首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Phlebotomine sand flies are the only proven biological vectors of Leishmania parasites. However, Rhipicephalus sanguineus ticks have long been suspected to transmit Leishmania infantum in studies carried out in laboratory and natural conditions. In the present study, 5 μl of L. infantum promastigotes (1 × 106 cells per ml) was injected into the hemocel through the coxa I of four engorged females (F1, F2, F3 and F4). Control ticks (F5 and F6) were injected with sterile phosphate-buffered saline (PBS) using the same procedure. Then, these females, their eggs, and the originated larvae were tested by real time polymerase chain reaction (real-time PCR) for the presence of L. infantum kinetoplast DNA (kDNA). Females and eggs were tested after the end of the oviposition period (about 5 weeks post-inoculation) whereas larvae were tested about 4 months after the inoculation of females. All artificially infected females were positive for L. infantum kDNA. In addition, two pools of eggs (one from F2 and other from F4) and four pools of larvae (one from each F1 and F4 and two from F2) were positive for L. infantum kDNA. These results showed, for the first time, the transovarial passage of L. infantum kDNA in R. sanguineus ticks, thus suggesting that the transovarial transmission of L. infantum protozoa in ticks is worth to be investigated.  相似文献   

3.
Leishmania infantum is the causative agent of zoonotic visceral leishmaniasis in the Mediterranean Basin. The promastigote and amastigote stages alternate in the life cycle of the parasite, developing inside the sand-fly gut and inside mammalian phagocytic cells, respectively. High-throughput genomic and proteomic analyses have not focused their attention on promastigote development, although partial approaches have been made in Leishmania major and Leishmania braziliensis. For this reason we have studied the expression modulation of an etiological agent of visceral leishmaniasis throughout the life cycle, which has been performed by means of complete genomic microarrays. In the context of constitutive genome expression in Leishmania spp. described elsewhere and confirmed here (5.7%), we found a down-regulation rate of 68% in the amastigote stage, which has been contrasted by binomial tests and includes the down-regulation of genes involved in translation and ribosome biogenesis. These findings are consistent with the hypothesis of pre-adaptation of the parasite to intracellular survival at this stage.  相似文献   

4.

Background

Orthophosphate (Pi) is a central compound in the metabolism of all organisms, including parasites. There are no reports regarding the mechanisms of Pi acquisition by Trypanosoma cruzi.

Methods

32Pi influx was measured in T. cruzi epimastigotes. The expression of Pi transporter genes and the coupling of the uptake to Na+, H+ and K+ fluxes were also investigated. The transport capacities of different evolutive forms were compared.

Results

Epimastigotes grew significantly more slowly in 2 mM than in 50 mM Pi. Influx of Pi into parasites grown under low Pi conditions took place in the absence and presence of Na+. We found that the parasites express TcPho84, a H+:Pi-symporter, and TcPho89, a Na+:Pi-symporter. Both Pi influx mechanisms showed Michaelis–Menten kinetics, with a one-order of magnitude higher affinity for the Na+-dependent system. Collapsing the membrane potential with carbonylcyanide-p-trifluoromethoxyphenylhydrazone strongly impaired the influx of Pi. Valinomycin (K+ ionophore) or SCH28028 (inhibitor of (H+ + K+)ATPase) significantly inhibited Pi uptake, indicating that an inwardly-directed H+ gradient energizes uphill Pi entry and that K+ recycling plays a key role in Pi influx. Furosemide, an inhibitor of the ouabain-insensitive Na+-ATPase, decreased only the Na+-dependent Pi uptake, indicating that this Na+ pump generates the Na+ gradient utilized by the symporter. Trypomastigote forms take up Pi inefficiently.

Conclusions

Pi starvation stimulates membrane potential-sensitive Pi uptake through different pathways coupled to Na+ or H+/K+ fluxes.

General significance

This study unravels the mechanisms of Pi acquisition by T. cruzi, a key process in epimastigote development and differentiation to trypomastigote forms.  相似文献   

5.
Twenty-seven strains of Leishmania infantum from north and central Tunisia belonging to the three main MON zymodemes (the MON-typing system is based on multilocus enzyme electrophoresis (MLEE) of 15 enzymes) found in this country (MON-1, MON-24 and MON-80) and representing different pathologies (visceral, cutaneous and canine leishmaniasis) have been studied to understand the genetic polymorphism within this species. Intraspecific variation could be detected in L. infantum by the use of 14 hypervariable microsatellite markers. In addition to microsatellite repeat length variation, a high degree of allelic heterozygosity has been observed among the strains investigated, suggestive of sexual recombination within L. infantum groups. The two major clusters found by using Bayesian statistics as well as distance analysis are consistent with the classification based on isoenzymes, dividing Tunisian L. infantum into MON-1 and MON-24/MON-80. Moreover, the existence of hybrid strains between the MON-1 and the non-MON-1 populations has been shown and verified by analysis of clones of one of these strains. Substructure analysis discriminated four groups of L. infantum. The major MON-1 cluster split into two groups, one comprising only Tunisian strains and the second both Tunisian and European strains. The major MON-24 cluster was subdivided into two groups with geographical and clinical feature correlations: a dermotropic group of strains mainly from the north, and a viscerotropic group of strains from the centre of Tunisia. The four viscerotropic hybrid strains all originated from central Tunisia and were typed by MLEE as MON-24 or MON-80. To our knowledge, this is the first report describing relationships between clinical picture and population substructure of L. infantum MON-24 based on genotype data, as well as the existence of hybrids between zymodemes MON-1 and MON-24/MON-80, and proving one of these hybrid strains by molecular analysis of the parent strain and its clones.  相似文献   

6.
In recent years there has been growing interest in analyzing the geographical variations between populations of different Phlebotomus spp. by comparing the sequences of various genes. However, little is known about the genetic structure of Phlebotomus ariasi. In this study, we were able to sequence a fragment of the mitochondrial Cyt b gene in 133 sandflies morphologically identified as P. ariasi and proceeding from a wide geographical range covering 35 locations in 11 different regions from five countries. The intra-specific diversity of P. ariasi is high, with 45 haplotypes differing from each other by one to 26 bases and they are distributed in two mitochondrial lineages, one limited geographically to Algeria and the other widely dispersed across Mediterranean countries. The Algerian lineage is characterized by having 13 fixed polymorphisms and is made up of one sole haplotype. The European/Moroccan P. ariasi lineage is characterized by being made up of a great diversity of haplotypes (44) which display some geographical structuring. This could be one of the multiple factors involved in the epidemiological heterogeneity of the foci of leishmaniasis. Phlebotomus chadlii is the sister group of European/Moroccan P. ariasi. The separation of the Algerian haplotype, H45, from the rest of the specimens, European/Moroccan P. ariasi and P. chadlii, is well supported by the bootstrap analysis.  相似文献   

7.
Regulatory processes in phosphorus (P) homeostasis in small ruminants are quite different compared to monogastric animals. Adaptive responses of modulating hormones [parathyroid hormone (PTH) and calcitriol] to feeding variable amounts of P are lacking. Therefore, the aim of this study was to examine the influence of high dietary P intake (control diet: 4 g kg(-1) dry matter; high-P diet: 8 g kg(-1) dry matter) on the expression levels of PTH receptor (PTHR), vitamin D receptor (VDR) and Na+-dependent Pi transporters (NaPi II) in kidney and jejunum of goats starting rumination. After 3 months of feeding, plasma phosphate (Pi) and PTH concentrations were increased in the high-P diet group, whereas calcium and calcitriol were not changed. The intestinal Na+-dependent Pi transport capacity was not influenced by a high-P diet and the expression of jejunal VDR, PTHR and NaPi IIb was not modified. Interestingly, renal Na+-dependent Pi transport capacity was significantly reduced and concomitantly the expression of PTHR and NaPi IIa was decreased. In conclusion, the adaptive response of renal Pi reabsorption in goats, which were in transition from non-ruminant to ruminant stage was comparable to that of monogastric animals. In contrast, the modulation of the intestinal Pi absorption was like in adult ruminants.  相似文献   

8.
The ubiquitous Hsp90 is critical for protein homeostasis in the cells, stabilizing “client” proteins in a functional state. Hsp90 activity depends on its ability to bind and hydrolyze ATP, involving various conformational changes that are regulated by co-chaperones, posttranslational modifications and small molecules. Compounds like geldanamycin (GA) and radicicol inhibit the Hsp90 ATPase activity by occupying the ATP binding site, which can lead client protein to degradation and also inhibit cell growth and differentiation in protozoan parasites. Our goal was to produce the recombinant Hsp90 of Leishmania braziliensis (LbHsp90) and construct of its N-terminal (LbHsp90N) and N-domain and middle-domain (LbHsp90NM), which lacks the C-terminal dimerization domain, in order to understand how Hsp90 works in protozoa. The recombinant proteins were produced folded as attested by spectroscopy experiments. Hydrodynamic experiments revealed that LbHsp90N and LbHsp90NM behaved as elongated monomers while LbHsp90 is an elongated dimer. All proteins prevented the in vitro citrate synthase and malate dehydrogenase aggregation, attesting that they have chaperone activity, and interacted with adenosine ligands with similar dissociation constants. The LbHsp90 has low ATPase activity (kcat = 0.320 min− 1) in agreement with Hsp90 orthologs, whereas the LbHsp90NM has negligible activity, suggesting the importance of the dimeric protein for this activity. The GA interacts with LbHsp90 and with its domain constructions with different affinities and also inhibits the LbHsp90 ATPase activity with an IC50 of 0.7 μM. All these results shed light on the LbHsp90 activity and are the first step to understanding the Hsp90 molecular chaperone system in L. braziliensis.  相似文献   

9.
We discovered a potassium ion-dependent trehalose phosphorylase (Bsel_1207) belonging to glycoside hydrolase family 65 from halophilic Bacillus selenitireducens MLS10. Under high potassium ion concentrations, the recombinant Bsel_1207 produced in Escherichia coli existed as an active dimeric form that catalyzed the reversible phosphorolysis of trehalose in a typical sequential bi bi mechanism releasing β-d-glucose 1-phosphate and d-glucose. Decreasing potassium ion concentrations significantly reduced thermal and pH stabilities, leading to formation of inactive monomeric Bsel_1207.  相似文献   

10.
The crystal structure of Bifidobacterium longum phosphoketolase, a thiamine diphosphate (TPP) dependent enzyme, has been determined at 2.2 Å resolution. The enzyme is a dimer with the active sites located at the interface between the two identical subunits with molecular mass of 92.5 kDa. The bound TPP is almost completely shielded from solvent except for the catalytically important C2-carbon of the thiazolium ring, which can be accessed by a substrate sugar through a narrow funnel-shaped channel. In silico docking studies of B. longum phosphoketolase with its substrate enable us to propose a model for substrate binding.

Structured summary

MINT-7985878: PKT (uniprotkb:Q6R2Q7) and PKT (uniprotkb:Q6R2Q7) bind (MI:0407) by X-ray crystallography (MI:0114)  相似文献   

11.
In this work, we summarize results of computer simulation of electron and proton transport processes coupled to ATP synthesis in chloroplasts performed within the frames of a mathematical model developed as a system of differential equations for concentrations of electron carriers and hydrogen ion inside and outside the granal and stromal thylakoids. The model takes into account topological peculiarities and lateral heterogeneity of the chloroplast lamellar system. This allowed us to analyze the influence of restricted diffusion of protons inside small compartments of a chloroplast (e.g., in the narrow inter-thylakoid gap) on electron transport processes. The model adequately describes two modes of pH-dependent feedback control of electron transport associated with: (i) the acidification of the thylakoid lumen, which causes the slowing down of plastoquinol oxidation and stimulates an increase in dissipation of excess energy in PS2, and (ii) the alkalization of stroma, inducing the activation of the BBC (Bassham-Benson-Calvin) cycle and intensified consumption of ATP and NADPH. The influence of ATP on electron transport is mediated by modulation of the thylakoid membrane conductivity to protons through the ATP synthase complexes. We also analyze the contribution of alternative electron transport pathways to the maintenance of optimal balance between the energy donating and energy consuming stages of the light-induced photosynthetic processes.  相似文献   

12.
13.
Cytochrome bd is a terminal quinol:O2 oxidoreductase of respiratory chains of many bacteria. It contains three hemes, b558, b595, and d. The role of heme b595 remains obscure. A CO photolysis/recombination study of the membranes of Escherichia coli containing either wild type cytochrome bd or inactive E445A mutant was performed using nanosecond absorption spectroscopy. We compared photoinduced changes of heme d-CO complex in one-electron-reduced, two-electron-reduced, and fully reduced states of cytochromes bd. The line shape of spectra of photodissociation of one-electron-reduced and two-electron-reduced enzymes is strikingly different from that of the fully reduced enzyme. The difference demonstrates that in the fully reduced enzyme photolysis of CO from heme d perturbs ferrous heme b595 causing loss of an absorption band centered at 435 nm, thus supporting interactions between heme b595 and heme d in the di-heme oxygen-reducing site, in agreement with previous works. Photolyzed CO recombines with the fully reduced enzyme monoexponentially with τ ∼ 12 μs, whereas recombination of CO with one-electron-reduced cytochrome bd shows three kinetic phases, with τ ∼ 14 ns, 14 μs, and 280 μs. The spectra of the absorption changes associated with these components are different in line shape. The 14 ns phase, absent in the fully reduced enzyme, reflects geminate recombination of CO with part of heme d. The 14-μs component reflects bimolecular recombination of CO with heme d and electron backflow from heme d to hemes b in ∼ 4% of the enzyme population. The final, 280-μs component, reflects return of the electron from hemes b to heme d and bimolecular recombination of CO in that population. The fact that even in the two-electron-reduced enzyme, a nanosecond geminate recombination is observed, suggests that namely the redox state of heme b595, and not that of heme b558, controls the pathway(s) by which CO migrates between heme d and the medium.  相似文献   

14.
myo-Inositol is important for cell signaling both in cytoplasm and in intracellular organelles. It is required in the plasma membrane and cytoplasm for maintained synthesis of the second messengers, inositoltrisphosphate (IP(3)) and diacylglycerol (DAG) from phosphatidylinositol bisphosphate (PIP(2)), and in organelles as precursor for synthesis of complex signaling phospholipids and inositolphosphates from IP(3) and PIP(2). myo-Inositol must be taken up into the cell where its is used, because neither neurons nor astrocytes synthesize it. It is also an osmolyte, taken up in response to surrounding hyperosmolarity and released during hypo-osmolarity. There are three myo-inositol transporters, the Na(+)-dependent SMIT1 and SMIT2, and HMIT, which co-transports myo-inositol with H(+). Their relative expressions in astrocytes and neurons are unknown. Uptake kinetics for myo-inositol in astrocytes has repeatedly been determined, but always on the assumption of only one component, leaving kinetics for the individual transporters unknown. This paper demonstrates that astrocytes obtained directly from the brain express SMIT1 and HMIT, but little SMIT2, and that all three transporters are expressed in neurons. Cultured mouse astrocytes show a high-affinity/low-capacity myo-inositol uptake (V(max): 60.0 ± 3.0 pmol/min per mg protein; K(m): 16.7 ± 2.6 μM), mediated by SMIT1 and perhaps partly by SMIT2. It was determined in cells pre-treated with HMIT-siRNA and confirmed by specific inhibition of SMIT. However at physiologically relevant myo-inositol concentrations most uptake is by a lower-affinity/higher-capacity uptake, mediated by HMIT (V(max): 358 ± 60 pmol/min per mg protein; K(m): 143 ± 36 μM) and determined by subtraction of SMIT-mediated from total uptake. At high myo-inositol concentrations, its uptake is inhibited by incubation in medium with increased pH, and increased during intracellular acidification with NH(4)Cl. This is in agreement with literature data for HMIT alone. At low concentration, where SMIT1/2 activity gains importance, myo-inositol uptake is reduced by ammonia-induced intracellular acidification, consistent with the transporter's pH sensitivity reported in the literature.  相似文献   

15.
A newly isolated osmo-, salt-, and alkalitolerant Yarrowia lipolytica yeast strain is distinguished from other yeast species by its capacity to grow vigorously at alkaline pH values (9.7), which makes it a promising model organism for studying Na+-dependent phosphate transport systems in yeasts. Phosphate uptake by Y. lipolytica cells grown at pH 9.7 was mediated by several kinetically discrete Na+-dependent systems specifically activated by Na+. One of these, a low-affinity transporter, operated at high concentrations of extracellular phosphate. The other two, high-affinity systems, maximally active in phosphate-starved cells, were repressed or derepressed depending on the prevailing extracellular phosphate concentration and pH value. The contribution of Na+/Pi-cotransport systems to the total cellular phosphate uptake progressively increased with increasing pH, reaching its maximum at pH 9.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1607–1615.Original Russian Text Copyright © 2004 by Zvyagilskaya, Persson.  相似文献   

16.
Fur (ferric uptake regulator) proteins are involved in the control of a variety of processes in most prokaryotes. Although it is assumed that this regulator binds its DNA targets as a dimer, the way in which this interaction occurs remains unknown. We have focused on FurA from the cyanobacterium Anabaena sp. PCC 7120. To assess the molecular mechanism by which FurA specifically binds to “iron boxes” in PfurA, we examined the topology arrangement of FurA–DNA complexes by atomic force microscopy. Interestingly, FurA–PfurA complexes exhibit several populations, in which one is the predominant and depends clearly on the regulator/promoter ratio on the environment. Those results together with EMSA and other techniques suggest that FurA binds PfurA using a sequential mechanism: (i) a monomer specifically binds to an “iron box” and bends PfurA; (ii) two situations may occur, that a second FurA monomer covers the free “iron box" or that joins to the previously used forming a dimer which would maintain the DNA kinked; (iii) trimerization in which the DNA is unbent; and (iv) finally undergoes a tetramerization; the next coming molecules cover the DNA strands unspecifically. In summary, the bending appears when an “iron box” is bound to one or two molecules and decreases when both “iron boxes” are covered. These results suggest that DNA bending contributes at the first steps of FurA repression promoting the recruitment of new molecules resulting in a fine regulation in the Fur-dependent cluster associated genes.  相似文献   

17.
The organization of carbonic anhydrase (CA) system in halo- and alkaliphilic cyanobacterium Rhabdoderma lineare was studied by Western blot analysis and immunocytochemical electron microscopy. The presence of putative extracellular α-CA of 60 kDa in the glycocalyx, forming a tight sheath around the cell, and of two intracellular β-CA is reported. We show for the first time that the β-CA of 60 kDa is expressed constitutively and associated with polypeptides of photosystem II (β-CA-PS II). Another soluble β-CA of 25 kDa was induced in low-bicarbonate medium. Induction of synthesis of the latter β-CA was accompanied by an increase in the intracellular pool of inorganic carbon, which suggests an important role of this enzyme in the functioning of a CO2-concentrating mechanism.  相似文献   

18.
ShaA, a member of a multigene-encoded Na+/H+ antiporter in B. subtilis, is a large integral membrane protein consisting of 20 transmembrane helices (TM). Conservation of ShaA-like protein subunits in several cation-coupled enzymes, including the NuoL (ND5) subunit of the H+-translocating complex I, suggests the involvement of ShaA in cation transport. Bacillus subtilis ShaA contains six acidic residues that are conserved in ShaA homologues and are located in putative transmembrane helices. We examined the functional involvement of the six transmembrane acidic residues of ShaA by site-directed mutagenesis. Mutation in glutamate (Glu)-113 in TM-4, Glu-657 in TM-18, aspartate (Asp)-734 and Glu-747 in TM-20 abolished the antiport activity, suggesting that these residues play important roles in the ion transport of Sha. The acidic group was necessary and sufficient in Glu-657 and Asp-743, while it was not true of Glu-113 and Glu-747. Mutation in Asp-103 in TM-3, which is conserved in ShaA-types but not in ShaAB-types, partially affected on the antiport activity. Mutation in Asp-50 in TM-2 resulted in a unexpected phenotype: mutants retained the wild type level of ability to confer NaCl resistance to the Na+/H+ antiporter-deficient E. coli KNabc, but showed a very low antiport activity. The acidic group of Asp-50 and Asp-103 was not essential for the function. Our results suggested that these acidic residues are functionally involved in the ion transport of Sha, and some of them probably in cation binding and/or translocation.  相似文献   

19.
Unlike other members of coagulase negative staphylococci (CNS), strain warneri has proMCD operon, a homologue of sspABC proteinase operon of S. aureus. The proM and proC encode serine glutamyl endopeptidase and cysteine protease respectively, whereas proD directs homologue of SspC, putative cytoplasmic inhibitor which protects the host bacterium from premature activation of SspB. We determined whole nucleotide sequence of proMCD operon of S. warneri M, succeeded in expression of these genes, and investigated their functions by gene inactivation and complementation experiments. In gelatin zymography of the culture supernatant, a 20-kDa band corresponding to PROC cysteine protease was detected. By Western blotting, PROD was also confirmed in the cytoplasmic protein fraction. PROC and PROD showed significant similarity to SspB and SspC of S. aureus (73% and 58%, respectively). Inactivation mutants of proMCD, proCD and proD genes were established, separately. In the proMCD mutant, degradation/processing of extracellular proteins was drastically reduced, suggesting that PROM was responsible for the cleavage of extracellular proteins. By the proD mutation, the growth profile was not affected, and secretion of PROC was retained. Extracellular protein profiles of the proCD and proD mutants were not so different each other, but autolysin profiles were slightly dissimilar, around 39–48 kDa and 20 kDa bands in zymogram. Experiments in buffer systems showed that autolysis was significantly diminished in proMCD mutant, and was promoted by addition of purified PROM. The proC gene was cloned into a multicopy plasmid, and introduced into the proMCD mutant. Compared with the wild type, autolysis of the proC-complemented strain was definitely enhanced by addition of purified PROM. These results suggested that PROM and PROC affected the coccal autolysis, through processing of the autolysin.  相似文献   

20.
Jean Alric  Jérôme Lavergne 《BBA》2010,1797(1):44-51
Assimilation of atmospheric CO2 by photosynthetic organisms such as plants, cyanobacteria and green algae, requires the production of ATP and NADPH in a ratio of 3:2. The oxygenic photosynthetic chain can function following two different modes: the linear electron flow which produces reducing power and ATP, and the cyclic electron flow which only produces ATP. Some regulation between the linear and cyclic flows is required for adjusting the stoichiometric production of high-energy bonds and reducing power. Here we explore, in the green alga Chlamydomonas reinhardtii, the onset of the cyclic electron flow during a continuous illumination under aerobic conditions. In mutants devoid of Rubisco or ATPase, where the reducing power cannot be used for carbon fixation, we observed a stimulation of the cyclic electron flow. The present data show that the cyclic electron flow can operate under aerobic conditions and support a simple competition model where the excess reducing power is recycled to match the demand for ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号