首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mitochondria are multifunctional organelles that not only serve as cellular energy stores but are also actively involved in several cellular stress responses, including apoptosis. In addition, mitochondria themselves are also continuously challenged by stresses such as reactive oxygen species (ROS), an inevitable by-product of oxidative phosphorylation. To exert various functions against these stresses, mitochondria must be equipped with appropriate stress responses that monitor and maintain their quality.

Scope of review

Interestingly, increasing evidence indicates that mitochondrial proteolysis has important roles in mitochondrial and cellular stress responses. In this review, we summarize current advances in mitochondrial proteolysis-mediated stress responses.

Major conclusions

Mitochondrial proteases do not only function as surveillance systems of protein quality control by degrading unfolded proteins but also regulate mitochondrial stress responses by processing specific mitochondrial proteins.

General significance

Studies on the regulation of mitochondrial proteolysis-mediated stress responses will provide the novel mechanistic insights into the stress response research fields.  相似文献   

2.

Background

Mitochondria, essential to the cell homeostasis maintenance, are central to the intrinsic apoptotic pathway and their dysfunction is associated with multiple diseases. Recent research documents that microRNAs (miRNAs) regulate important signalling pathways in mitochondria, and many of these miRNAs are deregulated in various diseases including cancers.

Scope of review

In this review, we summarise the role of miRNAs in the regulation of the mitochondrial bioenergetics/function, and discuss the role of miRNAs modulating the various metabolic pathways resulting in tumour suppression and their possible therapeutic applications.

Major conclusions

MiRNAs have recently emerged as key regulators of metabolism and can affect mitochondria by modulating mitochondrial proteins coded by nuclear genes. They were also found in mitochondria. Reprogramming of the energy metabolism has been postulated as a major feature of cancer. Modulation of miRNAs levels may provide a new therapeutic approach for the treatment of mitochondria-related pathologies, including neoplastic diseases.

General significance

The elucidation of the role of miRNAs in the regulation of mitochondrial activity/bioenergetics will deepen our understanding of the molecular aspects of various aspects of cell biology associated with the genesis and progression of neoplastic diseases. Eventually, this knowledge may promote the development of innovative pharmacological interventions. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

3.

Aims

Both advanced glycation end products (AGEs) and endoplasmic reticulum (ER) stress play important roles in the development of various diseases. This study aimed to clarify the consequence of AGE-induced ER stress and its underlying mechanisms in human umbilical venous endothelial cells (HUVECs).

Main methods

AGE-induced ER stress was assessed by the increased expression and activation of the ER stress marker proteins GRP78, IRE1α and JNK, which were detected using Western blot. NF-κB translocation was revealed using Western blot and immunofluorescent staining in IRE1α-knockdown HUVECs. The mechanism of AGE-induced ER stress was also explored by inhibiting the effect of reactive oxygen species (ROS) using NADPH oxidase 4 (Nox4) siRNA and the antioxidant reduced glutathione (GSH). The cellular ROS level was measured using flow cytometry.

Key findings

AGEs time- and dose-dependently enhanced the expression of GRP78 and increased the phosphorylation of IRE1α and its downstream signal JNK in HUVECs. siRNA-induced IRE1α down-regulation suppressed AGE-induced NF-κB p65 nuclear translocation. Inhibiting the ROS production using Nox4 siRNA or antagonizing ROS using GSH reduced cellular ROS level and attenuated AGE-induced GRP78 expression and IRE1α and JNK activation.

Significance

This study confirms that AGE-induced ER stress in HUVECs focuses on the ER stress-enhanced inflammatory response through JNK and NF-κB activation. It further reveals the involvement of ROS in the AGE-induced ER stress mechanism.  相似文献   

4.

Background

Mitochondria, powerhouses of cells, are responsible for many critical cellular functions, such as cell energy metabolism, reactive oxygen species production, and apoptosis regulation. Monitoring mitochondria morphology in live cells temporally and spatially could help with the understanding of the mechanisms of mitochondrial functional regulation and the pathogenesis of mitochondria-related diseases.

Methods

A novel non-cytotoxic fluorogenic compound, AcQCy7, was developed as a mitochondria-specific dye.

Results

AcQCy7 emitted no fluorescent signal outside of cells, but it became fluorescent after intracellular hydrolysis of the acetyl group. The hydrolyzed fluorescent product was well retained in mitochondria, enabling long-lasting fluorescence imaging of mitochondria without cell washing. A 2-day culture study using AcQCy7 showed no sign of cytotoxicity, whereas a commonly used mitochondria-staining probe, Mitochondria Tracker Green, caused significant cell death even at a much lower concentration. Apoptosis-causing mitochondria fission was monitored clearly in real time by AcQCy7.

Conclusions

A simple add-and-read mitochondria specific dye AcQCy7 has been validated in various cell models. Bright mitochondria specific fluorescent signal in treated cells lasted several days without noticeable toxicity.

General Significance

The probe AcQCy7 has been proofed to be a non-toxic agent for long-term mitochondria imaging.  相似文献   

5.

Background

The reverse electron flow-induced ROS generation (RFIR) is decreased in ischemia-damaged mitochondria. Cardiac ischemia leads to decreased complex I activity and depolarized inner mitochondrial membrane potential (ΔΨ) that are two key factors to affect the RFIR in isolated mitochondria. We asked if a partial inhibition of complex I activity without alteration of the ΔΨ is able to decrease the RFIR.

Methods

Cardiac mitochondria were isolated from mouse heart (C57BL/6) with and without ischemia. The rate of H2O2 production from mitochondria was determined using amplex red coupled with horseradish peroxidase. Mitochondria were isolated from the mitochondrial-targeted STAT3 overexpressing mouse (MLS-STAT3E) to clarify the role of partial complex I inhibition in RFIR production.

Results

The RFIR was decreased in ischemia-damaged mouse heart mitochondria with decreased complex I activity and depolarized ΔΨ. However, the RFIR was not altered in the MLS-STAT3E heart mitochondria with complex I defect but without depolarization of the ΔΨ. A slight depolarization of the ΔΨ in wild type mitochondria completely eliminated the RFIR.

Conclusions

The mild uncoupling but not the partially decreased complex I activity contributes to the observed decrease in RFIR in ischemia-damaged mitochondria.

General significance

The RFIR is less likely to be a key source of cardiac injury during reperfusion.  相似文献   

6.

Background

The mitochondrial carnitine/acylcarnitine carrier (CAC) is essential for cell metabolism since it catalyzes the transport of acylcarnitines into mitochondria allowing the β-oxidation of fatty acids. CAC functional and structural properties have been characterized. Cys residues which could form disulfides suggest the involvement of CAC in redox switches.

Methods

The effect of GSH and GSSG on the [3H]-carnitine/carnitine antiport catalyzed by the CAC in proteoliposomes has been studied. The Cys residues involved in the redox switch have been identified by site-directed mutagenesis. Glutathionylated CAC has been assessed by glutathionyl-protein specific antibody.

Results

GSH led to increase of transport activity of the CAC extracted from liver mitochondria. A similar effect was observed on the recombinant CAC. The presence of glutaredoxin-1 (Grx1) accelerated the GSH activation of the recombinant CAC. The effect was more evident at 37 °C. GSSG led to transport inhibition which was reversed by dithioerythritol (DTE). The effects of GSH and GSSG were studied on CAC Cys-mutants. CAC lacking C136 and C155 was insensitive to both reagents. Mutants containing these two Cys responded as the wild-type. Anti-glutathionyl antibody revealed the formation of glutathionylated CAC.

Conclusions

CAC is redox-sensitive and it is regulated by the GSH/GSSG couple. C136 and C155 are responsible for the regulation which occurs through glutathionylation.

General significance

CAC is sensitive to the redox state of the cell switching between oxidized and reduced forms in response to variation of GSSG and GSH concentrations.  相似文献   

7.
Oxidative stress due to excessive reactive oxygen species (ROS) and depleted antioxidants such as glutathione (GSH) can give rise to apoptotic cell death in acutely diabetic hearts and lead to heart disease. At present, the source of these cardiac ROS or the subcellular site of cardiac GSH loss [i.e., cytosolic (cGSH) or mitochondrial (mGSH) GSH] has not been completely elucidated. With the use of rotenone (an inhibitor of the electron transport chain) to decrease the excessive ROS in acute streptozotocin (STZ)-induced diabetic rat heart, the mitochondrial origin of ROS was established. Furthermore, mitochondrial damage, as evidenced by loss of membrane potential, increases in oxidative stress, and reduction in mGSH was associated with increased apoptosis via increases in caspase-9 and -3 activities in acutely diabetic hearts. To validate the role of mGSH in regulating cardiac apoptosis, L-buthionine-sulfoximine (BSO; 10 mmol/kg ip), which blocks GSH synthesis, or diethyl maleate (DEM; 4 mmol/kg ip), which inactivates preformed GSH, was administered in diabetic rats for 4 days after STZ administration. Although both BSO and DEM lowered cGSH, they were ineffective in reducing mGSH or augmenting cardiomyocyte apoptosis. To circumvent the lack of mGSH depletion, BSO and DEM were coadministered in diabetic rats. In this setting, mGSH was undetectable and cardiac apoptosis was further aggravated compared with the untreated diabetic group. In a separate group, GSH supplementation induced a robust amplification of mGSH in diabetic rat hearts and prevented apoptosis. Our data suggest for the first time that mGSH is crucial for modulating the cell suicide program in short-term diabetic rat hearts.  相似文献   

8.

Background

Plagiochin E (PLE) is an antifungal macrocyclic bis(bibenzyl) isolated from liverwort Marchantia polymorpha L. Its antifungal mechanism is unknown. To elucidate the mechanism of action, its effect on mitochondria function in Candida albicans was studied.

Methods

We assayed the mitochondrial membrane potential (mtΔψ) using rhodamine 123, measured ATP level in mitochondria by HPLC, and detected the activities of mitochondrial F0F1-ATPase and dehydrogenases. Besides, the mitochondrial dysfunction-induced reactive oxygen species (ROS) production was determined by a fluorometric assay, and the effects of antioxidant L-cysteine on PLE-induced ROS production and the antifungal effect of PLE on C. albicans were also investigated.

Results

Exposure to PLE resulted in an elevation of mtΔψ, and a decrease of ATP level in mitochondria. The ATP depletion owed to PLE-induced enhancement of mitochondrial F0F1-ATPase and inhibition of the mitochondrial dehydrogenases. These dysfunctions of mitochondria caused ROS accumulation in C. albicans, and this increase in the level of ROS production and PLE-induced decrease in cell viability were prevented by addition of L-cysteine, indicating that ROS was an important mediator of the antifungal action of PLE.

Conclusions

PLE exerts its antifungal activity through mitochondrial dysfunction-induced ROS accumulation in C. albicans.

General significance

The effect of PLE on the mitochondria function in C. albicans was assayed for the first time. These results would conduce to elucidate its underlying antifungal mechanism.  相似文献   

9.

Background

Mitochondria play essential roles in the life and death of almost all eukaryotic cells, ranging from single-celled to multi-cellular organisms that display tissue and developmental differentiation. As mitochondria only arose once in evolution, much can be learned from studying single celled model systems such as yeast and applying this knowledge to other organisms. However, two billion years of evolution have also resulted in substantial divergence in mitochondrial function between eukaryotic organisms.

Scope of Review

Here we review our current understanding of the mechanisms of mitochondrial protein import between plants and yeast (Saccharomyces cerevisiae) and identify a high level of conservation for the essential subunits of plant mitochondrial import apparatus. Furthermore, we investigate examples whereby divergence and acquisition of functions have arisen and highlight the emerging examples of interactions between the import apparatus and components of the respiratory chain.

Major conclusions

After more than three decades of research into the components and mechanisms of mitochondrial protein import of plants and yeast, the differences between these systems are examined. Specifically, expansions of the small gene families that encode the mitochondrial protein import apparatus in plants are detailed, and their essential role in seed viability is revealed.

General significance

These findings point to the essential role of the inner mitochondrial protein translocases in Arabidopsis, establishing their necessity for seed viability and the crucial role of mitochondrial biogenesis during germination. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

10.

Background

Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). Studies in the yeast Saccharomyces cerevisiae have provided valuable insights into the mechanisms of cellular dysfunction associated with the expression of faulty PD genes.

Methods

We developed a yeast model for full-length LRRK2 studies. We expressed wild-type (wt) LRRK2 and mutations and evaluated their role during oxidative stress conditions. The involvement of mitochondria was assessed by using rho-zero mutants and by evaluating reactive oxygen species (ROS) production and mitochondrial membrane potential by flow cytometry. The involvement of endocytosis was also studied by testing several endocytic mutants and by following the vacuolar delivery of the probe FM4-64.

Results

Expression of LRRK2 in yeast was associated to increased hydrogen peroxide resistance. This phenotype, which was dependent on mitochondrial function, was not observed for PD-mutants G2019S and R1441C or in the absence of the kinase activity and the WD40 repeat domain. Expression of the pathogenic mutants stimulated ROS production and increased mitochondrial membrane potential. For the PD-mutants, but not for wild-type LRRK2, endocytic defects were also observed. Additionally, several endocytic proteins were required for LRRK2-mediated protection against hydrogen peroxide.

Conclusions

Our results indicate that LRRK2 confers cellular protection during oxidative stress depending on mitochondrial function and endocytosis.

General significance

Both the loss of capacity of LRRK2 pathogenic mutants to protect against oxidative stress and their enhancement of dysfunction may be important for the development of PD during the aging process.  相似文献   

11.
Hypoxia is known to stimulate reactive oxygen species (ROS) generation. Because reduced glutathione (GSH) is compartmentalized in cytosol and mitochondria, we examined the specific role of mitochondrial GSH (mGSH) in the survival of hepatocytes during hypoxia (5% O2). 5% O2 stimulated ROS in HepG2 cells and cultured rat hepatocytes. Mitochondrial complex I and II inhibitors prevented this effect, whereas inhibition of nitric oxide synthesis with Nomega-nitro-L-arginine methyl ester hydrochloride or the peroxynitrite scavenger uric acid did not. Depletion of GSH stores in both cytosol and mitochondria enhanced the susceptibility of HepG2 cells or primary rat hepatocytes to 5% O2 exposure. However, this sensitization was abrogated by preventing mitochondrial ROS generation by complex I and II inhibition. Moreover, selective mGSH depletion by (R,S)-3-hydroxy-4-pentenoate that spared cytosol GSH levels sensitized rat hepatocytes to hypoxia because of enhanced ROS generation. GSH restoration by GSH ethyl ester or by blocking mitochondrial electron flow at complex I and II rescued (R,S)-3-hydroxy-4-pentenoate-treated hepatocytes to hypoxia-induced cell death. Thus, mGSH controls the survival of hepatocytes during hypoxia through the regulation of mitochondrial generation of oxidative stress.  相似文献   

12.

Background

Messenger RNAs encoded by mitochondrial genomes are translated on mitochondrial ribosomes that have unique structure and protein composition compared to prokaryotic and cytoplasmic ribosomes. Mitochondrial ribosomes are a patchwork of core proteins that share homology with prokaryotic ribosomal proteins and new, supernumerary proteins that can be unique to different organisms. In mammals, there are specific supernumerary ribosomal proteins that are not present in other eukaryotes.

Scope of review

Here we discuss the roles of supernumerary proteins in the regulation of mitochondrial gene expression and compare them among different eukaryotic systems. Furthermore, we consider if differences in the structure and organization of mitochondrial genomes may have contributed to the acquisition of mitochondrial ribosomal proteins with new functions.

Major conclusions

The distinct and diverse compositions of mitochondrial ribosomes illustrate the high evolutionary divergence found between mitochondrial genetic systems.

General significance

Elucidating the role of the organism-specific supernumerary proteins may provide a window into the regulation of mitochondrial gene expression through evolution in response to distinct evolutionary paths taken by mitochondria in different organisms. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

13.
14.

Background

Reactive oxygen species (ROS) are among the main determinants of cellular damage during ischemia and reperfusion. There is also ample evidence that mitochondrial ROS production is involved in signaling during ischemic and pharmacological preconditioning. In a previous study we analyzed the mitochondrial effects of the efficient preconditioning drug diazoxide and found that it increased the mitochondrial oxidation of the ROS-sensitive fluorescent dye 2′,7′-dichlorodihydrofluorescein (H2DCF) but had no direct impact on the H2O2 production of submitochondrial particles (SMP) or intact rat heart mitochondria (RHM).

Methods

H2O2 generation of bovine SMP and tightly coupled RHM was monitored under different conditions using the amplex red/horseradish peroxidase assay in response to diazoxide and a number of inhibitors.

Results

We show that diazoxide reduces ROS production by mitochondrial complex I under conditions of reverse electron transfer in tightly coupled RHM, but stimulates mitochondrial ROS production at the Qo site of complex III under conditions of oxidant-induced reduction; this stimulation is greatly enhanced by uncoupling. These opposing effects can both be explained by inhibition of complex II by diazoxide. 5-Hydroxydecanoate had no effect, and the results were essentially identical in the presence of Na+ or K+ excluding a role for putative mitochondrial KATP-channels.

General significance

A straightforward rationale is presented to mechanistically explain the ambivalent effects of diazoxide reported in the literature. Depending on the metabolic state and the membrane potential of mitochondria, diazoxide-mediated inhibition of complex II promotes transient generation of signaling ROS at complex III (during preconditioning) or attenuates the production of deleterious ROS at complex I (during ischemia and reperfusion).  相似文献   

15.

Background

Glutathione (GSH) is synthesized in the cytoplasm but there is a requirement for glutathione not only in the cytoplasm, but in the other organelles and the extracellular milieu. GSH is also imported into the cytoplasm. The transports of glutathione across these different membranes in different systems have been biochemically demonstrated. However the molecular identity of the transporters has been established only in a few cases.

Scope of review

An attempt has been made to present the current state of knowledge of glutathione transporters from different organisms as well as different organelles. These include the most well characterized transporters, the yeast high-affinity, high-specificity glutathione transporters involved in import into the cytoplasm, and the mammalian MRP proteins involved in low affinity glutathione efflux from the cytoplasm. Other glutathione transporters that have been described either with direct or indirect evidences are also discussed.

Major conclusions

The molecular identity of a few glutathione transporters has been unambiguously established but there is a need to identify the transporters of other systems and organelles. There is a lack of direct evidence establishing transport by suggested transporters in many cases. Studies with the high affinity transporters have led to important structure-function insights.

General significance

An understanding of glutathione transporters is critical to our understanding of redox homeostasis in living cells. By presenting our current state of understanding and the gaps in our knowledge the review hopes to stimulate research in these fields. This article is part of a Special Issue entitled Cellular functions of glutathione.  相似文献   

16.

Background

Agonists of P2X7 receptors increase the production of reactive oxygen species (ROS) in immunocytes. In this work we tested this response and its effect on mitochondrial inner membrane potential (Δψm) in exocrine glands.

Methods

The production of ROS by rat submandibular glands was investigated by measuring the oxidation of dichlorodihydrofluorescein (DCFH), a fluorescent probe. The Δψm was estimated with tetramethylrhodamine.

Results

Activation of P2X7 receptors by ATP or Bz-ATP increased the production of ROS. This response was not modified by inhibitors of phospholipase A2 or of various kinases. The effect of ATP was calcium-dependent and was blocked by diphenyliodonium, an inhibitor of flavoproteins. It was not affected by rotenone, an inhibitor of the complex I of the mitochondrial electron transfer chain. Scavengers of ROS had no effect on the dissipation of Δψm by ATP.

Conclusions

We conclude that, in rat submandibular glands, P2X7 receptors stimulate in a calcium-dependent manner an oxidase generating ROS, suggesting the involvement of the dual oxidase Duox2. The production of ROS does not contribute to the depolarization of mitochondria by purinergic agonists.

General significance

Purinergic receptors could be regulators of the bactericidal properties of saliva by promoting both the secretion of peroxidase from acinar cells and by activating Duox2.  相似文献   

17.

Background

In recent years, reversible lysine acylation of proteins has emerged as a major post-translational modification across the cell, and importantly has been shown to regulate many proteins in mitochondria. One key family of deacylase enzymes is the sirtuins, of which SIRT3, SIRT4, and SIRT5 are localised to the mitochondria and regulate acyl modifications in this organelle.

Scope of review

In this review we discuss the emerging role of lysine acylation in the mitochondrion and summarise the evidence that proposes mitochondrial sirtuins are important players in the modulation of mitochondrial energy metabolism in response to external nutrient cues, via their action as lysine deacylases. We also highlight some key areas of mitochondrial sirtuin biology where future research efforts are required.

Major conclusions

Lysine deacetylation appears to play some role in regulating mitochondrial metabolism. Recent discoveries of new enzymatic capabilities of mitochondrial sirtuins, including desuccinylation and demalonylation activities, as well as an increasing list of novel protein substrates have identified many new questions regarding the role of mitochondrial sirtuins in the regulation of energy metabolism.

General significance

Dynamic changes in the regulation of mitochondrial metabolism may have far-reaching consequences for many diseases, and despite promising initial findings in knockout animals and cell models, the role of the mitochondrial sirtuins requires further exploration in this context. This article is part of a Special Issue entitled Frontiers of mitochondrial research.  相似文献   

18.

Background

Hydroxy-1-aryl-isochromans (HAIC) are newly emerging natural polyphenolic antioxidants, enriched in extravirgin olive oil, whose antioxidative potency was only scarcely characterized using cell-free systems and cells.

Methods

We characterized the activity of HAIC to inactivate reactive oxygen species (ROS) generated by the xanthine/xanthine oxidase system, mitochondria (rat brain) and neural cells. ROS levels were estimated using ROS-sensitive probes, such as Amplex Red, MitoSOXRED.

Results

HAIC (with 2, 3 or 4 hydroxyl substituents) effectively scavenge ROS released from mitochondria. EC50 values estimated with mitochondria and submitochondrial particles were around 20 μM. Moreover, in PC12 and cultured neural primary cells, HAIC buffered cytosolic ROS. Although HAIC permeate biological membranes, HAIC fail to buffer matrix ROS in isolated mitochondria. We show that hydrogen peroxide was effectively abolished by HAIC, whereas the production of superoxide was not affected.

Conclusion

HAIC exert high antioxidative activity to reduce hydrogen peroxide. The antioxidative activity of HAIC is comparable with that of the stilbene-like, polyphenolic resveratrol, but much higher than that of trolox, N-acetylcysteine or melatonin.

General significance

Unlike resveratrol, HAIC do not impair mitochondrial ATP synthesis or Ca2+ retention by mitochondria. Thus, HAIC have the decisive advantage to be potent antioxidants with no detrimental side effects on mitochondrial functions.  相似文献   

19.

Background

Given that lung cancer is the second leading cause of cancer-related deaths with low survival rates, the project was aimed to formulate an efficient drug with minimum side effects, and rationalize its action mechanistically.

Methods

Mitochondria deficient cells, shRNA-mediated BCL2 and ATM depleted cells and pharmacological inhibition of DNA-damage response proteins were employed to explore the signaling mechanism governed between nucleus and mitochondria in response to mal C.

Results

Mal C decreased cell viability in three lung carcinoma cells, associated with DNA damage, p38-MAPK activation, imbalance in BAX/BCL2 expression, mitochondrial dysfunction and cytochrome-c release. Mitochondria depletion and p38-MAPK inhibition made A549 cells extremely resistant, but BCL2 knock-down partially sensitized the cells to mal C treatment. The mal C-induced apoptosis in A549 cells was initiated by DNA single strand breaks that led to double strand breaks (DSBs). DSB generation paralleled the induction of ATM- and ATR-mediated CHK1 phosphorylation. ATM silencing and ATR inhibition partially attenuated the mal C-induced p38-MAPK activation, CHK1 phosphorylation and apoptosis, which were completely suppressed by CHK1 inhibition.

Conclusions

Mal C activates the ATM-CHK1-p38 MAPK cascade to cause mitochondrial cell death in lung carcinoma cells.

General significance

Given that mal C has appreciable natural abundance and is non-toxic to mice, further in vivo evaluation would help in establishing its anti-cancer property.  相似文献   

20.
Glutathione peroxidases   总被引:1,自引:0,他引:1  

Background

With increasing evidence that hydroperoxides are not only toxic but rather exert essential physiological functions, also hydroperoxide removing enzymes have to be re-viewed. In mammals, the peroxidases inter alia comprise the 8 glutathione peroxidases (GPx1–GPx8) so far identified.

Scope of the review

Since GPxs have recently been reviewed under various aspects, we here focus on novel findings considering their diverse physiological roles exceeding an antioxidant activity.

Major conclusions

GPxs are involved in balancing the H2O2 homeostasis in signalling cascades, e.g. in the insulin signalling pathway by GPx1; GPx2 plays a dual role in carcinogenesis depending on the mode of initiation and cancer stage; GPx3 is membrane associated possibly explaining a peroxidatic function despite low plasma concentrations of GSH; GPx4 has novel roles in the regulation of apoptosis and, together with GPx5, in male fertility. Functions of GPx6 are still unknown, and the proposed involvement of GPx7 and GPx8 in protein folding awaits elucidation.

General significance

Collectively, selenium-containing GPxs (GPx1–4 and 6) as well as their non-selenium congeners (GPx5, 7 and 8) became key players in important biological contexts far beyond the detoxification of hydroperoxides. This article is part of a Special Issue entitled Cellular functions of glutathione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号