首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The synthesis and release of feline leukemia virus p30 was studied using a permanently infected feline thymus tumor cell line. Disrupted cells were divided into two subcellular fractions, a cytoplasmic extract (CE) representing cellular material soluble in 0.5% NP-40 and a particulate fraction (PF) insoluble in 0.5% NP-40 but soluble in 0.2% deoxycholate and 0.5% NP-40. Intracellular feline leukemia virus p30 was isolated from infected cells by immune precipitation with antiserum to p30 and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the precipitated proteins. Cells labeled for 3 h with [35S]methionine contained equal amounts of p30 in both the CE and the PF. p30 synthesis was estimated to be 0.8% of the total host cell protein synthesis. Immune precipitates from cell pulse labeled for 2.5 min contained a labeled 60,000-dalton polypeptide (Pp60) in the PF and a polypeptide in the CE that comigrated with feline leukemia virus p30 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When cells were chased after a pulse label, there was a rapid loss of Pp60 in the PF and an accumulation of p30 in the CE within 30 min followed by distribution of p30 in both the PF and the CE. Estimation of intracellular and extracellular p30 levels during a 0.5- to 24-h chase period suggested that most of the newly synthesized p30 was incorporated into extracellular virus. Typtic peptide analysis of labeled Pp60 and p30 demonstrated the presence of 13 of 15 p30 peptides within the Pp60 molecule. The tryptic peptide analysis in concert with the pulse-chase labeling data provides strong evidence that Pp60 is a precursor of p30.  相似文献   

2.
The McDonough (SM), Gardner-Arnstein (GA), and Snyder-Theilen (ST) strains of feline sarcoma virus (FeSV) code for high-molecular-weight polyproteins that contain varying amounts of the amino-terminal region of the FeLV gag gene-coded precursor protein and a polypeptide(s) of an as yet undetermined nature. The SM-FeSV primary translational product is a 180,000-dalton polyprotein which is immediately processed into a highly unstable 60,000-dalton molecule containing the p15-p12-p30 fragment of the FeLV gag gene-coded precursor protein and a 120,000-dalton FeSV-specific polypeptide. The GA- and ST-FeSV genomes code for polyproteins of 95,000 and 85,000 daltons, respectively, which in addition to the amino-terminal moiety (p15-12 and a portion of p30) of the FeLV gag gene-coded precursor protein also contain FeSV-specific polypeptides. However, the GA- and ST-FeSV polyproteins appear to be relatively stable molecules (half-lives of around 16 h) and are not significantly processed into smaller polypeptides. Immunological and biochemical analysis of each of the above FeSV translational products revealed that the sarcoma-specific regions of the GA- and ST-FeSV polyproteins are antigenically cross-reactive and exhibit common methionine-containing peptides. These findings favor the concept that these sarcoma-specific polypeptides are coded for by the similar subsets of cellular sequences incorporated into the GA- and ST-FeSV genomes during the generation of these transforming agents.  相似文献   

3.
J Ghysdael  R Kettmann    A Burny 《Journal of virology》1979,29(3):1087-1098
Bovine leukemia virus 60 to 70S RNA was heat denatured, the polyadenylic acid-containing species were separated by velocity sedimentation, and several size classes were translated in a micrococcal nuclease-treated cell-free system from rabbit reticulocytes. The major RNA species sedimented at 38S and migrated as a single component of molecular weight 2.95 x 10(6) when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The predominant polypeptides of the in vitro translation of bovine leukemia virus 38S RNA were products with molecular weights of 70,000 and 45,000; minor components with molecular weights of 145,000 and 18,000 were also observed. Two lines of evidence indicate that the 70,000- and 45,000-molecular weight polypeptides represent translation products of the gag gene of the bovine leukemia virus genome (Pr70gag and Pr45gag). First, they are specifically precipitated by a monospecific antiserum to the major internal protein, p24, and second, they are synthesized and correctly processed into virion proteins p24, p15, and p10 in Xenopus laevis oocytes microinjected with bovine leukemia virus 38S RNA. The 145,000-molecular weight polypeptide was immunoprecipitated by the anti-p24 serum and not by an antiserum to the major envelope glycoprotein, gp60. It contained all the tryptic peptides of Pr70gag and additional peptides unique to it, and thus represents in elongation product of Pr70gag in an adjacent gene, presumably the pol gene. The 18,000-molecular weight product was antigenically unrelated to p24 and gp60 and shared no peptides in common with Pr70gag, Pr45gag, or the 145,000-molecular weight polypeptide. It was maximally synthesized on a polyadenylic acid-containing virion 16 to 18S RNA, and we present evidence that this RNA is a 3' end-derived subgenomic fragment of the bovine leukemia virus genome rather than a contaminating cellular RNA.  相似文献   

4.
We constructed recombinant feline herpesviruses (FHVs) expressing the envelope (env) and gag genes of feline leukemia virus (FeLV). Expression cassettes, utilizing the human cytomegalovirus immediate-early promoter, were inserted within the thymidine kinase gene of FHV. The FeLV env glycoprotein expressed by recombinant FHV was processed and transported to the cell surface much as in FeLV infection, with the exception that proteolytic processing to yield the mature gp70 and p15E proteins was less efficient in the context of herpesvirus infection. Glycosylation of the env protein was not affected; modification continued in the absence of efficient proteolytic processing to generate terminally glycosylated gp85 and gp70 proteins. A recombinant FHV containing the FeLV gag and protease genes expressed both gag and gag-protease precursor proteins. Functional protease was produced which mediated the proteolytic maturation of the FeLV gag proteins as in authentic FeLV infection. Use of these recombinant FHVs as live-virus vaccines may provide insight as to the role of specific retroviral proteins in protective immunity. The current use of conventional attenuated FHV vaccines speaks to the wider potential of recombinant FHVs for vaccination in cats.  相似文献   

5.
6.
In this study, we demonstrated the expression of a 170,000-Mr polyprotein in each of several McDonough feline sarcoma virus (FeSV)-transformed mink cell clones and one McDonough FeSV-transformed rat clone. This polyprotein designated McDonough FeSV P170, contained feline leukemia virus (FeLV) p15, p12, and p30 immunological determinants and shared two of its five [35S]methionine-labeled tryptic peptides with FeLV Pr180gag-pol. Both of these peptides were shown to be specific to the p30 component of Pr180gag-pol. The remaining McDonough FeSV P170 methionine-containing peptides were not represented within either FeLV Pr180gag-pol or Pr82env. Of interest, of the three peptides specific to the nonstructural component of McDonough FeSV P170, one was also represented in the 115,000-Mr polyproteins encoded by the Gardner and Snyder-Theilen strains of FeSV. These findings raise the possibility that the nonstructural components of polyproteins encoded by each of the three independently derived feline transforming viruses contained both common and unique regions. Moreover, if the sequences encoding these components are involved in transformation, as appears to be the case, our findings establish that the position of their insertion within the gag-pol region of the FeLV genome can vary among individual isolates.  相似文献   

7.
The major non-glycosylated structural proteins of feline leukemia virus have been isolated, and competition immunoassays have been developed for each. These proteins include the 27,000- to 30,000-molecular-weight major internal antigen designated p30, a 15,000-molecular-weight protein (p15), an acidic protein of 12,000 molecular weight (p12), and a highly basic 10,000-molecular-weight protein (p10). Immunologically and biochemically corresponding proteins of feline and murine leukemia viruses have been identified. and, on the basis of analogy to the known sequence of a prototype type C virus of mouse origin, the map order of the gag region of the feline type C viral genome has been tentatively deduced as NH2-p15-p12-p10-COOH. The demonstration of two feline leukemia virus gag gene-coded proteins, p15 and p12, expressed in the form of an uncleaved precursor in a mink cell line nonproductively transformed by feline sarcoma virus provides indirect support for the proposed sequence.  相似文献   

8.
The primary translational product of the McDonough (SM) strain of feline sarcoma virus (FeSV) is a 180,000-dalton molecule, SM P180, that contains the p15-p12-p30 region of the FeLV gag gene-coded precursor protein and a sarcoma virus-specific polypeptide. In addition, cells transformed by SM-FeSV express a 120,000-dalton molecule, SM P120, that is highly related to the non-helper virus domain of SM P180. Both SM-FeSV gene products were found to be intimately associated with the membrane fraction of SM-FeSV-transformed cells. Immunoprecipitates containing SM P180 and SM P120 exhibited a protein kinase activity capable of phosphorylating tyrosine residues of both viral gene products but not immune immunoglobulin G molecules. By independently immunoprecipitating each of the two SM-FeSV proteins we found that most of the tyrosine-specific phosphorylating activity was associated with the SM P120 molecule. In vivo analysis of 32P-labeled SM P180 and SM P120 revealed their phosphoprotein nature; however, both molecules exhibited low levels of phosphorylation and did not contain phosphotyrosine residues. Finally, we did not detect any significant elevation in the levels of phosphotyrosine in the protein fraction of SM-FeSV transformants. Thus, if SM-FeSV were to induce malignant transformation by a mechanism involving phosphorylation of tyrosine residues, the viral gene products must interact with a small subset of cellular proteins that do not represent a significant fraction of the total cellular protein content.  相似文献   

9.
Mouse mammary tumor virus (MuMTV) was purified from two cell lines (GR and Mm5MT/c1), and the genomic RNA was isolated and translated in vitro in cell-free systems derived from mouse L cells and rabbit reticulocytes. The major translation product in both systems was a protein with the molecular weight 77,000. Several other products were also detected, among them a 110,000-dalton and in minor amounts a 160,000-dalton protein. All three polypeptides were specifically immunoprecipitated by antiserum raised against the major core protein of MuMTV (p27), but they were not precipitated by antiserum against the virion glycoprotein gp52. Analysis of the in vitro products by tryptic peptide mapping established their relationship to the virion non-glycosylated structural proteins. The 77,000-dalton polypeptide was found to be similar, if not identical, to an analogous precursor isolated from MuMTV-producing cells. Peptide mapping of the 110,000-dalton protein shows that it contains all of the methionine-labeled peptides found in the 77,000-dalton protein plus some additional peptides. We conclude that the products synthesized in vitro from the genomic MuMTV RNA are related to the non-glycosylated virion structural proteins. Polyadenylic acid-containing RNA from MuMTV-producing cells also directed the synthesis of the 77,000-dalton polypeptide in the L-cell system. If this RNA preparation was first fractionated by sucrose gradient centrifugation the 77,000-dalton protein appeared to be synthesized from mRNA with a sedimentation coefficient between 25 and 35S.  相似文献   

10.
It was previously demonstrated that the 60,000 dalton (p60) precursor-like polyprotein containing murine p30 was a constituent of the feline leukemia virus pseudotype of Moloney sarcoma virus [m1MSV(FeLV)]. It is now shown that p60 is detected in cells of five mammalian species transformed by m1MSV, indicating that p60 is specified by this genome. Moreover, little or no murine p30 is detected in the m1MSV-transformed cells, suggesting that the murine group p30 antigenic reactivity of S + L- cells is ude to p60. Pulse-chase studies in cells producing m1MSV(FeLV) show that p60 is the largest polypeptide detectable during the pulse, and that intracellular p60 is not cleaved into smaller (for example, p30) polypeptides during chase periods of up to 10 hr. The lack of cleavage of p60 is in contrast to the properties of p30 precursors detected in cells containing replicating avian or mammalian RNA tumor viruses. The inefficient cleavage of intracellular p60 and the kinetics of appearance of murine p30 in extracellular m1MSV(FeLV) suggest that p60 cleavage to p30 occurs in cells shortly before virus release. While only p60 was detected in the m1MSV-transformed cells, p60 and p70 were detected in m3MSV-transformed cells, and no immunoprecipitable polypeptides were detected in HT-1 MSV-transformed cells. The observed differences in the intracellular polypeptide expression by each of the strains of MSV suggests differences in genetic content.  相似文献   

11.
We have compared the polypeptide products of the src gene of several strains of Rous sarcoma virus produced by in vitro translation of heat-denatured 70S virion RNA in the nuclease-treated reticulocyte lysate with those present in chick cells transformed by these viruses. We have done this by immunoprecipitation, using sera from rabbits injected at birth with Schmidt-Ruppin Rous sarcoma virus. In vitro translation results in the synthesis of at least nine polypeptides which appear to be encoded by the src gene. These range in size from 17,000 to 60,000 daltons. The sera from tumor-bearing rabbits precipitated these polypeptides arising from the in vitro translation of RNA from Schmidt-Ruppin Rous sarcoma virus of both subgroup A and subgroup D and from one stock of Prague Rous sarcoma virus of subgroup C. In each case, all of this family of related polypeptides could be precipitated except the smallest, the 17,000-dalton polypeptide. No precipitation of analogous polypeptides resulting from the translation of RNA from other strains of Rous sarcoma virus was observed. Cells transformed by these three strains of Rous sarcoma virus contain easily detectable amounts of a polypeptide, p60src, essentially identical to the 60,000-dalton in vitro product. With one exception, they do not contain significant amounts of polypeptides analogous to the smaller in vitro products which can be precipitated by these sera. Cells transformed by one stock of Schmidt-Ruppin Rous sarcoma virus of subgroup A did contain a 39,000-dalton polypeptide, which was related, by peptide mapping, to the 60,000-dalton polypeptide and was similar in size to a precipitable in vitro product. The 60,000-dalton polypeptide present in transformed cells appeared to be phosphorylated 10 to 25 min after its synthesis, metabolically very stable, and not derived from a precursor polypeptide. All immunoprecipitates from transformed cells which contained p60src also contained an 80,000-dalton phosphoprotein. This polypeptide is unrelated to p60src, as determined by peptide mapping, and may well be a host cell polypeptide which is specifically associated with p60src.  相似文献   

12.
Polyproteins encoded by several independent isolates of feline sarcoma virus (FeSV) were analyzed with respect to molecular weight, extent of phosphorylation, and tryptic peptide composition. As previously reported, cells nonproductively transformed by the Gardner strain of FeSV express a polyprotein which has a molecular weight of approximately 115,000 and contains feline leukemia virus p15, p12, and minor portion of p30. In addition, a major 72,000-dalton possible cleavage product can be identified. Snyder-Theilen FeSV-transformed cells express a major polyprotein of approximately 115,000 daltons and a second highly related 80,000-dalton protein. The p12 structural component of Gardner FeSV P115, but not Snyder-Theilen FeSV 115, corresponds to feline leukemia virus subgroup A with respect to immunological type specificity, a finding consistent with the independent origin of these viruses. Tryptic peptide analysis revealed five methionine-containing peptides specific to the nonstructural portion of Gardner FeSV 115, three of which were also represented in Snyder-Theilen FeSV P115, three of which were also represented in Snyder-Theilen FeSV P115. None of these [35S]methionine-labeled tryptic peptides were present in translational products representative of the complete feline leukemia virus subgroup A genome, including Pr180gag-pol, Pr65gag, and Pr82env. Similarly phosphorylated tryptic peptides within the structural (p12) and nonstructural components of Gardner FeSV P115 and Snyder-Theilen FeSV P115 Are highly related. These findings support the possibility that acquired sequences of two independently derived isolates of FeSV encode structurally related proteins.  相似文献   

13.
Viral protein synthesis in Moloney murine leukemia virus infected high passage mouse embryo cells was studied utilizing monospecific antisera to the viral core protein p30 and envelope protein gp71. Pulse-chase analysis of [35S]methionine-labeled polypeptides in combination with the demonstration of the presence of either gp71 or p30-specific antigenic determinants in them indicated a 84,000-dalton polypeptide as the precursor of viral glycoproteins and four metabolically unstable polypeptides of approximate molecular weights 88,000, 72,000, 62,000, and 39,000 as the precursors of viral core protein, p30. The p30-containing 88,000 and 72,000-dalton polypeptides were distinctly seen in this system under normal growth conditions. Further, the processing of p30 precursors was very rapid and was complete during a 40 min chase while only partial processing of glycoprotein precursor was observed during the same period.  相似文献   

14.
Relationships among the polypeptides of Newcastle disease virus.   总被引:11,自引:10,他引:1  
We have studied the relationships among the polypeptides of Newcastle disease virus by using both kinetic and tryptic peptide analyses. The results of our tryptic peptide analyses suggest that there are at least six unique viral polypeptides--L, HN, FO(F), NP, M, and a 47,000-dalton polypeptide. The small virion glycopolypeptide F is related to FO, a glycopolypeptide found only in infected cells. In addition, several smaller polypeptides, including a 53,000-dalton polypeptide found both in purified virions and in infected cells, are related to the nucleocaspid protein. Kinetic analysis of each viral polypeptide reveals that all of the major viral polypeptides, with the possible exception of L, are stable after an amino acid chase. A precursor-product relationship between FO and F was not demonstrable by pulse-chase experiments. Also, almost the same relative amount of F, the putative product, was present in infected cultures after either 5 or 30 min of radioisotopic labeling. These results suggest that FO is processed rapidly.  相似文献   

15.
Rickard's strain of feline leukemia virus (FeLV) contains two large glycoproteins and five smaller polypeptides of molecular weights 100,000 (gp >/= 100), 70,000 (gp70), 30,000 (p30), 21,000 (p21), 15,000 (p15), 11,200 (p11), and 10,000 (p10) when chromatographed on 6% agarose in the presence of 6 M guanidine hydrochloride (GuHCl). P21 is a minor component which was not previously described for mammalian leukemia-sarcoma viruses and may be analogous to the seventh protein found in avian viruses. Analysis on 4% agarose and by sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that gp >/= 100 is actually >/= 200,000 daltons and dissociates to polypeptides of approximately 100,000 to 115,000 daltons, whereas gp70 can be resolved into six stained bands ranging from 40,000 to 80,000 daltons despite being rechromatographed as a single symmetrical peak on 6% agarose. Rechromatography on 8% agarose was found to be more effective than on 6% agarose or sodium dodecyl sulfate polyacrylamide gel electrophoresis for obtaining the five small polypeptides, especially p11 and p10, in a highly purified form suitable for further analysis and for obtaining more precise estimates of their molecular weights, especially when done by co-chromatography with iodinated standard proteins markers. Rechromatographed p30, p21, p15, p11, and p10 had molecular weights of 27,000, 18,000, 15,000, 12,000, and 12,000 respectively, by co-electrophoresis with the marker proteins on sodium dodecyl sulfate polyacrylamide gel electrophoresis, clearly establishing that the latter two FeLV polypeptides comigrate to form one less band when compared to elution from agarose. The isoelectric points of p30 and p15 were 5.5 and 8.9, respectively, after renaturation from GuHCl and 5.6 and 8.7, respectively, when isolated from Tween-ether treated virus. Rechromatographed p30, p15, and p11, renatured by removing GuHCl with dialysis, reacted only with their homologous antisera in immunodiffusion analysis, indicating that they are immunologically unrelated. Also the interspecies gs-3 determinant associated with p30 could be regained by removal of GuHCl.  相似文献   

16.
We describe the molecular cloning of an anemogenic feline leukemia virus (FeLV), FeLV-C-Sarma, from the productively infected human rhabdomyosarcoma cell line RD(FeLV-C-S). Molecularly cloned FeLV-C-S proviral DNA yielded infectious virus (mcFeLV-C-S) after transfection of mammalian cells, and virus interference studies using transfection-derived virus demonstrated that our clone encodes FeLV belonging to the C subgroup. mcFeLV-C-S did not induce viremia in eight 8-week-old outbred specific-pathogen-free (SPF) cats. It did, however, induce viremia and a rapid, fatal aplastic anemia due to profound suppression of erythroid stem cell growth in 9 of 10 inoculated newborn, SPF cats within 3 to 8 weeks (21 to 58 days) postinoculation. Thus, the genome of mcFeLV-C-S encodes the determinants responsible for the genetically dominant induction of irreversible erythroid aplasia in outbred cats. A potential clue to the pathogenic determinants of this virus comes from previous work indicating that all FeLV isolates belonging to the C subgroup, an envelop-gene-determined property, and only those belonging to the C subgroup, are potent, consistent inducers of aplastic anemia in cats. To approach the molecular mechanism underlying the induction of this disease, we first determined the nucleotide sequence of the envelope genes and 3' long terminal repeat of FeLV-C-S and compared it with that of FeLV-B-Gardner-Arnstein (mcFeLV-B-GA), a subgroup-B feline leukemia virus that consistently induces a different disease, myelodysplastic anemia, in neonatal SPF cats. Our analysis revealed that the p15E genes and long terminal repeats of the two FeLV strains are highly homologous, whereas there are major differences in the gp70 proteins, including five regions of significant amino acid differences and apparent sequence substitution. Some of these changes are also reflected in predicted glycosylation sites; the gp70 protein of FeLV-B-GA has 11 potential glycosylation sites, only 8 of which are present in FeLV-C-S.  相似文献   

17.
The structural proteins of murine type C retroviruses are proteolytic cleavage products of two different precursor polyproteins coded by the viral gag and env genes. To further investigate the nature and number of proteolytic cleavages involved in virus maturation, we quantitatively isolated the structural proteins of the Rauscher and Moloney strains of type C murine leukemia virus (R-MuLV and M-MuLV, respectively) by reversed-phase high-pressure liquid chromatography. Proteins and polypeptides isolated from R-MuLV included p10, p12, p15, p30, p15(E), gp69, and gp71 and three previously undescribed virus components designated here as p10', p2(E), and p2(E). Homologous proteins and polypeptides were isolated from M-MuLV. Complete or partial amino acid sequences of all the proteins listed above were either determined in this study or were available in previous reports from this laboratory. These data were compared with those from the translation of the M-MuLV proviral DNA sequence (Shinnick et al., Nature [London] 293:543-548, 1981) to determine the exact nature of proteolytic cleavages for all the structural proteins described above and to determine the origin of p10' and p2(E)s. The results showed that, during proteolytic processing of gp80env from M-MuLV (M-gp 80env), a single Arg residue was excised between gp70 and p15(E) and a single peptide bond was cleaved between p15(E) and p2(E). The structure of M-gPr80env is gp70-(Arg)-p15(E)-p2(E). The data suggest that proteolytic cleavage sites in R-gp85env are identical to corresponding cleavage sites in M-gp80env. The p2(E)s are shown to be different genetic variants of p2(E) present in the uncloned-virus preparations. The data for R- and M-p10's shows that they are cleavage products of the gag precursor with the structure p10-Thr-Leu-Asp-Asp-OH. The complete structure of Pr65gag is p15-p12-p30-p10'. Stoichiometries of the gag and env cleavage products in mature R- and M-MuLV were determined. In each virus, gag cleavage products (p15, p12, p30, and p10 plus p10') were found in equimolar amounts and p15(E)s were equimolar with p2(E)s. The stoichiometry of gag to env cleavage products was 4:1. These data are consistent with the proposal that proteolytic processing of precursor polyproteins occurs after virus assembly and that the C-terminal portion of Pr15(E) [i.e., p15(E)-p2(E)] is located on the inner side of the lipid bilayer of the virus.  相似文献   

18.
We synthesized 27 synthetic peptides corresponding to approximately 80% of the sequences encoding gp70 and p15E of Gardner-Arnstein feline leukemia virus (FeLV) subtype B. The peptides were conjugated to keyhole limpet hemocyanin and injected into rabbits for preparation of antipeptide antisera. These sera were then tested for their ability to neutralize a broad range of FeLV isolates in vitro. Eight peptides elicited neutralizing responses against subtype B isolates. Five of these peptides corresponded to sequences of gp70 and three to p15E. The ability of these antipeptide antisera to neutralize FeLV subtypes A and C varied. In certain circumstances, failure to neutralize a particular isolate corresponded to sequence changes within the corresponding peptide region. However, four antibodies which preferentially neutralized the subtype B viruses were directed to epitopes in common with Sarma subtype C virus. These results suggest that distal changes in certain subtypes (possibly glycosylation differences) alter the availability of certain epitopes in one virus isolate relative to another. We prepared a "nest" of overlapping peptides corresponding to one of the neutralizing regions of gp70 and performed slot blot analyses with both antipeptide antibodies and a monoclonal antibody which recognized this epitope. We were able to define a five-amino-acid sequence required for reactivity. Comparisons were made between an anti-synthetic peptide antibody and a monoclonal antibody reactive to this epitope for the ability to bind both peptide and virus, as well as to neutralize virus in vitro. Both the anti-synthetic peptide and the monoclonal antibodies bound peptide and virus to high titers. However, the monoclonal antibody had a 4-fold-higher titer against virus and a 10-fold-higher neutralizing titer than did the anti-synthetic peptide antibody. Competition assays were performed with these two antibodies adjusted to equivalent antivirus titers against intact virions affixed to tissue culture plates. The monoclonal antibody had a greater ability to compete for virus binding, which suggested that differences in neutralizing titers may relate to the relative affinities of these antisera for the peptide conformation in the native structure.  相似文献   

19.
Feline leukemia virus (FeLV) is a type-C retrovirus associated with lymphoid and hematopoietic malignancies in cats. The FeLV-induced tumors are thought to be caused, at least in part, by somatically acquired insertional mutagenesis in which the integrated provirus may activate a proto-oncogene or disrupt a tumor suppressor gene. This study was undertaken to enumerate and map the acquired proviral insertions in the genome of a feline thymic lymphoma cell line (FT-1) infected with FeLV. Fluorescence in situ hybridization (FISH) combined with tyramide signal amplification was applied on the chromosome specimen of FT-1 cells and normal cat lymphocytes, with an entire FeLV-A genome used as a probe. Specific hybridization signals were detected from only the metaphases of the FT-1 cells, not from those of normal cat lymphocytes. Statistically based on the Poisson's distribution, at least six loci of chromosomal regions, A2p23-p22, B2p15-p14, B4p15-p14, D4q23-q24, E1p14-p13, and E2p13-p12, appeared to be positive for FeLV integration. Consistently, Southern blot hybridization analysis using an FeLV LTR-U3 probe specific for exogenous FeLV showed the integration of at least six FeLV proviral genomes in FT-1 cells. The cytogenetic technique employed here will provide valuable molecular tags to reveal unidentified tumor-associated genes in FeLV-associated tumor cells.  相似文献   

20.
The four major internal structural proteins (the group-specific antigens) of avian myeloblastosis virus are formed by sequential cleavage of a precursor polypeptide with Mr = 76,000 (Pr76). The evidence for this conclusion is based on analysis of immune precipitates from lysates of AMV4-infected cells treated with a multivalent antiserum directed against these proteins. Sodium dodecyl sulfate gel electrophoresis of such immune precipitates from cells pulse-labeled with [35S]-methionine reveals five metabolically unstable radioactive polypeptides. These polypeptides behave kinetically as precursors to virion proteins. Double-label ion-exchange chromatography of tryptic digests of the unstable polypeptides demonstrates that the largest precursor, Pr76, contains the amino acid sequences of all four virion proteins. It appears not to contain the sequence of the fifth and smallest internal virion protein. The four smaller precursors are intermediate cleavage products of Pr76.The arrangement of the virion proteins in Pr76 was determined by labeling cells shortly after inhibiting polypeptide chain initiation. The relative amounts of radioactivity both in completed virion proteins and in the tryptic peptides of Pr76 implies the same order for three of the four proteins. The exact position of one protein remains uncertain.On the basis of these experiments, we propose a cleavage pathway for the generation of the structural proteins of AMV. We also demonstrate that cleavage of precursors can proceed in crude extracts of AMV-infected cells. This proteolysis, while resistant to several protease inhibitors, is completely blocked by addition of agents that disrupt membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号