共查询到20条相似文献,搜索用时 15 毫秒
1.
Giuseppe Rulli Marcel Heidlindemann Albrecht Berkessel Werner Hummel Harald Gröger 《Journal of biotechnology》2013
The alcohol dehydrogenases (ADHs) from Lactobacillus kefir and Rhodococcus sp., which earlier turned out to be suitable for a chemoenzymatic one-pot synthesis with organocatalysts, were immobilized with their cofactors on a commercially available superabsorber based on a literature known protocol. The use of the immobilized ADH from L. kefir in the reduction of acetophenone as a model substrate led to high conversion (>95%) in the first reaction cycle, followed by a slight decrease of conversion in the second reaction cycle. A comparable result was obtained when no cofactor was added although a water rich reaction media was used. The immobilized ADHs also turned out to be suitable catalysts for the diastereoselective reduction of an organocatalytically prepared enantiomerically enriched aldol adduct, leading to high conversion, diastereomeric ratio and enantioselectivity for the resulting 1,3-diols. However, at a lower catalyst and cofactor amount being still sufficient for biotransformations with “free” enzymes the immobilized ADH only showed high conversion and >99% ee for the first reaction cycle whereas a strong decrease of conversion was observed already in the second reaction cycle, thus indicating a significant leaching effect of catalyst and/or cofactor. 相似文献
2.
微芯片技术是基于微机电加工技术(MEMS)工艺,在芯片上完成电泳检测过程的新型技术.利用自制的微流控芯片及激光诱导荧光系统建立了痕量乳酸脱氢酶(LDH)活性的检测方法.以pH 9.4, 75 mmol/L硼酸为芯片电泳缓冲液,9.73 μmol/L乳酸钙为添加剂,整个电泳过程4 min结束,利用该法测得LDH检测限(S/N=3)为6×10-3 U/L,出峰时间和峰面积的相对标准偏差分别为5.32%和3.17%,该法操作过程简单,检测灵敏度高,在临床痕量酶检测中具有较好的应用前景. 相似文献
3.
Magdalena Kwolek-Mirek Roman Maslanka Mateusz Molon 《Journal of cellular biochemistry》2019,120(5):8521-8533
Intermediary metabolites have a crucial impact on basic cell functions. There is a relationship between cellular metabolism and redox balance. To maintain redox homoeostasis, the cooperation of both glutathione and nicotine adenine dinucleotides is necessary. Availability of nicotinamide adenine dinucleotide phosphate (NADPH) as a major electron donor is critical for many intracellular redox reactions. The activity of glucose-6-phosphate dehydrogenase (Zwf1p) and 6-phosphogluconate dehydrogenase (Gnd1p and Gnd2p) is responsible for NADPH formation in a pentose phosphate (PP) pathway. In this study, we examine the impact of redox homoeostasis on cellular physiology and proliferation. We have noted that the Δzwf1 mutant lacking the rate-limiting enzyme of the PP pathway shows changes in the cellular redox status caused by disorders in NADPH generation. This leads to a decrease in reproductive potential but without affecting the total lifespan of the cell. The results presented in this paper show that nicotine adenine dinucleotides play a central role in cellular physiology. 相似文献
4.
Although commonly related to nutrient deprivation, the cause of the formation of the necrotic core in the multicellular tumour spheroids is still a controversial issue. We propose a simple model for the cell ATP production that assumes glucose and lactate as the only fuel substrates, and describes the main reactions occurring in the glycolytic and the oxidative pathways. Under the key assumption that cell death occurs when ATP production falls to a critical level, we formulate a multiscale model that integrates the energy metabolism at the cellular level with the diffusive transport of the metabolites in the spheroid mass. The model has been tested by predicting the measurements of the necrotic radius obtained by Freyer and Sutherland (1986a) in EMT6/Ro spheroids under different concentrations of glucose and oxygen in the culture medium. The results appear to be in agreement with the hypothesis that necrosis is caused by ATP deficit. 相似文献
5.
Levels of metabolic intermediates and end products in F. hepatica after 24 and 48 h in Hédon-Fleig salt solution with added glucose were compared with levels obtained immediately on removal from the host. Glycogen levels dropped initially, probably due to the expulsion of eggs; thereafter they remained constant. Internal glucose concentrations increased as the parasites equilibrated with the medium. Other changes in internal pool sizes were consistent with regulation to the in vitro conditions. ATP levels increased; ATP/ADP ratios were maintained. Comparisons of mass action ratios and equilibrium constants suggest that hexokinase, pyruvate kinase and phosphofructokinase are regulatory. Output of excretory products approached linearity; from the calculated regressions the proportions of lactate, acetate and propionate were 1: 2: 4. The implications for metabolic regulation in F. hepatica are briefly discussed, and it is concluded that, for at least 48 h in vitro, energy metabolism is not adversely affected. 相似文献
6.
Clifford S. Morrison William B. Armiger David R. Dodds Jonathan S. Dordick Mattheos A.G. Koffas 《Biotechnology advances》2018,36(1):120-131
Industrial enzymatic reactions requiring 1,4-NAD(P)H2 to perform redox transformations often require convoluted coupled enzyme regeneration systems to regenerate 1,4-NAD(P)H2 from NAD(P) and recycle the cofactor for as many turnovers as possible. Renewed interest in recycling the cofactor via electrochemical means is motivated by the low cost of performing electrochemical reactions, easy monitoring of the reaction progress, and straightforward product recovery. However, electrochemical cofactor regeneration methods invariably produce adventitious reduced cofactor side products which result in unproductive loss of input NAD(P). We review various literature strategies for mitigating adventitious product formation by electrochemical cofactor regeneration systems, and offer insight as to how a successful electrochemical bioreactor system could be constructed to engineer efficient 1,4-NAD(P)H2-dependent enzyme reactions of interest to the industrial biocatalysis community. 相似文献
7.
The High Mobility Group B1 (HMGB1) protein plays important roles in both intracellular (reductive) and extracellular (oxidative) environments. We have carried out quantitative investigations of the redox chemistry involving Cys22 and Cys44 of the HMGB1 A-domain, which form an intramolecular disulfide bond. Using NMR spectroscopy, we analyzed the real-time kinetics of the redox reactions for the A-domain in glutathione and thioredoxin systems, and also determined the standard redox potential. Thermodynamic experiments showed that the Cys22-Cys44 disulfide bond stabilizes the folded state of the protein. These data suggest that the oxidized HMGB1 may accumulate even in cells under oxidative stress.
Structured summary
- MINT-6795963:
- txn (uniprotkb:P10599) and HMGB1 (uniprotkb:P09429) bind (MI:0408) by nuclear magnetic resonance (MI:0077)
8.
The crystal structure of seabream antiquitin in complex with the cofactor NAD(+) was solved at 2.8A resolution. The mouth of the substrate-binding pocket is guarded by two conserved residues, Glu120 and Arg300. To test the role of these two residues, we have prepared the two mutants E120A and R300A. Our model and kinetics data suggest that antiquitin's specificity towards the substrate alpha-aminoadipic semialdehyde is contributed mainly by Glu120 which interacts with the alpha-amino group of the substrate. On the other hand, Arg300 does not have any specific interaction with the alpha-carboxylate group of the substrate, but is important in maintaining the active site conformation. 相似文献
9.
Gerd P. Bienert 《生物化学与生物物理学报:生物膜》2006,1758(8):994-1003
Hydrogen peroxide (H2O2) belongs to the reactive oxygen species (ROS), known as oxidants that can react with various cellular targets thereby causing cell damage or even cell death. On the other hand, recent work has demonstrated that H2O2 also functions as a signalling molecule controlling different essential processes in plants and mammals. Because of these opposing functions the cellular level of H2O2 is likely to be subjected to tight regulation via processes involved in production, distribution and removal. Substantial progress has been made exploring the formation and scavenging of H2O2, whereas little is known about how this signal molecule is transported from its site of origin to the place of action or detoxification. From work in yeast and bacteria it is clear that the diffusion of H2O2 across membranes is limited. We have now obtained direct evidence that selected aquaporin homologues from plants and mammals have the capacity to channel H2O2 across membranes. The main focus of this review is (i) to summarize the most recent evidence for a signalling role of H2O2 in various pathways in plants and mammals and (ii) to discuss the relevance of specific transport of H2O2. 相似文献
10.
The statistical relationships among the glycolytic intermediates (GI)) of the Embden-Meyerhof pathway, adenine nucleotides (ANs) and various hematological measures were estimated for 34 sickle cell anemia patients. Heterogeneity in linear and quadratic regressions of hemoglobin and hematocrit, both singly and jointly, on the GI and AN variables implied 1) that any single formula to standardize optical density measures of the GIs and ANs on a per gram hemoglobin or per liter cell water basis would not uniformly remove hemoglobin and hematocrit effects: 2) that ignoring significant hematological effects could bias the estimates of correlation among GIs and ANs; and 3) that hemoglobin and hematocrit measures do not reflect the same source of variability. The correlations among the GIs and ANs, after adjustment for hematological variability, were analyzed by path analysis to determine which of five proposed path models for cause and effect relationships were compatible with the data. AMP had a greater influence on ADP (coefficient of determination (CD) = 23%) than all the GIs together, while G6P and ADP influenced ATP variability the most (CD = 33% and 12%). The contributions of unknown factors to ADP and ATP variability were large for all models (CD = 56--77%) possibly due to stress of sickle cell disease. The path model with AMP and the four GIs (G6P, F6P, FDP, DHAP) influencing ADP variation, and the same GIs and ADP influencing ATP was the model most compatible with the data. 相似文献
11.
Mosca E Barcella M Alfieri R Bevilacqua A Canti G Milanesi L 《Biotechnology advances》2012,30(1):131-141
Cancer has been proposed as an example of systems biology disease or network disease. Accordingly, tumor cells differ from their normal counterparts more in terms of intracellular network dynamics than single markers. Here we shall focus on a recently recognized hallmark of cancer, the deregulation of cellular energetics. The constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been confirmed as an essential step toward cell transformation. We will consider how the effects of Akt activation are connected with cell metabolism; more precisely, we will review existing metabolic models and discuss the current knowledge available to construct a kinetic model of the most relevant metabolic processes regulated by the PI3K/Akt pathway. The model will enable a systems biology approach to predict the metabolic targets that may inhibit cell growth under hyper activation of Akt. 相似文献
12.
Tomoki Sato Akihito Morita Nobuko Mori Shinji Miura 《Biochemical and biophysical research communications》2014
Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of 14C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation. 相似文献
13.
Glucose-6-phosphate dehydrogenase (d-glucose-6-phosphate: NADP+
l-oxidoreductase EC 1.1.1.49) isolated from Paracoccus denitrificans grown on glucose/nitrate exhibits both NAD+-and NADP+-linked activities. Both activities have a pH optimum of pH 9.6 (Glycine/NaOH buffer) and neither demonstrates a Mg2+ requirement. Kinetics for both NAD(P)+ and glucose-6-phosphate were investigated. Phosphoenolpyruvate inhibits both activities in a competitive manner with respect to glucose-6-phosphate. ATP inhibits the NAD+-linked activity competitively with respect to glucose-6-phosphate but has no effect on the NADP+-linked activity. Neither of the two activities are inhibited by 100 M NADH but both are inhibited by NADPH. The NAD+-linked activity is far more sensitive to inhibition by NADPH than the NADP+-linked activity. 相似文献
14.
Each of the twelve enzymes for glycolytic fermentation, eleven from Escherichia coli and one from Saccharomyces cerevisiae, have been over-expressed in E. coli and purified with His-tags. Simple assays have been developed for each enzyme and they have been assembled for fermentation of glucose to ethanol. Phosphorus-31 NMR revealed that this in vitro reaction accumulates fructose 1,6-bisphosphate while recycling the cofactors NAD+ and ATP. This reaction represents a defined ATP-regeneration system that can be tailored to suit in vitro biochemical reactions such as cell-free protein synthesis. The enzyme from S. cerevisiae, pyruvate decarboxylase 1 (Pdc1; EC 4.1.1.1), was identified as one of the major ‘flux controlling’ enzymes for the reaction and was replaced with an evolved version of Pdc1 that has over 20-fold greater activity under glycolysis reaction conditions. This substitution was only beneficial when the ratio of glycolytic enzymes was adjusted to suit greater Pdc1 activity. 相似文献
15.
Russell A. Carpenter Xuanzhi Zhan Holly R. Ellis 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(1):97-105
Detailed kinetic studies were performed in order to determine the role of the single cysteine residue in the desulfonation reaction catalyzed by SsuD. Mutation of the conserved cysteine at position 54 in SsuD to either serine or alanine had little effect on FMNH2 binding. The kcat/Km value for the C54S SsuD variant increased 3-fold, whereas the kcat/Km value for C54A SsuD decreased 6-fold relative to wild-type SsuD. An initial fast phase was observed in kinetic traces obtained for the oxidation of flavin at 370 nm when FMNH2 was mixed against C54S SsuD (kobs, 111 s− 1) in oxygenated buffer that was 10-fold faster than wild-type SsuD (kobs, 12.9 s− 1). However, there was no initial fast phase observed in similar kinetic traces obtained for C54A SsuD. This initial fast phase was previously assigned to the formation of the C4a-(hydro)peroxyflavin in studies with wild-type SsuD. There was no evidence for the formation of the C4a-(hydro)peroxyflavin with either SsuD variant when octanesulfonate was included in rapid reaction kinetic studies, even at low octanesulfonate concentrations. The absence of any C4a-(hydro)peroxyflavin accumulation correlates with the increased catalytic activity of C54S SsuD. These results suggest that the conservative serine substitution is able to effectively take the place of cysteine in catalysis. Conversely, decreased accumulation of the C4a-(hydro)peroxyflavin intermediate with the C54A SsuD variant may be due to decreased activity. The data described suggest that Cys54 in SsuD may be either directly or indirectly involved in stabilizing the C4a-(hydro)peroxyflavin intermediate formed during catalysis through hydrogen bonding interactions. 相似文献
16.
M. Vibert H. Skala-Rubinson A. Kahn J.C. Dreyfus 《Biochemical and biophysical research communications》1981,99(1):259-266
Glucose-6-phosphate dehydrogenase undergoes in vitro a decrease of its isoelectric pH in the presence of its coenzyme NADP+, and of either a NAD(P) glycohydrolase or an excess of its substrate, glucose-6-phosphate at acidic pHs.The mechanism of in vitro production of hyperanodic bands of glucose-6-phosphate dehydrogenase has been studied. It consists in a covalent fixation of phosphoadenosine diphosphoribose or of a degradation product of NADPH. In the case of P-ADP-Rib, the reaction is stoichiometric, one molecule of ligand being bound to one subunit of enzyme. The bond between enzyme and P-ADP-Rib was characterized as a Schiff's base. 相似文献
17.
Femke I.C. Mensonides Barbara M. Bakker Frederic Cremazy Hanan L. Messiha Pedro Mendes Fred C. Boogerd Hans V. Westerhoff 《FEBS letters》2013
Enzymology tends to focus on highly specific effects of substrates, allosteric modifiers, and products occurring at low concentrations, because these are most informative about the enzyme’s catalytic mechanism. We hypothesized that at relatively high in vivo concentrations, important molecular monitors of the state of living cells, such as ATP, affect multiple enzymes of the former and that these interactions have gone unnoticed in enzymology. 相似文献
18.
To study the physiological role of the creatine kinase/phosphocreatine (CK/PCr) system in cells and tissues with a high and fluctuating energy demand we have concentrated on the site-directed inactivation of the B- and M-CK genes encoding the cytosolic CK protein subunits. In our approach we used homologous recombination in mouse embryonic stem (ES) cells from strain 129/Sv. Using targeting constructs based on strain 129/Sv isogenic DNA we managed to ablate the essential exons of the B-CK and M-CK genes at reasonably high frequencies. ES clones with fully disrupted B-CK and two types of M-CK gene mutations, a null (M-CK–) and leaky (M-CK1) mutation, were used to generate chimaeric mutant mice via injection in strain C57BL/6 derived blastocysts. Chimaeras with the B-CK null mutation have no overt abnormalities but failed to transmit the mutation to their offspring. For the M-CK– and M-CK1 mutations successful transmission was achieved and heterozygous and homozygous mutant mice were bred. Animals deficient in MM-CK are phenotypically normal but lack muscular burst activity. Fluxes through the CK reaction in skeletal muscle are highly impaired and fast fibres show adaptation in cellular architecture and storage of glycogen. Mice homozygous for the leaky M-CK allele, which have 3-fold reduced MM-CK activity, show normal fast fibres but CK fluxes and burst activity are still not restored to wildtype levels. 相似文献
19.
The changes in the partial pressures of oxygen and carbon dioxide (PO2 and PCO2) during blood circulation alter erythrocyte metabolism, hereby causing flux changes between oxygenated and deoxygenated blood. In the study we have modeled this effect by extending the comprehensive kinetic model by Mulquiney and Kuchel [P.J. Mulquiney, and P.W. Kuchel. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement, Biochem. J. 1999, 342, 581–596.] with a kinetic model of hemoglobin oxy-/deoxygenation transition based on an oxygen dissociation model developed by Dash and Bassingthwaighte [R. Dash, and J. Bassingthwaighte. Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels, Ann. Biomed. Eng., 2004, 32(12), 1676–1693.]. The system has been studied during transitions from the arterial to the venous phases by simply forcing PO2 and PCO2 to follow the physiological values of venous and arterial blood. The investigations show that the system passively follows a limit cycle driven by the forced oscillations of PO2 and is thus inadequately described solely by steady state consideration. The metabolic system exhibits a broad distribution of time scales. Relaxations of modes with hemoglobin and Mg2+ binding reactions are very fast, while modes involving glycolytic, membrane transport and 2,3-BPG shunt reactions are much slower. Incomplete slow mode relaxations during the 60 s period of the forced transitions cause significant overshoots of important fluxes and metabolite concentrations – notably ATP, 2,3-BPG, and Mg2+. The overshoot phenomenon arises in consequence of a periodical forcing and is likely to be widespread in nature – warranting a special consideration for relevant systems. 相似文献
20.
Dalal A. Al-Mutairi James D. Craik Ines Batinic-Haberle Ludmil T. Benov 《Biochimica et Biophysica Acta (BBA)/General Subjects》2007
Cell proliferation is notably dependent on energy supply and generation of reducing equivalents in the form of NADPH for reductive biosynthesis. Blockage of pathways generating energy and reducing equivalents has proved successful for cancer treatment. We have previously reported that isomeric Zn(II) N-methylpyridylporphyrins (ZnTM-2(3,4)-PyP4+) can act as photosensitizers, preventing cell proliferation and causing cell death in vitro. The present study demonstrates that upon illumination, ZnTM-3-PyP inactivates glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, NADP+ -linked isocitrate dehydrogenase, aconitase, and fumarase in adenocarcinoma LS174T cells. ZnTM-3-PyP4+ was significantly more effective than hematoporphyrin derivative (HpD) for inactivation of all enzymes, except aconitase and isocitrate dehydrogenase. Enzyme inactivation was accompanied by aggregation, presumably due to protein cross-linking of some of the enzymes tested. Inactivation of metabolic enzymes caused disruption of cancer cells' metabolism and is likely to be one of the major reasons for antiproliferative activity of ZnTM-3-PyP. 相似文献