首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new metal-organic nanocomposite with synergistic catalysis function was prepared and developed to construct an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of tumor biomarker CA125. Silver nanoparticles (AgNPs) and nicotinamide adenine dinucleotide hydride (NADH) that can participate and catalyze the ECL reaction of Ru(bpy)(3)(2+) were employed as the metal component and the organic component to synthesize the metal-organic nanocomposite of NADH-AgNPs (NA). The novel ECL immunosensor was assembled via Ru(bpy)(3)(2+)-doped silica nanoparticles (Ru-SiO(2)) modified electrode with the NA as immune labels. First, the chitosan-suspended Ru-SiO(2) nanoparticles were cast on the gold electrode surface to immobilize the ECL probes of Ru(bpy)(3)(2+) and link gold nanoparticles. Then, the primary antibodies were loaded onto the modified electrode via the gold sulfhydryl covalent binding. After immunobinding the analytes of antigen, NA-attached secondary antibodies could be captured as a sandwich type on the electrode. Finally, based on the circularly synergistic catalysis by the silver and NADH for the solid-phase ECL of Ru(bpy)(3)(2+), the proposed immunosensor sensed the concentration of antigen. The synergistic ECL catalysis of metal-organic nanocomposite amplified response signal and pushed the detection limit down to 0.03 U ml(-1), which initiated a new ECL labeling field and has great significance for ECL immunoassays.  相似文献   

2.
An electrochemical impedimetric immunosensor was developed for ultrasensitive determination of insulin-like growth factor-1 (IGF-1) based on immobilization of a specific monoclonal antibody on gold nanoparticles (GNPs) modified gold electrode. Self-assembly of colloidal gold nanoparticles on the gold electrode was conducted through the thiol groups of 1,6-hexanedithiol (HDT) monolayer as a cross linker. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the electrode surface was probed for studying the immobilization and determination processes, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interaction of antigen with grafted antibody recognition layer was carried out by soaking the modified electrode into antigen solution at 37°C for 3 h. The immunosensor showed linearity over 1.0-180.0 pg mL(-1) and the limit of detection was 0.15 pg mL(-1). The association constant between IGF-1 and immobilized antibody was calculated to be 9.17×10(11) M(-1). The proposed method is a useful tool for screening picogram amounts of IGF-1 in clinical laboratory as a diagnostic test.  相似文献   

3.
A novel amperometric immunosensor for the detection of the p24 antigen (p24Ag) from HIV-1 was constructed using gold nanoparticles (GNP), multi-walled carbon nanotubes (MWCNTs), and an acetone-extracted propolis film (AEP). First, amino-functionalized MWCNTs (MWCNTNH?) were prepared and dispersed in an HAuCl? solution to synthesize GNPs in situ. Next, the GNP/CNT/AEP nanocomposite was prepared by mixing an AEP solution and the GNP/CNT powder. The nanocomposite was dripped onto a gold electrode (GE), and then p24 antibody (anti-p24 Ab) was immobilized on the resulting modified gold electrode to construct the immunosensor. The assembly process was characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The factors that were likely to influence the performance of the proposed immunosensor were studied in detail. Under optimal conditions, the proposed immunosensor exhibited good electrochemical sensitivity to the presence of p24 in a concentration range of 0.01 to 60.00 ng/mL, with a relatively low detection limit of 0.0064 ng/mL (S/N = 3). Moreover, the proposed immunosensor showed a rapid (≤ 18 s) and highly sensitive amperometric response (0.018 and 1.940 μA/ng/mL) to p24 with acceptable stability and reproducibility.  相似文献   

4.
Wei Q  Zhao Y  Xu C  Wu D  Cai Y  He J  Li H  Du B  Yang M 《Biosensors & bioelectronics》2011,26(8):3714-3718
Nanoporous gold (NPG) film modified electrode for the construction of novel label-free electrochemical immunosensor for ultrasensitive detection of cancer biomarker prostate specific antigen (PSA) is described. Due to its high conductivity, large surface area, and good biocompatibility, NPG film modified electrode was used for the adsorption of anti-PSA antibody (Ab). The sensing signal is based on the monitoring of the electrode's current response towards K(3)Fe(CN)(6), which is extremely sensitive to the formation of immunocomplex within the nanoporous film. Under optimum conditions, the amperometric signal decreases linearly with PSA concentration (0.05-26 ng/mL), resulting in a low limit of detection (3 pg/mL). We demonstrated the application of the novel immunosensor for the detection of PSA in real sample with satisfactory results.  相似文献   

5.
A novel hepatitis B virus (HBV) DNA biosensor was developed by immobilizing covalently single-stranded HBV DNA fragments to a gold electrode surface via carboxylate ester to link the 3(')-hydroxy end of the DNA with the carboxyl of the thioglycolic acid (TGA) monolayer. A short-stranded HBV DNA fragment (181bp) of known sequence was obtained and amplified by PCR. The surface hybridization of the immobilized single-stranded HBV DNA fragment with its complementary DNA fragment was evidenced by electrochemical methods using [Os(bpy)(2)Cl(2)](+) as a novel electroactive indicator. The formation of double-stranded HBV DNA on the gold electrode resulted in a great increase in the peak currents of [Os(bpy)(2)Cl(2)](+) in comparison with those obtained at a bare or single-stranded HBV DNA-modified electrode. The mismatching experiment indicated that the surface hybridization was specific. The difference between the responses of [Os(bpy)(2)Cl(2)](+) at single-stranded and double-stranded DNA/TGA gold electrodes suggested that the label-free hybridization biosensor could be conveniently used to monitor DNA hybridization with a high sensitivity. X-ray photoelectron spectrometry technique has been employed to characterize the immobilization of single-stranded HBV DNA on a gold surface.  相似文献   

6.
Electrochemical immunosensors have attracted great interest in the search for a selective, simple and reliable system for molecular recognition. Presently, electrochemical immunosensors have been widely studied for biomedical molecular's detection, but the regeneration of these immunosensors has restricted their wide application. To prepare a regeneration-free immunosensor, which may be more suitable for clinical determination, a repeatable immunoassay system was developed based on an electrochemical immunosensor with magnetic nanoparticles, biotin-avidin system (BAS) and Fab antibodies for the heart failure markers aminoterminal pro-brain natriuretic peptides (NT-proBNP). At the same time, a microfluidic system was combined into the proposed system, which enabled continuous determination. Using NT-proBNP as a model system, the proposed immunosensor exhibited rapid and sensitive amperometric response to NT-proBNP with good selectivity, stability, and a wide linear range (0.005-1.67 ng/mL and 1.67-4 ng/mL with a detection limit of 0.003 ng/mL under optimal conditions). Importantly, the proposed immunosensor was also suitable for the detection of other proteins and provided new opportunities for disease diagnosis.  相似文献   

7.
An electrochemical immunosensor was developed for the detection of hepatitis B surface antigen (HBsAg). The biotinylated hepatitis B surface antibody was immobilized on streptavidin magnetic nanoparticles and used for targeting the HBsAg. By the addition of horseradish peroxidase conjugated with secondary antibody (HRP–HBsAb), a sandwich-type immunoassay format was formed. Aminophenol as substrate for conjugated HRP was enzymatically changed into 3-aminophenoxazone (3-APZ). This electroactive enzymatic production (3-APZ) was transferred into an electrochemical cell and monitored by cyclic voltammetry. Under optimal conditions, the cathodic current response of 3-APZ, which was proportional to the HBsAg concentration, was measured by a glassy carbon electrode. The immunosensor response was linear toward HBsAg in the concentration range from 0.001 to 0.015 ng/ml with a detection limit of 0.9 pg/ml at a signal/noise ratio of 3.  相似文献   

8.
A new approach toward the development of advanced immunosensors based on chemically functionalized core-shell-shell magnetic nanocomposite particles, and the preparation, characteristics, and measurement of relevant properties of the immunosensor useful for the detection of alpha-1-fetoprotein (AFP) in clinical immunoassays. The core-shell NiFe2O4/3-aminopropyltriethoxysilance (APTES) (NiFe2O4@APTES) was initially prepared by covalent conjugation, then gold nanoparticles were adsorbed onto the surface of NiFe2O4@APTES, and then anti-AFP molecules were conjugated on the gold nanoparticles. The core-shell-shell nanocomposite particles not only had the properties of magnetic nanoparticles, but also provided a good biocompatibility for the immobilization of biomolecules. The core-shell-shell nanostructure present good magnetic properties to facilitate and modulate the way it was integrated into a carbon paste. The analytical performance of the immunosensor was investigated by using an electrochemical method. Under optimal conditions, the resulting composite presents good electrochemical response for the detection of AFP, and exhibits wide linear range from 0.9 to 110 ng/mL AFP with a detection limit of 0.5 ng/mL. Moreover, the proposed immunosensors were used to analyze AFP in human serum specimens. Analytical results, obtained for the clinical serum specimen by the developed immunosensor, were in accordance with those assayed by the standard ELISA. Importantly, the proposed immunoassay system could be further developed for the immobilization of other antigens or biocompounds.  相似文献   

9.
Electrodes modified with passivating organic layers have been shown to, here and previously, to exhibit good Faradaic electrochemistry upon attachment of gold nanoparticles (AuNP). Due to their low background capacitances these constructs have good potential in electrochemical sensing. Herein is reported the application of these electrode constructs for impedance based immunosensing. The immunosensor was constructed by modifying a gold electrode with 4-thiophenol (4-TP) passivating layers by diazonium salt chemistry. Subsequently, the attachment of AuNP and then a biotin derivative as a model epitope to detect anti-biotin IgG were carried out. The interfacial properties of the modified electrodes were evaluated in the presence of Fe(CN)(6)(4-/3-) redox couple as a probe by cyclic voltammetry and electrochemical impedance spectroscopy. The impedance change, due to the specific immuno-interaction at the immunosensor surface was utilized to detect anti-biotin IgG. The increase in charge-transfer resistance (R(ct)) was linearly proportional to the concentration of anti-biotin IgG in the range of 5-500 ng mL(-1), with a detection limit of 5 ng mL(-1).  相似文献   

10.
In this paper, a novel electrochemical immunosensor for the determination of casein based on gold nanoparticles and poly(L-Arginine)/multi-walled carbon nanotubes (P-L-Arg/MWCNTs) composite film was proposed. The P-L-Arg/MWCNTs composite film was used to modify glassy carbon electrode (GCE) to fabricate P-L-Arg/MWCNTs/GCE through electropolymerization of L-Arginine on MWCNTs/GCE. Gold nanoparticles were adsorbed on the modified electrode to immobilize the casein antibody and to construct the immunosensor. The stepwise assembly process of the immunosensor was characterized by cyclic voltammetry and differential pulse voltammetry. Results demonstrated that the peak currents of [Fe(CN)(6)](3-/4-) redox pair decreased due to the formation of antibody-antigen complex on the modified electrode. The optimization of the adsorption time of gold nanoparticles, the pH of supporting electrolyte and the incubation time were investigated in details. Under optimal conditions, the peak currents obtained by DPV decreased linearly with the increasing casein concentrations in the range from 1 × 10(-7) to 1 × 10(-5) g mL(-1) with a linear coefficiency of 0.993. This electrochemical immunoassay has a low detection limit of 5 × 10(-8) g mL(-1) and was successfully applied to the determination of casein in cheese samples.  相似文献   

11.
A copper monolayer was formed on a gold electrode surface via underpotential deposition (UPD) method to construct a Cu UPD|DTBP-Protein G immunosensor for the sensitive detection of 17β-estradiol. Copper UPD monolayer can minimize the non-specific adsorption of biological molecules on the immunosensor surface and enhance the binding efficiency between immunosensor surface and thiolated Protein G. The crosslinker DTBP (Dimethyl 3,3'-dithiobispropionimidate · 2HCl) has strong ability to immobilize Protein G molecules on the electrode surface and the immobilized Protein G provides an orientation-controlled binding of antibodies. A monolayer of propanethiol was firstly self-assembled on the gold electrode surface, and a copper monolayer was deposited via UPD on the propanethiol modified electrode. Propanethiol monolayer helps to stabilize the copper monolayer by pushing the formation and stripping potentials of the copper UPD monolayer outside the potential range in which copper monolayer can be damaged easily by oxygen in air. A droplet DTBP-Protein G was then applied on the modified electrode surface followed by the immobilization of estradiol antibody. Finally, a competitive immunoassay was conducted between estradiol-BSA (bovine serum albumin) conjugate and free estradiol for the limited binding sites of estradiol antibody. Square wave voltammetry (SWV) was employed to monitor the electrochemical reduction current of ferrocenemethanol and the SWV current decreased with the increase of estradiol-BSA conjugate concentration at the immunosensor surface. Calibration of immunosensors in waste water samples spiked with 17β-estradiol yielded a linear response up to ≈ 2200 pg mL(-1), a sensitivity of 3.20 μA/pg mL(-1) and a detection limit of 12 pg mL(-1). The favorable characteristics of the immunosensors such as high selectivity, sensitivity and low detection limit can be attributed to the Cu UPD|DTBP-Protein G scaffold.  相似文献   

12.
A novel experimental methodology for studying a mediatorless and label-free immunosensor is proposed by immobilizing antibody on gold nanoparticle/L-cysteine coated electrode (nano-Au/L-cysteine electrode). Differential pulse voltammograms (DPV) resulting from the assembled immunosensor indicate that the immunosensor shows excellent electrochemical response to dopamine so that the electrochemical response is utilized for the signal generation step of the immunosensor. Therefore, by means of unenzymatic-labeling procedure combined with the amperometric detection using dopamine as substrate, the immunological reaction can be detected. After the immunosensor is incubated with h-IgG solution, the access of electrocatalytic behavior center of the immunosensor to dopamine is partly inhibited, which leads to a linear decrease in amperometric response of the immunosensor with h-IgG concentration over a range 0.82-90 ng mL(-1) by DPV.  相似文献   

13.
Multilayer immobilization of antibody and redox polymer molecules on a gold electrode was achieved, as a strategy for the potential development of an amperometric immunosensor. The step-by-step assembly of antibiotin IgG on Os(bpy)(2)ClPyCH(2)NH poly(allylamine) redox polymer (PAH-Os) adsorbed on thiolated gold electrodes was proved by quartz crystal microbalance (QCM) and atomic force microscopy (AFM) experiments, confirming the electrochemical evidence. The increase of redox charge during the layer-by-layer deposition demonstrated that charge propagation within the layers is feasible. The multilayer structure proved to be effective for the molecular recognition of horseradish peroxidase-biotin conjugate (HRP-biotin), as confirmed by the QCM measurements and the electrocatalytic reduction current obtained upon H(2)O(2) addition. The catalytic current resulting from PAH-Os mediation was shown to increase with the number of assembled layers. Furthermore, the inventory of IgG molecules on the supramolecular self-assembled structure and the specific and non-specific binding of HRP-biotin conjugate were confirmed by the QCM transient studies, giving information on the kinetics of IgG deposition and HRP-biotin conjugate binding to the IgG.  相似文献   

14.
He X  Yuan R  Chai Y  Zhang Y  Shi Y 《Biotechnology letters》2007,29(1):149-155
A novel and sensitive immunosensor has been developed by electro-depositing gold nanoparticles on to a Prussian Blue-modified glassy carbon electrode for determination of hepatitis B surface antigen (HBsAg). After the developed immunosensor was incubated with different concentrations of HBsAg samples at 37°C for 15 min, the current response decreased with an increasing HBsAg concentration in the sample solution. The decreased percentage of the current was proportional to HBsAg concentration ranging from 2 to 300 ng HbsAg ml−1 with a detection limit of 0.42 ng HbsAg ml−1 (S/N = 3). Analytical results of 50 specimens using the developed immunosensor showed satisfactory agreement with those using ELISA, indicating the method to be a promising alternative for detecting HBsAg in clinical diagnosis.  相似文献   

15.
A sensitive amperometric immunosensor for carcinoembryonic antigen (CEA) was prepared. Firstly, a porous nano-structure gold (NG) film was formed on glassy carbon electrode (GCE) by electrochemical reduction of HAuCl4 solution, then nano-Au/Chit composite was immobilized onto the electrode because of its excellent membrane-forming ability, and finally the anti-CEA was adsorbed onto the surface of the bilayer gold nanoparticles to construct an anti-CEA/nano-Au/Chit/NG/GCE immunosensor. The characteristics of the modified electrode at different stages of modification were studied by cyclic voltammetry (CV). The gold colloid, chitosan and nano-Au/Chit were characterized by transmission electron microscopy and UV–vis spectroscopy. In addition, the performances of the immunosensor were studied in detail. The resulting immunosensor offers a high-sensitivity (1310 nA/ng/ml) for the detection of CEA and has good correlation for detection of CEA in the range of 0.2 to 120.0 ng/ml with a detection limit of 0.06 ng/ml estimated at a signal-to-noise ratio of 3. The proposed method can detect the CEA through one-step immunoassay and would be valuable for clinical immunoassay.  相似文献   

16.
A concept based on the Peroxidase-chip (P-chip), antibody co-immobilization, competitive and enzyme-channeling principle was exploited to develop an integrated flow-through amperometric biosensor for detection of environmental pollutants such as s-triazine herbicides. In this concept, recombinant peroxidase is immobilized on the gold electrode (P-chip) in such a way that direct electron transfer is achieved. The recognition and quantitation the target analyte is realized through the competition between the simazine-glucose oxidase (GOD) conjugate and free simazine for the binding sites of the monoclonal antibody co-immobilized with peroxidase on the gold electrode. The arrangement allows to generate a specific signal in the presence of glucose through the channeling of H2O2 produced by GOD conjugate bound to the antibody. The immunosensor exhibited 50% signal decrease (IC50 value) at approximately 0.02 microg l(-1). A concentration of 0.1 ng l(-1) gave a signal clearly distinguishable from the blank whereas the ELISA using the same antibody had a typical detection limit of about 1 microg l(-1), which is four orders of magnitude higher compared to the presented biosensor system. The results demonstrated that gene engineering biomolecules, in this case recombinant peroxidase, might be attractive reagents for the development of electrochemical immunosensors.  相似文献   

17.
A label-free electrochemical immunoassay for neuron-specific enolase (NSE), a kind of lung cancer marker, was developed in this work via novel electrochemical catalysis for signal amplification. The new amplified strategy was based on the electrochemical catalysis of nickel hexacyanoferrates nanoparticles (NiHCFNPs) in the presence of dopamine (DA). NiHCFNPs, which were assembled on the porous gold nanocrystals (AuNCs) modified glassy carbon electrode (GCE), could exhibit a distinct pair of redox peaks corresponding to anodic and cathodic reactions of hexacyanoferrate (II/III). Subsequently, gold nanoparticles functionalized graphene nanosheets (Au-Gra) were coated on the surface of NiHCFNPs/AuNCs film. Then an enhanced amount of neuron-specific enolase antibody (anti-NSE) could be loaded to obtain a sensitive immunosensor of anti-NSE/Au-Gra/NiHCFNPs/AuNCs/GCE due to the strong adsorption capacity and large specific surface area of Au-Gra. More importantly, the oxidation peak current can be enormously enhanced towards the electrocatalytic oxidation of DA based on NiHCFNPs, resulting in the further improvement of the immunosensor sensitivity. Under optimal conditions, the electrochemical immunosensor exhibited a linear range of 0.001-100 ng/mL with a detection limit of 0.3 pg/mL (S/N=3). Thus, the proposed immunosensor provides a rapid, simple, and sensitive immunoassay protocol for NSE detection, which may hold a promise for clinical diagnosis.  相似文献   

18.
Herein, an ultrasensitive solid-state tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)(3)(2+)) electrochemiluminescence (ECL) aptasensor using in-situ produced ascorbic acid as coreactant was successfully constructed for detection of thrombin. Firstly, the composite of Ru(bpy)(3)(2+) and platinum nanoparticles (Ru-PtNPs) were immobilized onto Nafion coated glass carbon electrode, followed by successive adsorption of streptavidin-alkaine phosphatase conjugate (SA-ALP) and biotinylated anti-thrombin aptamer to successfully construct an ECL aptasensor for thrombin determination. In our design, Pt nanoparticles in Ru(bpy)(3)(2+)-Nafion film successfully inhibited the migration of Ru(bpy)(3)(2+) into the electrochemically hydrophobic region of Nafion and facilitated the electron transfer between Ru(bpy)(3)(2+) and electrode surface. Furthermore, ALP on the electrode surface could catalyze hydrolysis of ascorbic acid 2-phosphate to in-situ produce ascorbic acid, which co-reacted with Ru(bpy)(3)(2+) to obtain quite fast, stable and greatly amplified ECL signal. The experimental results indicated that the aptasensor exhibited good response for thrombin with excellent sensitivity, selectivity and stability. A linear range of 1 × 10(-15)-1 × 10(-8) M with an ultralow detection limit of 0.33 fM (S/N=3) was obtained. Thus, this procedure has great promise for detection of thrombin present at ultra-trace levels during early stage of diseases.  相似文献   

19.
A new amperometric immunosensor for the determination of carcinoembryonic antigen (CEA) was constructed. First, the uniform nanomultilayer film was fabricated via layer-by-layer (LBL) assembly of positively charged carbon nanotubes wrapped by poly(diallyldimethylammonium chloride) and negatively charged poly(sodium-p-styrene-sulfonate), which could provide a high accessible surface area and a biocompatible microenvironment. Subsequently, gold nanoclusters were electrodeposited on the electrode to immobilize anti-CEA. The fabricated process and electrochemical behaviors of the immunosensor were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). Under optimal conditions, the proposed immunosensor could detect CEA in two linear ranges from 0.1 to 2.0 ng mL−1 and from 2.0 to 160.0 ng mL−1, with a detection limit of 0.06 ng mL−1.  相似文献   

20.
A sensitive label-free electrochemical immunosensing platform was designed by a redox matrix of gold nanoparticles (GNPs), Azure І and multi-wall carbon nanotubes (MWCNT) self-assemblying nanocomposite. To construct the immunosensor, MWCNT was first dispersed in Nafion (Nf) to obtain a homogeneous solution and then it was dropped on the surface of the gold electrode (Au). Then the positively-charged redox molecule, Azure І, was entrapped into MWCNT–Nf film to form a redox nanostructural membrane. Next, the negatively charged gold nanoparticles (GNPs) were assembled to the interface through the electrostatic force. Finally, carcinoembryonic antibody molecules could be absorbed into the GNPs/Azure І/MWCNT–Nf immobilization matrix. Using carcinoembryonic antigen (CEA) as a model protein, the electrochemical immunosensor exhibited good stability and reproducibility, as well as good selectivity and storage stability. This strategy presented a promising platform for sensitive and facile monitoring of CEA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号