce greater gain than selection for density because MoE had almost twice the estimated additive genetic coefficient of variation ( $ {\overline {\text{CV}}_A} $ ) compared to density. Estimated type B genetic correlations (r B) for all wood quality traits were typically high, conforming to the trend that wood properties have low genotype-by-environment interaction (G?×?E). Significant differences in wood properties among provenances, families and/or individual trees provide an opportunity for breeding programmes to select superior trees for solid wood production that will combine superior growth with desirable wood traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号