首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A broad expression of aromatase and estrogen receptors (ERs) in the testis suggests an important role for estrogens in regulating testicular cell function and reproductive events. The aim of the present study was to show whether Leydig cells in vitro isolated from cryptorchid testes of two inbred strains of mice, KE and CBA, are a site of estrogen synthesis. Using immunocytochemistry, aromatase, estrogen receptor alpha(ERalpha), and estrogen receptor beta(ERbeta) were localized in cultured Leydig cells. Immunoreactive aromatase was found in the cytoplasm of control Leydig cells and those isolated from cryptorchid males, however the intensity of immunostaining was different, being stronger in Leydig cells deriving from cryptorchid mice. The strongest aromatase immunostaining was found in cryptorchid-KE Leydig cells. Strong immunoexpression of ERalpha was detected in the nuclei of both KE-and CBA-Leydig cells. The intensity of ERalpha immunostaining was stronger in cultured cells deriving from cryptorchid testes. ERbeta immunoexpression was detected predominantly in KE-Leydig cells. Control CBA-Leydig cells were negative for ERbeta or the result was inconclusive, whereas in cryptorchid CBA-Leydig cells a weak immunostaining was present in their nuclei. Western blot analysis confirmed the results obtained by immunocytochemistry. In KE- and CBA-Leydig cells aromatase as a band of 55 kDa protein was present, whereas ERalpha molecular weight was 67 kDa on Western blots. No band was detected for ERbeta. Radioimmunological analysis revealed that androgen and estrogen levels secreted by Leydig cells in vitro were strain-dependent. Additionally, in KE-Leydig cells that derived from cryptorchid mice estrogen level was distinctly higher in comparison with that of the respective control.  相似文献   

2.
The effects of estrogens on ovarian aromatase activity were investigated in vitro using granulosa cells from immature hypophysectomized estrogen-primed rats. The cells were cultured for 3 days in an androgen-free medium in the presence of follicle-stimulating hormone (FSH), with or without the specified estrogen. After washing, the cells were reincubated for 5 h with 10(-7) M androstenedione, and the formation of estrogens was measured. Estrogen production by control and diethylstilbestrol-treated cells was negligible, while FSH stimulated aromatase activity. Furthermore, concomitant treatment with diethylstilbestrol led to dose-dependent increases in the FSH-induced aromatase activity with an ED50 value of 4 X 10(-9) M and an apparent Vmax value 12- to 16-fold higher than those induced by FSH alone. The direct stimulatory effect of estrogens was time-dependent and was not accounted for by increases in cell protein. Various native and synthetic estrogens also augmented the FSH induction of aromatases (native estrogens: estradiol-17 beta = estrone greater than estradiol-17 alpha greater than estriol; synthetic estrogens: hexestrol greater than moxestrol greater than ethinyl estradiol much greater than chlorotrianisene and mestranol). The effect of estradiol-17 beta was dose-dependent with an ED50 value of 9 X 10(-9) M, which is within the physiological levels of follicular estradiol-17 beta. Although treatment with androgens also enhanced the FSH-induced aromatases, treatment with a progestin (R5020) or a mineralocorticoid (aldosterone) was without effect. Thus, estrogens directly augment the stimulation of granulosa cell aromatase activity by FSH. Follicular estrogens may activate intraovarian autoregulatory positive feedback mechanisms to enhance their own production, resulting in selective follicle maturation and the preovulatory estrogen surge.  相似文献   

3.
4.
The effect of aqueous hollyhock flower (Althaea rosea Cav. var. nigra) extract on the rat Leydig cell metabolism and morphology was studied using histochemical, morphometric and radioimmunological methods. The rats were drinking the extract for 30 days (group A1) and for 180 days (group A2). Leydig cells of group A1 manifested marked increase in the 3beta-HSD, G6PD and NADPD activities and in the Khanolkar reaction intensity. These findings were accompanied by the increase in the volume of Leydig cells and their nuclei. In group A2 Leydig cells, statistically insignificant changes in the G6PD and NADPD activities were observed, however, the significant increase in the 3beta-HSD activity and the Khanolkar reaction intensity indicated compensatory changes. The statistically significant elevation of the androgen level accompanied by a decrease in estrogen content in homogenates of group A2 testes pointed to weak antiestrogenic effect of the extract. The obtained results indicate an influence of the hollyhock extract on steroid metabolism.  相似文献   

5.
6.
The present work was done to investigate the cell localization of testicular aromatase activity and its regulation in immature pig testis using an in vitro model. Leydig cells and Sertoli cells were isolated from immature pig testes and cultured alone or together in the absence or presence of human chorionic gonadotropin (hCG) or porcine follicle-stimulating hormone (pFSH) for 2 days. At the end of incubation, the amounts of testosterone (T), estrone sulfate (E1S) and estradiol (E2) were measured. Then the cells were incubated for 4 h in the presence of saturating concentrations of delta 4-androstenedione (3 microM) and the amounts of E1S and E2 were measured again (aromatase activity). The ability of Sertoli cells to produce estrogens was very low and neither hCG nor pFSH had any significant effect. hCG stimulated, in a dose-dependent manner, the secretion of T and E1S by Leydig cells cultured alone as well as the aromatase activity of these cells. The main estrogen produced by Leydig cells was E1S. pFSH also stimulated the above parameters of Leydig cell function; this may have been due to the contamination of this hormone with luteinizing hormone (LH). Coculture of Leydig cells with Sertoli cells without gonadotropins had very small effects on T and E1S production and on aromatase activity. However, treatment of coculture with increasing concentrations of hCG had a dramatic effect on Leydig cell functions. For each hCG concentration, the amounts of T and E1S secreted, as well as the aromatase activity of the coculture, were 2- to 3-fold higher than those of Leydig cells cultured alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
Aromatization of androgens into estrogens is performed by a microsomal enzyme, the cytochrome P450 aromatase. A direct approach for identifying the cellular source of aromatase is the use of immunohistochemistry with a specific antibody that recognizes aromatase. The pig presents some unusual features with regard to the synthesis of testosterone and estrogens in the male gonads. In testes from prepubertal males, testosterone level measured radioimmunologically, was lower than in testes from adult pig, while estrogen secretion was relatively high and comparable to that of mature porcine gonads. Immunolocalization of aromatase in testes from both immature and mature pigs was confined to the Leydig cell cytoplasm. The intensity of immunohistochemical staining indicated the presence of unsynchronous Leydig cell population. Other somatic cells and germ cells were negative for aromatase. In control tissue sections, incubated in the absence of the primary antibody or in the presence of normal rabbit serum, no positive staining was observed. Western blot analysis revealed one major band of aromatase about 50-52 kDa in testes from both immature and mature pigs.  相似文献   

9.
High levels of plasma estrogens constitute an endocrine peculiarity of the adult stallion. This is mostly due to testicular cytochrome p450 aromatase, the only irreversible enzyme responsible for the bioconversion of androgens into estrogens. To identify more precisely the testicular aromatase synthesis sites in the stallion, testes from nine horses (2-5 years) were obtained during winter or spring. Paraplast-embedded sections were processed using rabbit anti-equine aromatase, followed by biotinylated goat anti-rabbit antibodies, and amplified with a streptavidin-peroxidase complex. Immunoreactivity was detected with diaminobenzidine. Immunofluorescence detection, using fluoroisothiocyanate-conjugated goat anti-rabbit antibodies, was also applied. Specific aromatase immunoreactivity was observed intensely in Leydig cells but also for the first time, to a lesser extent, in the cytoplasm surrounding germ cells at the junction with Sertoli cells. Interestingly, the immunoreactivity in Sertoli cells appears to vary with the spermatogenic stages in the basal compartment (with spermatogonia) as well as in the adluminal one (with spermatids). Relative staining intensity in Leydig and Sertoli cells and testicular microsomal aromatase activity increased with age. The present study in stallions indicates that in addition to Leydig cells, Sertoli cells also appear to participate in estrogen synthesis, and this could play a paracrine role in the regulation of spermatogenesis.  相似文献   

10.
It has been suggested that rate of estrogen formation was higher in patients with androgen insensitivity syndrome (AIS). This work was designed to find out if peripheral aromatase activity could be related to a defect in androgen action in prepubertal children with male pseudohermaphroditism. Fibroblast estrogen production was assayed by a highly specific enzymatic determination. Foreskin fibroblast strains were raised from 17 children with partial androgen insensitivity (PAIS) as defined by dihydrotestosterone binding activity in cells. Results are expressed as pmol estrogens/mg proteins synthetized/day when cultured fibroblasts are incubated with D4-androstenedione. In normal prepubertal boys (n = 19), aromatase activity ranged between 5 and 10 pmol estrogens/mg proteins/day, while in postpubertal boys it varied between 15 and 34 pmol estrogens/mg proteins/day. In prepubertal boys with PAIS (n = 17) aromatase activity is highly elevated: 19.4 +/- 8.4 pmol/mg proteins/day. These results show that (a) peripheral aromatase activity is low before puberty and (b) fibroblast estrogen synthesis is significantly (p less than 0.001) increased in prepubertal children with PAIS. Our data suggest that low utilization of androgens by target cells stimulates the production of estrogen. Peripheral aromatase activity can thus be considered as a 'marker' of androgen insensitivity in prepubertal children with male pseudohermaphroditism.  相似文献   

11.
Estrogens produced within breast tumors may play a pivotal role in growth stimulation of the breast cancer cells. However, it is elusive whether the epithelial breast cancer cells themselves synthesize estrogens, or whether the surrounding tumor stromal cells synthesize and supply the cancer cells with estrogen. The aromatase enzyme catalyzes the estrogen production, aromatizing circulating androgens into estrogens. The aim of this study was to investigate aromatase expression and function in a model system of human breast cancer, using the estrogen responsive human MCF-7 breast cancer cell line. Cells were cultured in a low estrogen milieu and treated with estrogens, aromatizable androgens or non-aromatizable androgens. Cell proliferation, expression of estrogen-regulated proteins and aromatase activity were investigated. The MCF-7 cell line was observed to express sufficient aromatase enzyme activity in order to aromatize the androgen testosterone, resulting in a significant cell growth stimulation. The testosterone-mediated growth effect was completely inhibited by the aromatase inhibitors letrozole and 4-hydroxy-androstenedione. Expression studies of estrogen-regulated proteins confirmed that testosterone was aromatized to estrogen in the MCF-7 cells. Thus, the results indicate that epithelial breast cancer cells possess the ability to aromatize circulating androgens to estrogens.  相似文献   

12.
13.
The role of estrogen on male reproductive function has become clearer in the last decade. During these years the study of the effect of testosterone, estrogen or an aromatase inhibitor in hypogonadal men provided a first evidence of the effects of estrogens in the regulation of gonadotropin secretion. At the same time, the development of a line of transgenic male mice lacking estrogen receptor α, estrogen receptor β or aromatase gene provided further evidence about the role of estrogens not only in the regulation of gonadotropin secretion, but also on the effects of estrogens on testicular function and development. A confirmation of these actions of estrogens came from the observation of naturally occurring mutations of the estrogen receptor and of the aromatase gene in human males. Based on these data it has been demonstrated that estrogens are major regulators of gonadotropin secretion acting both at pituitary and hypotalamic level. The presence in the human reproductive structures of estrogen receptor α, estrogen receptor β and the aromatase enzyme indicates the existence of receptor α, estrogen receptor β or aromatase estrogen actions at this level. Anyway, the precise role of estrogens in testicular development and function and on the regulation of human spermatogenesis has not yet been precisely clarified.  相似文献   

14.
The role of estrogen on male reproductive function has become clearer in the last decade. During these years the study of the effect of testosterone, estrogen or an aromatase inhibitor in hypogonadal men provided a first evidence of the effects of estrogens in the regulation of gonadotropin secretion. At the same time, the development of a line of transgenic male mice lacking estrogen receptor α, estrogen receptor β or aromatase gene provided further evidence about the role of estrogens not only in the regulation of gonadotropin secretion, but also on the effects of estrogens on testicular function and development. A confirmation of these actions of estrogens came from the observation of naturally occurring mutations of the estrogen receptor and of the aromatase gene in human males. Based on these data it has been demonstrated that estrogens are major regulators of gonadotropin secretion acting both at pituitary and hypotalamic level. The presence in the human reproductive structures of estrogen receptor α, estrogen receptor β and the aromatase enzyme indicates the existence of receptor α, estrogen receptor β or aromatase estrogen actions at this level. Anyway, the precise role of estrogens in testicular development and function and on the regulation of human spermatogenesis has not yet been precisely clarified.  相似文献   

15.
Estrogen receptor (ER)- (alpha, beta, and both alpha and beta) and aromatase (Ar) knockout (KO) mice have been created to assess the biological effects of estrogens. This review article discusses the ovarian and uterine phenotypes of these mice. The data obtained have confirmed some older inferences about how the steroid acts, but have also revealed some unexpected aspects of estrogen action. Mol. Reprod. Dev. 59:336-346, 2001.  相似文献   

16.
Estrogens, phytoestrogens and colorectal neoproliferative lesions   总被引:1,自引:0,他引:1  
Epidemiological and experimental studies suggest a protective role of estrogens against colorectal cancer. This effect seems to be mediated by their binding to estrogen receptor beta (ER-beta), one of the two estrogen receptors with high affinity for these hormones. Very recently, the demonstration of an involvement of ER-beta in the development of adenomatous polyps of the colon has also been documented, suggesting the use of selective ER-beta agonists in primary colorectal cancer prevention. Phytoestrogens are plant-derived compounds that structurally and functionally act as estrogen-agonists in mammals. They are characterized by a higher binding affinity to ER-beta as compared to estrogen receptor alpha (ER-alpha), the other estrogen receptor subtype. These biological characteristics explain why the administration of phytoestrogens does not produce the classical side effects associated to estrogen administration (cerebro- and cardio-vascular accidents, higher incidence of endometrial and breast cancer) and makes these substances ideal candidates for the prevention of colorectal cancer.  相似文献   

17.
The effects of estrogens on gonadotropin-stimulated luteinizing hormone (LH) receptor formation were examined in primary cultures of rat granulosa cells. Granulosa cells were cultured for 3 days with increasing concentrations of follicle-stimulating hormone (FSH) in the presence or absence of native and synthetic estrogens. Follicle-stimulating hormone stimulated LH receptor formation in a dose-dependent fashion, and estrogens enhanced the FSH-stimulated LH receptor content by decreasing the apparent ED50 of FSH. At 6.25 ng/ml FSH, the enhancement in LH receptor was estrogen dose dependent, with an ED50 value of about 3 X 10(-9) M for 17 beta-estradiol. The increased LH receptor content seen in cells treated with FSH and estrogen was correlated with increased cAMP production by these cells in response to LH stimulation. Time course studies revealed enhancement of FSH-stimulated LH receptor induction at 48 and 72 h of culture. Granulosa cells were also cultured with FSH for 2 days to induce functional LH receptors, then further cultured for 3 days with LH in the presence or absence of estrogens. At 30 ng/ml LH, increasing concentrations of estrogens maintained LH receptor content in a dose-dependent fashion, with their relative estrogenic potencies in keeping with reported binding affinities to estrogen receptors. An autocrine role of estrogens on LH receptor formation was further tested in granulosa cells treated with FSH and an aromatase substrate (androstenedione) to increase estrogen biosynthesis. Cotreatment with semipurified estrogen antibodies partially blocked the FSH stimulation of LH receptors, whereas nonimmune serum was ineffective. Also, inclusion of diethylstilbestrol prevented the inhibitory effect of the estrogen antibodies. Thus, local estrogens in ovarian follicles may play an autocrine role in granulosa cells to enhance LH receptor formation and to increase granulosa cell responsiveness to the LH surge, with subsequent ovulation and adequate corpus luteum formation.  相似文献   

18.
Estrogens and male reproduction   总被引:1,自引:0,他引:1  
Aromatase is the terminal enzyme responsible for estrogen biosynthesis; it is present in the endoplasmic reticulum membrane of steroidogenic cells in vertebrates. The aromatase gene is unique and its expression is regulated in a tissue- and more precisely, in a cell-specific manner via the alternative use of various promoters located in the first exons. The aromatase gene expression, and its transduction in a fully active protein not only in somatic cells but also in germ cells of rodent testes on one hand, and the widespread distribution of estrogen receptors (ER alpha and ER beta) in the genital tract of the male on the other hand, are clearly in favour of a physiological role for estrogens in the regulation of mammalian testicular functions. Moreover, the aromatase deficiency is associated for instance with severe bone maturation problems and sterility in mouse and man; but conversely, it is well known that estrogens in excess are responsible for the impairment of spermatogenesis. Therefore these female hormones (or the androgens/estrogens ratio) play a physiological role in the development and maintenance of male gonadal functions and seem to control especially the spermatid production (both qualitative and quantitative aspects) and epididymal sperm maturation.  相似文献   

19.
Estrogen, largely produced in testis and adrenal gland, may play important roles in male reproduction. Most of the effects of estrogens are mediated by binding of estrogen to one or both of the two estrogen receptor (ER) subtypes alpha and beta. Recently, they have been described in testis, prostate, and efferent ducts, mostly in rodents. The goal of this study was to prove the evidence of ERs in human corpus cavernosum and male urethra, exploring the protein expression of these receptors by immunohistochemistry. Corpus cavernosum and corpus spongiosum smooth muscle was immunoreactive for the androgen receptor (AR), ER alpha, and strongly for ER beta. Endothelial cells were negative for AR, sporadically positive for ER alpha, and positive for ER beta. Urethral epithelium showed strong nuclear expression of AR, predominantly in the basal cell layer, and nuclear expression of ER alpha in the intermediate cells. ER beta was highly expressed in almost all urethral nuclei and, much more weakly, in cytoplasm. Progesterone receptor (PGR) was negative in all cases and all tissues. These results represent the first report that ER alpha and particularly ER beta are regularly expressed in human penile tissue.  相似文献   

20.
In various species, androgens and estrogens regulate the function of testicular Leydig, Sertoli, peritubular myoid, and germ cells by binding to their respective receptors and eliciting a cellular response. Androgen receptor (AR) is expressed in Sertoli cells, peritubular myoid cells, Leydig cells and perivascular smooth muscle cells in the testis depending on the species, but its presence in germ cells remains controversial. Two different estrogen receptors have been identified, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), and their localization and function in testicular cells varies depending on the species, developmental stage of the cell and type of receptor. The localization of AR in an immature and mature stallion has been reported but estrogen receptors have only been reported for the mature stallion. In the present study, the localizations of AR and ERα/ERβ were investigated in pre-pubertal, peri-pubertal and post-pubertal stallions. Testes were collected by routine castration from 21 horses, of light horse breeds (3 months-27 years). Animals were divided into the following age groups: pre-pubertal (3-11 months; n=7), peri-pubertal (12-23 months; n=7) and post-pubertal (2-27 years; n=7). Testicular tissue samples were fixed and embedded, and the presence of AR, ERα and ERβ was investigated by immunohistochemistry (IHC) using procedures previously validated for the horse. Primary antibodies used were rabbit anti-human AR, mouse anti-human ERβ and rabbit anti-mouse ERα. Sections of each region were incubated with normal rabbit serum (NRS; AR and ERα) or mouse IgG (ERβ) instead of primary antibody to generate negative controls. Androgen receptors were localized in Leydig, Sertoli and peritubular myoid cells of all ages. Estrogen receptor alpha was localized in Leydig and germ cells of all ages but only in pre- and peri-pubertal Sertoli cells and post-pubertal peritubular myoid cells. Estrogen receptor beta was localized in Leydig and Sertoli cells of all ages but in only pre-pubertal germ cells and absent in peritubular myoid cells of all ages. Taken together, the data suggest that estrogen regulates steroidogenesis by acting through ERα and ERβ in the Leydig cells and promotes gametogenesis by acting through ERβ in the Sertoli cells and ERα in the germ cells. In contrast androgen receptors are not found in germ cells throughout development and thus are likely to support spermatogenesis by way of a paracrine/autocrine pathway via its receptors in Leydig, Sertoli and peritubular myoid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号