首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Multidrug resistance is a major problem in the treatment of breast cancer, and a number of studies have attempted to find an efficient strategy with which to overcome it. In this study, we investigate the synergistic anticancer effects of resveratrol (RSV) and doxorubicin (Dox) against human breast cancer cell lines.

Methods

The synergistic effects of RSV on chemosensitivity were examined in Dox-resistant breast cancer (MCF-7/adr) and MDA-MB-231 cells. In vivo experiments were performed using a nude mouse xenograft model to investigate the combined sensitization effect of RSV and Dox.

Results and conclusion

RSV markedly enhanced Dox-induced cytotoxicity in MCF-7/adr and MDA-MB-231 cells. Treatment with a combination of RSV and Dox significantly increased the cellular accumulation of Dox by down-regulating the expression levels of ATP-binding cassette (ABC) transporter genes, MDR1, and MRP1. Further in vivo experiments in the xenograft model revealed that treatment with a combination of RSV and Dox significantly inhibited tumor volume by 60%, relative to the control group.

General significance

These results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of Dox and decreasing multi-drug resistance in human breast cancer cells.  相似文献   

2.
P-glycoprotein (P-gp) is known to mediate multidrug resistance (MDR) by acting as an efflux pump to actively transport chemotherapeutic agents out of carcinoma cells. Inhibition of P-gp function may represent one of the strategies to reverse MDR. We have previously reported that marchantin C (MC), a macrocyclic bisbibenzyl compound from liverworts, exerts anti-tumor activity as an antimitotic agent. This study was designed to evaluate the possible modulatory effect of MC and its three synthetic derivatives (MC1, MC2 and MC3) on P-gp in VCR-resistant KB/VCR cells. Results of the cytotoxicity assay revealed that MC was the most potent inhibitor of cell proliferation in both KB and KB/VCR cells among these four compounds, while the three MC-derived chemicals had little anti-proliferative activity under the same condition. However, in P-gp-expressing MDR cells, analysis of potency of these compounds in enhancing cytotoxicity of VCR led to the identification of MC2 as a more effective chemical on reversal of resistance. Further study showed that MC2 was able to reduce efflux of rhodamine-123, and in turn, increase the accumulation of rhodamine-123 and adriamycin in KB/VCR cells, indicating that MC2 re-sensitized cells to VCR by inhibition of the P-gp transport activity. In addition, the combination of MC2 and VCR at a concentration that does not inhibit cell growth resulted in an induction of apoptosis in KB/VCR cells. These results suggest that MC2, as a novel and effective inhibitor of P-gp, may find potential application as an adjunctive agent with conventional chemotherapeutic drugs to reverse MDR in P-gp overexpressing cancer cells.  相似文献   

3.

Background

Cancer is one of the leading worldwide causes of death. It may be induced by a variety of factors, including carcinogens, radiation, genetic factors, or DNA and RNA viruses. The early detection of cancer is critical for its successful therapy, which can result in complete recovery from some types of cancer.

Methods

Raman spectroscopy has been widely used in medicine and biology. It is a noninvasive, nondestructive, and water-insensitive technique that can detect changes in cells and tissues that are caused by different disorders, such as cancer.In this study, Raman spectroscopy was used for the identification and characterization of murine fibroblast cell lines (NIH/3T3) and malignant fibroblast cells transformed by murine sarcoma virus (NIH-MuSV) cells.

Results

Using principal component analysis and LDA it was possible to differentiate between the NIH/3T3 and NIH-MuSV cells with an 80–85% success rate based on their Raman shift spectra.

Conclusions

The best results for differentiation were achieved from spectra that were obtained from the rich membrane sites.

General significance

Because of its homogeneity and complete control of most factors affecting its growth, cell culture is a preferred model for the detection and identification of specific biomarkers related to cancer transformation or other cellular modifications.  相似文献   

4.

Background

The Galanthus nivalis agglutinin (GNA)-related lectins have been reported to bear antiproliferative and apoptosis-inducing activities in cancer cells; however, the precise mechanisms by which GNA-related lectins induce cell death are still only rudimentarily understood.

Methods

In the present study, Polygonatum odoratum lectin (designated POL), a mannose-binding specific GNA-related lectin, possessed a remarkable antiproliferative activity toward murine fibrosarcoma L929 cells. And, this lectin induced L929 cell apoptosis in a caspase-dependent manner. In addition, POL treatment increased the levels of FasL and Fas-Associated protein with Death Domain (FADD) proteins and resulted in caspase-8 activation. Also, POL treatment caused mitochondrial transmembrane potential collapse and cytochrome c release, leading to activations of caspase-9 and caspase-3. Moreover, POL treatment enhanced tumor necrosis factor α (TNFα)-induced L929 cell apoptosis.

Results

Our data demonstrate for the first time that this lectin induces apoptosis through both death-receptor and mitochondrial pathways, as well as amplifies TNFα-induced L929 cell apoptosis.

General significance

These inspiring findings would provide new molecular basis for further understanding cell death mechanisms of the Galanthus nivalis agglutinin (GNA)-related lectins in future cancer investigations.  相似文献   

5.

Background

Targeting multiple aspects of cellular metabolism, such as both aerobic glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), has the potential to improve cancer therapeutics. Berberine (BBR), a widely used traditional Chinese medicine, exerts its antitumor effects by inhibiting OXPHOS. 2-Deoxy-d-glucose (2-DG) targets aerobic glycolysis and demonstrates potential anticancer effects in the clinic. We hypothesized that BBR in combination with 2-DG would be more efficient than either agent alone against cancer cell growth.

Methods

The effects of BBR and 2-DG on cancer cell growth were evaluated using the Sulforhodamine B (SRB) method. Cell death was detected with the PI uptake assay, and Western blot, Q-PCR and luciferase reporter assays were used for signaling pathway detection. An adenovirus system was used for gene overexpression.

Results

BBR combined with 2-DG synergistically enhanced the growth inhibition of cancer cells in vitro. Further mechanistic studies showed that the combination drastically enhanced ATP depletion and strongly disrupted the unfolded protein response (UPR). Overexpressing GRP78 partially prevented the cancer cell inhibition induced by both compounds.

Conclusions

Here, we report for the first time that BBR and 2-DG have a synergistic effect on cancer cell growth inhibition related to ATP energy depletion and disruption of UPR.

General significance

Our results propose the potential use of BBR and 2-DG in combination as an anticancer treatment, reinforcing the hypothesis that targeting both aerobic glycolysis and OXPHOS provides more effective cancer therapy and highlighting the important role of UPR in the process.  相似文献   

6.

Background

NHAoc/NHA2 is highly and selectively expressed in osteoclasts and plays a role(s) in normal osteoclast differentiation, apoptosis and bone resorptive function in vitro. Extensive mutational analysis of a bacterial homologue, NhaA, has revealed a number of amino acid residues essential for its activity. Some of these residues are evolutionarily conserved and have been shown to be essential not only for activity of NhaA in bacteria, but also of NHAoc/NHA2 in eukaryotes.

Methods

The salt-sensitive Saccharomyces cerevisiae strain BW31a was used for heterologous expression of mutants of NHAoc/NHA2. Membrane expression of NHAoc/NHA2 was confirmed by confocal microscopy. Intracellular concentration of Na+ (a measure of Na+ antiporter activity) was estimated by atomic absorption spectroscopy. The growth phenotypes of cells expressing NHAoc/NHA2 mutants were studied on YNB agar supplemented with NaCl and by growth curves in YNB broth.

Results

Mutations in amino acid residues V161 and F357 reduced the ability of transfected BW31a cells to remove intracellular sodium and to grow in NaCl-containing medium. Yeast expressing the double mutant F357 F437 cannot grow in 0.4 M NaCl, suggesting that these residues are also essential for antiporter activity.

Conclusions

Evolutionarily conserved amino acids are required for full antiporter function.

General Significance

Mutations in these amino acid residues may impact NHAoc activity and therefore osteoclast function in vitro and in vivo.  相似文献   

7.

Aims

Ardipusilloside I (ADS-I), a triterpenoid saponin isolated from Ardisia pusilla A.DC (Myrsinaceae), has been recently tested for cancer treatment including brain cancer. However, the mechanism of its action remains elusive. The present study was to investigate the role of autophagy activation in the anti-tumor activities of ADS-I in human glioma cells.

Main methods

The tetrazolium dye (MTT) colorimetric assay was used for the measurement of cell proliferation in cultured glioma cells, transmission electron microscopy (TEM) for the examination of autophagic activity, flow cytometric analysis for the determination of cell cycle and apoptotic cells, and immunocytochemistry and Western blot for protein expression of microtubule-associated protein light-chain 3 (LC3) and Beclin 1.

Key findings

ADS-I significantly inhibited the proliferation of both U373 and T98G glioma cells in cultures in a dose-dependent manner. The cytotoxic activity of ADS-I against glioma cell growth was associated not only with the induction of cell cycle arrest at G2/M phase and cell apoptosis in flow cytometric analysis, but also with the activation of autophagy, indicated by the formation of autophagosomes and up-regulated expression of both autophagic protein Beclin 1 and LC3 in glioma cells. Additionally, the treatment with chloroquine, an autophagy inhibitor, reduced ADS-1-mediated cell death.

Significance

These data suggest that the anti-proliferative activity of ADS-I in human glioma cells is associated with the activation of autophagy in addition to cell cycle arrest and apoptosis, and the antagonistic effect of chloroquine suggests an important role of autophagy in ADS-I-mediated cell death against tumor growth.  相似文献   

8.
9.

Background

In chordates, retinoid metabolism is an important target of short-chain dehydrogenases/reductases (SDRs). It is not known whether SDRs play a role in retinoid metabolism of protostomes, such as Drosophila melanogaster.

Methods

Drosophila genome was searched for genes encoding proteins with ∼ 50% identity to human retinol dehydrogenase 12 (RDH12). The corresponding proteins were expressed in Sf9 cells and biochemically characterized. Their phylogenetic relationships were analyzed using PHYLIP software.

Results

A total of six Drosophila SDR genes were identified. Five of these genes are clustered on chromosome 2 and one is located on chromosome X. The deduced proteins are 300 to 406 amino acids long and are associated with microsomal membranes. They recognize all-trans-retinaldehyde and all-trans-3-hydroxyretinaldehyde as substrates and prefer NADPH as a cofactor. Phylogenetically, Drosophila SDRs belong to the same branch of the SDR superfamily as human RDH12, indicating a common ancestry early in bilaterian evolution, before a protostome–deuterostome split.

Conclusions

Similarities in the substrate and cofactor specificities of Drosophila versus human SDRs suggest conservation of their function in retinoid metabolism throughout protostome and deuterostome phyla.

General significance

The discovery of Drosophila retinaldehyde reductases sheds new light on the conversion of β-carotene and zeaxantine to visual pigment and provides a better understanding of the evolutionary roots of retinoid-active SDRs.  相似文献   

10.

Background

Genetically encoded photosensitizers are a promising optogenetic instrument for light-induced production of reactive oxygen species in desired locations within cells in vitro or whole body in vivo. Only two such photosensitizers are currently known, GFP-like protein KillerRed and FMN-binding protein miniSOG. In this work we studied phototoxic effects of miniSOG in cancer cells.

Methods

HeLa Kyoto cell lines stably expressing miniSOG in different localizations, namely, plasma membrane, mitochondria or chromatin (fused with histone H2B) were created. Phototoxicity of miniSOG was tested on the cells in vitro and tumor xenografts in vivo.

Results

Blue light induced pronounced cell death in all three cell lines in a dose-dependent manner. Caspase 3 activation was characteristic of illuminated cells with mitochondria- and chromatin-localized miniSOG, but not with miniSOG in the plasma membrane. In addition, H2B-miniSOG-expressing cells demonstrated light-induced activation of DNA repair machinery, which indicates massive damage of genomic DNA. In contrast to these in vitro data, no detectable phototoxicity was observed on tumor xenografts with HeLa Kyoto cell lines expressing mitochondria- or chromatin-localized miniSOG.

Conclusions

miniSOG is an excellent genetically encoded photosensitizer for mammalian cells in vitro, but it is inferior to KillerRed in the HeLa tumor.

General significance

This is the first study to assess phototoxicity of miniSOG in cancer cells. The results suggest an effective ontogenetic tool and may be of interest for molecular and cell biology and biomedical applications.  相似文献   

11.

Background

Plant lectins have attracted great interest in cancer studies due to their antitumor activities. These proteins or glycoproteins specifically and reversibly bind to different types of carbohydrates or glycoproteins. Breast cancer, which presents altered glycosylation of cell surface glycoproteins, is one of the most frequent malignant diseases in women. In this work, we describe the effect of the lectin Bauhinia forficata lectin (BfL), which was purified from B. forficata Link subsp. forficata seeds, on the MCF7 human breast cancer cellular line, investigating the mechanisms involved in its antiproliferative activity.

Methods

MCF7 cells were treated with BfL. Viability and adhesion alterations were evaluated using flow cytometry and western blotting.

Results

BfL inhibited the viability of the MCF7 cell line but was ineffective on MDA-MB-231 and MCF 10A cells. It inhibits MCF7 adhesion on laminin, collagen I and fibronectin, decreases α1, α6 and β1 integrin subunit expression, and increases α5 subunit expression. BfL triggers necrosis and secondary necrosis, with caspase-9 inhibition. It also causes deoxyribonucleic acid (DNA) fragmentation, which leads to cell cycle arrest in the G2/M phase and a decrease in the expression of the regulatory proteins pRb and p21.

Conclusion

BfL shows selective cytotoxic effect and adhesion inhibition on MCF7 breast cancer cells.

General significance

Cell death induction and inhibition of cell adhesion may contribute to understanding the action of lectins in breast cancer.  相似文献   

12.
Four undescribed labdane diterpenoids, 1,2-dehydro-3,7-dioxo-manoyl oxide (1), 1,2-dehydro-7β-hydroxy-3-oxo-manoyl oxide (2), 3,7-dioxo-manoyl oxide (3), and 3β-hydroxy-7-oxo-manoyl oxide (4) together with three known diterpenoids (5-7) and four highly methoxylated bibenzyls (8-11) were isolated from the liverwort Frullania inouei. The absolute structures of 1-4 were established by combined analysis of NMR data, CD data coupled with TDDFT CD calculations, and single-crystal X-ray diffraction measurement. Cytotoxicity tests to human tumor KB, KB/VCR, K562 or K562/A02 cells showed bibenzyls 8-11 inhibited cell proliferation with ID50 values ranging from 11.3 to 49.6 μM and overcame the multidrug resistance (MDR) with the reversal fold (RF) values ranging from 3.19 to 10.91 (5 μM) for vincristine-resistant KB/VCR and RF values from 4.40 to 8.26 (5 μM) for adriamycin-resistant K562/A02 cells, respectively. However, none of the diterpenoids were found to be active (ID50 > 50 μM).  相似文献   

13.

Objectives

The association between passive smoking and breast cancer risk differs in pre- and post-menopausal women. We aimed to explore the modification effects of PARP1 rs1136410 and ESR1 rs2234693 on the association between passive smoking and breast cancer risk among pre- and post-menopausal women.

Design and methods

A case–control study of 839 breast cancer cases and 863 controls was conducted. The gene–environment interactions were tested after adjusting for potential breast cancer risk factors with unconditional logistic regression models.

Results

We found that the effect of passive smoking was modified by the genotypes in both pre- and post-menopausal women, but in opposite directions. The combination of the TC/CC genotypes of ESR1 rs2234693 and passive smoking significantly increased the risk of breast cancer [OR (95%CI): 2.06 (1.39–3.05)] in pre-menopausal women. A significant association was observed between TT genotype and passive smoking [OR (95%CI): 2.40 (1.27–4.53)] in postmenopausal women. For PARP1 rs1136410, similar differential associations were observed, but the interactions were not significant.

Conclusions

These results imply that the risk of breast cancer from passive smoking may be influenced by genetic factors, and that the association may differ depending on menopausal status.  相似文献   

14.

Background

This investigation clearly clarified the synthesized and antimitotic compound, 2-(3′-methoxyphenyl)-6-pyrrolidinyl-4-quinazolinone (HMJ-38), addressing its target and precise mechanism of action. We hypothesized that HMJ-38 might sensitize apoptotic death of human oral carcinoma CAL 27 cells in vitro and inhibit xenograft tumor growth in vivo.

Methods

Cell viability was assessed utilizing MTT assay. HMJ-38-treated cells represented DNA fragmentation using agarose gel electrophoresis as further evidenced using TUNEL staining. Flow cytometric analyses, immunoblotting and quantitative RT-PCR were applied for protein and gene expression. Antitumor xenograft study was employed.

Results

HMJ-38 concentration- and time-dependently reduced viability of CAL 27 cells. The effect of intrinsic molecules was signalized during HMJ-38 exposure with disruption of ΔΨm, MPT pore opening and the release of various events from mitochondria undergoing cell apoptosis. HMJ-38 also markedly facilitated G2/M phase arrest. HMJ-38 stimulated the activation of CDK1 activity that modulated phosphorylation on Ser70 of Bcl-2-mediated mitotic arrest and apoptosis. HMJ-38 triggered intracellular Ca2 + release and activated related pivotal hallmarks of ER stress. HMJ-38 in nude mice bearing CAL 27 tumor xenografts decreased tumor growth. Furthermore, HMJ-38 enhanced caspase-3 gene expression and protein level in xenotransplanted tumors.

Conclusions

Early roles of mitotic arrest, unfolded protein response and mitochondria-dependent signaling contributed to apoptotic CAL 27 cell demise induced by HMJ-38. In in vivo experiments, HMJ-38 also efficaciously suppressed tumor volume in a xenotransplantation model.

General significance

This finding might fully support a critical event for HMJ-38 via induction of apoptotic machinery and ER stress against human oral cancer cells.  相似文献   

15.
16.

Background

Chronic formaldehyde exposure leads to memory impairment and abnormal elevation of endogenous formaldehyde has been found in the brains of Alzheimer's disease (AD) patients. Hyperphosphorylated Tau protein with subsequent aggregates as neurofibrillary tangles (NFTs) is one of the typical pathological characteristics in AD brains. The mechanism underlying abnormally elevated concentrations of endogenous formaldehyde that induce Tau hyperphosphorylation is unknown.

Methods

N2a cells and mice were treated with formaldehyde for different time points, then Western blotting and immunocytochemistry were utilized to determine the phosphorylation and polymerization of Tau protein. HPLC was used to detect the concentration of formaldehyde in cell media.

Results

Under formaldehyde stress, Tau became hyperphosphorylated, not only in the cytoplasm, but also in the nucleus of neuroblastoma (N2a) cells, and mouse brains. Polymers of cellular phospho-Tau were also detected. Significant accumulation of glycogen synthase kinase-3β (GSK-3β) in the nucleus of N2a and mouse brain cells, and elevation of its phosphorylation at Y216, was observed under formaldehyde stress. Formaldehyde-induced Tau hyperphosphorylation was blocked in the presence of LiCl and CT99021, inhibitors of GSK-3β, and by RNAi interference.

Conclusions

Formaldehyde, which may cause age-related memory loss, can act as a factor triggering Tau hyperphosphorylation via GSK-3β catalysis and induces polymerization of Tau.

General significance

Investigation of formaldehyde-induced Tau hyperphosphorylation may provide novel insights into mechanisms underlying tauopathies.  相似文献   

17.

Background

Variability in MDR1 and PXR has been associated with differences in drug plasma levels and response to antiretroviral therapy. We investigated whether polymorphisms in MDR1 (T-129C, C1236T and C3435T) and PXR (C63396T) affect lopinavir plasma concentration and the virological or immunological response to HAART in HIV-1-infected children.

Methods

Genotypes were identified in 100 blood donors and 38 HIV-1-infected children. All children received HAART with lopinavir boosted with ritonavir (LPV/r) at the time of LPV plasma level quantification, before (Ctrough) and between 1 and 2 h after (Cpost-dose) the administration of the next dose of drug. CD4+ T-cell counts and plasma viral load were analyzed before and after the initiation of LPV/r.

Results

MDR1 1236T, MDR1 3435T and PXR 63396T alleles showed a frequency of ~ 50% while the MDR1 -129C allele only reached 5%. Children heterozygotes 1236CT showed a significantly lower LPV Cpost-dose than homozygotes 1236TT (median Cpost-dose = 3.04 μg/ml and 6.50 μg/ml, respectively; p = 0.016). Children heterozygotes 1236CT also had a lower decrease of viral load after 36 weeks of LPV/r exposure compared with homozygotes 1236CC (median viral load changes = − 0.50 log10 copies/ml and − 2.08 log10 copies/ml, respectively; p = 0.047). No effect on the immunological response was observed for polymorphisms of MDR1 or PXR.

Conclusions

Our results suggest that the MDR1 C1236T SNP significantly reduces LPV plasma concentration affecting the virological response to HAART. Heterozygotes 1236CT might have an altered level of P-gp expression/activity in enterocytes and CD4+ T lymphocytes that limits the absorption of LPV leading to an impaired virological suppression.  相似文献   

18.
19.

Background

Pichia fermentans DiSAABA 726 is a dimorphic yeast that reversibly shifts from yeast-like to pseudohyphal morphology. This yeast behaves as a promising antagonist of Monilia spp. in the yeast-like form, but becomes a destructive plant pathogen in the pseudohyphal form thus raising the problem of the biological risk associated with the use of dimorphic yeasts as microbial antagonists in the biocontrol of phytopathogenic fungi.

Methods

Pichia fermentans DiSAABA 726 was grown in urea- and methionine-containing media in order to induce and separate yeast-like and pseudohyphal morphologies. Total RNA was extracted from yeast-like cells and pseudohyphae and retro-transcribed into cDNA. A rapid subtraction hybridization approach was utilized to obtain the cDNA sequences putatively over-expressed during growth on methionine-containing medium and involved in pseudohyphal transition.

Results

Five genes that are over-expressed during yeast-like/pseudohyphal dimorphic transition were isolated. One of these, encoding a putative phospholipase C, is involved in P. fermentans filamentation. In fact, while the inhibition of phospholipase C, by means of 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphorylcholine (Et-18), is accompanied by a significant reduction of pseudohyphae formation in P. fermentans, the addition of exogenous cAMP fully restores pseudohyphal growth also in the presence of Et-18.

Conclusion

Phospholipase C is part of a putative “methionine sensing machinery” that activates cAMP-PKA signal transduction pathway and controls P. fermentans yeast-like/pseudohyphal dimorphic transition.

General significance

Phospholipase C is a promising molecular target for further investigations into the link between pseudohyphae formation and pathogenicity in P. fermentans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号