首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Fructose administration rapidly induces oxidative stress that triggers compensatory hepatic metabolic changes. We evaluated the effect of an antioxidant, R/S-α-lipoic acid on fructose-induced oxidative stress and carbohydrate metabolism changes.

Methods

Wistar rats were fed a standard commercial diet, the same diet plus 10% fructose in drinking water, or injected with R/S-α-lipoic acid (35 mg/kg, i.p.) (control + L and fructose + L). Three weeks thereafter, blood samples were drawn to measure glucose, triglycerides, insulin, and the homeostasis model assessment-insulin resistance (HOMA-IR) and Matsuda indices. In the liver, we measured gene expression, protein content and activity of several enzymes, and metabolite concentration.

Results

Comparable body weight changes and calorie intake were recorded in all groups after the treatments. Fructose fed rats had hyperinsulinemia, hypertriglyceridemia, higher HOMA-IR and lower Matsuda indices compared to control animals. Fructose fed rats showed increased fructokinase gene expression, protein content and activity, glucokinase and glucose-6-phosphatase gene expression and activity, glycogen storage, glucose-6-phosphate dehydrogenase mRNA and enzyme activity, NAD(P)H oxidase subunits (gp91phox and p22phox) gene expression and protein concentration and phosphofructokinase-2 protein content than control rats. All these changes were prevented by R/S-α-lipoic acid co-administration.

Conclusions

Fructose induces hepatic metabolic changes that presumably begin with increased fructose phosphorylation by fructokinase, followed by adaptive changes that attempt to switch the substrate flow from mitochondrial metabolism to energy storage. These changes can be effectively prevented by R/S-α-lipoic acid co-administration.

General significance

Control of oxidative stress could be a useful strategy to prevent the transition from impaired glucose tolerance to type 2 diabetes.  相似文献   

2.
Kim DS  Jeon SE  Jeong YM  Kim SY  Kwon SB  Park KC 《FEBS letters》2006,580(5):1439-1446
Recently, we reported that a combination of indole-3-acetic acid (IAA) and horseradish peroxidase (HRP) induces apoptosis in G361 human melanoma cells. However, the apoptotic mechanism involved has been poorly studied. It is known that when IAA is oxidized by HRP, free radicals are produced, and since oxidative stress can induce apoptosis, we investigated whether reactive oxygen species (ROS) are involved in IAA/HRP-induced apoptosis. Our results show that IAA/HRP-induced free radical production is inhibited by catalase, but not by superoxide dismutase or sodium formate. Furthermore, catalase was found to prevent IAA/HRP-induced apoptotic cell death, indicating that IAA/HRP-produced hydrogen peroxide (H2O2) may be involved in the apoptotic process. Moreover, the antiapoptotic effect of catalase is potentiated by NADPH, which is known to protect catalase. On further investigating the IAA/HRP-mediated apoptotic pathway, we found that the IAA/HRP reaction leads to caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, which was also blocked by catalase. Additionally, we found that IAA/HRP produces H2O2 and induces peroxiredoxin (Prx) sulfonylation. Consequently, our results suggest that H2O2 plays a major role in IAA/HRP-induced apoptosis.  相似文献   

3.
Methionine- and choline-deficient diet (MCD) is a model for nonalcoholic steatohepatitis (NASH) in rodents. However, the mechanism of NASH development by dietary methionine/choline deficiency remains undetermined. To elucidate the early metabolic changes associated with MCD-NASH, serum metabolomic analysis was performed using mice treated with MCD and control diet for 3 days and 1  week, revealing significant increases in oleic and linoleic acids after MCD treatment. These increases were correlated with reduced body weight and white adipose tissue (WAT) mass, increased phosphorylation of hormone-sensitive lipase, and up-regulation of genes encoding carboxylesterase 3 and β2-adrenergic receptor in WAT, indicating accelerated lipolysis in adipocytes. The changes in serum fatty acids and WAT by MCD treatment were reversed by methionine supplementation, and similar alterations were detected in mice fed a methionine-deficient diet (MD), thus demonstrating that dietary methionine deficiency enhances lipolysis in WAT. MD treatment decreased glucose and increased fibroblast growth factor 21 in serum, thus exhibiting a similar metabolic phenotype as the fasting response. Comparison between MCD and choline-deficient diet (CD) treatments suggested that the addition of MD-induced metabolic alterations, such as WAT lipolysis, to CD-induced hepatic steatosis promotes liver injury. Collectively, these results demonstrate an important role for dietary methionine deficiency and WAT lipolysis in the development of MCD-NASH.  相似文献   

4.
We report the role of mitochondria in the protective effects of curcumin, a well-known direct and indirect antioxidant, against the renal oxidant damage induced by the hexavalent chromium [Cr(VI)] compound potassium dichromate (K2Cr2O7) in rats. Curcumin was given daily by gavage using three different schemes: (1) complete treatment (100, 200, and 400 mg/kg bw 10 days before and 2 days after K2Cr2O7 injection), (2) pretreatment (400 mg/kg bw for 10 days before K2Cr2O7 injection), and (3) posttreatment (400 mg/kg bw 2 days after K2Cr2O7 injection). Rats were sacrificed 48 h later after a single K2Cr2O7 injection (15 mg/kg, sc) to evaluate renal and mitochondrial function and oxidant stress. Curcumin treatment (schemes 1 and 2) attenuated K2Cr2O7-induced renal dysfunction, histological damage, oxidant stress, and the decrease in antioxidant enzyme activity both in kidney tissue and in mitochondria. Curcumin pretreatment attenuated K2Cr2O7-induced mitochondrial dysfunction (alterations in oxygen consumption, ATP content, calcium retention, and mitochondrial membrane potential and decreased activity of complexes I, II, II-III, and V) but was unable to modify renal and mitochondrial Cr(VI) content or to chelate chromium. Curcumin posttreatment was unable to prevent K2Cr2O7-induced renal dysfunction. In further experiments performed in curcumin (400 mg/kg)-pretreated rats it was found that this antioxidant accumulated in kidney and activated Nrf2 at the time when K2Cr2O7 was injected, suggesting that both direct and indirect antioxidant effects are involved in the protective effects of curcumin. These findings suggest that the preservation of mitochondrial function plays a key role in the protective effects of curcumin pretreatment against K2Cr2O7-induced renal oxidant damage.  相似文献   

5.

Background

α-Eleostearic acid and punicic acid, two typical conjugated linolenic acid (CLnA) isomers present in bitter gourd and snake gourd oil respectively, exhibit contrasting cis-trans configuration which made them biologically important.

Methods

Rats were divided into six groups. Group 1 was control and group 2 was treated control. Rats in the groups 3 and 4 were treated with mixture of α-eleostearic acid and punicic acid (1:1) (0.5% and 1.0% respectively) while rats in the groups 5 and 6 were treated with 0.5% of α-eleostearic acid and 0.5% of punicic acid respectively along with sodium arsenite by oral gavage once per day.

Results

Results showed that increase in nitric oxide synthase (NOS) activity, inflammatory markers expression, platelet aggregation, lipid peroxidation, protein oxidation, DNA damage and altered expression of liver X receptor-α (LXR-α) after arsenite treatment were restored with the supplementation of oils containing CLnA isomers. Altered activities of different antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and ferric reducing ability of plasma (FRAP) also restored after oil supplementation. Altered morphology and fluidity of erythrocyte membrane studied by atomic force and scanning electron microscopy, after stress induction were significantly improved due to amelioration in cholesterol/phospholipid ratio and fatty acid profile of membrane. Oils treatment also improved morphology of liver and fatty acid composition of hepatic lipid.

Conclusions

Overall two isomers showed synergistic antioxidant and anti-inflammatory effect against induced perturbations and membrane disintegrity.

General significance

Synergistic antioxidant and anti-inflammatory role of these CLnA isomers were established by this study.  相似文献   

6.
This study aimed to investigate the effects of docosahexaenoic acid (DHA) on the oxidative stress that occurs in an experimental mouse model of Parkinson’s disease (PD). An experimental model of PD was created by four intraperitoneal injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (4 × 20 mg/kg, at 12 h intervals). Docosahexaenoic acid was given daily by gavage for 4 weeks (36 mg/kg/day). The motor activity of the mice was evaluated via the pole test, and the dopaminergic lesion was determined by immunohistochemical analysis for tyrosine hydroxylase (TH)-immunopositive cells. The activity of antioxidant enzymes in the brain were determined by spectrophotometric assays and the concentration of thiobarbituric acid-reactive substances (TBARS) were measured as an index of oxidative damage. The number of apoptotic dopaminergic cells significantly increased in MPTP-treated mice compared to controls. Although DHA significantly diminished the number of cell deaths in MPTP-treated mice, it did not improve the decreased motor activity observed in the experimental PD model. Docosahexaenoic acid significantly diminished the amount of cell death in the MPTP + DHA group as compared to the MPTP group. TBARS levels in the brain were significantly increased following MPTP treatment. Glutathione peroxidase (GPx) and catalase (CAT) activities of brain were unaltered in all groups. The activity of brain superoxide dismutase (SOD) was decreased in the MPTP-treated group compared to the control group, but DHA treatment did not have an effect on SOD activity in the MPTP + DHA group. Our current data show that DHA treatment exerts neuroprotective actions on an experimental mouse model of PD. There was a decrease tendency in brain lipid oxidation of MPTP mice but it did not significantly.  相似文献   

7.
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid deposition and oxidative stress. It has been demonstrated that general control nonderepressible 2 (GCN2) is required to maintain hepatic fatty acid homeostasis under conditions of amino acid deprivation. However, the impact of GCN2 on the development of NAFLD has not been investigated. In this study, we used Gcn2?/? mice to investigate the effect of GCN2 on high fat diet (HFD)-induced hepatic steatosis. After HFD feeding for 12?weeks, Gcn2?/? mice were less obese than wild-type (WT) mice, and Gcn2?/? significantly attenuated HFD-induced liver dysfunction, hepatic steatosis and insulin resistance. In the livers of the HFD-fed mice, GCN2 deficiency resulted in higher levels of lipolysis genes, lower expression of genes related to FA synthesis, transport and lipogenesis, and less induction of oxidative stress. Furthermore, we found that knockdown of GCN2 attenuated, whereas overexpression of GCN2 exacerbated, palmitic acid-induced steatosis, oxidative & ER stress, and changes of peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS) and metallothionein (MT) expression in HepG2 cells. Collectively, our data provide evidences that GCN2 deficiency protects against HFD-induced hepatic steatosis by inhibiting lipogenesis and reducing oxidative stress. Our findings suggest that strategies to inhibit GCN2 activity in the liver may provide a novel approach to attenuate NAFLD development.  相似文献   

8.
d-Galactose is widely used as an agent to cause aging effects in experimental animals. The present study aims to investigate the effects of hydrogen sulfide (H2S) in human neuroblastoma SH-SY5Y cells exposed to d-galactose. Cells were pretreated with NaHS, an H2S donor, and then exposed to d-galactose (25–400 mM for 48 h). We found that NaHS pretreatment significantly reversed the d-galactose-induced cell death and cellular senescence. MTT assay shows that NaHS significantly increased cell viability from 62.31 ± 1.29% to 72.34 ± 0.46% compared with d-galactose (200 mM) treatment group. The underlying mechanism appeared to involve a reduction by NaHS in the formation of advanced glycation end products (AGEs), which are known to contribute to the progression of age-related diseases. In addition, NaHS decreased the elevation of reactive oxygen species from 151.17 ± 2.07% to 124.8 ± 2.89% and malondialdehyde from 1.72 ± 0.07 to 1.10 ± 0.08 (nmol/mg protein) in SH-SY5Y cells after d-galactose exposure. NaHS also stimulated activities of superoxide dismutase from 0.42 ± 0.05 to 0.73 ± 0.04 (U/mg protein) and glutathione peroxidase from 3.98 ± 0.73 to 14.73 ± 0.77 (nmol/min/mg protein) and upregulated the gene expression levels of copper transport protein ATOX1, glutathione synthetase (GSS) and thioredoxin reductase 1 (TXNRD1) while down-regulated aldehyde oxidase 1 (AOX1). In summary, our data indicate that H2S may have potentially anti-aging effects through the inhibition of AGEs formation and reduction of oxidative stress.  相似文献   

9.
10.
Type 2 diabetes (T2D) is a complex disorder resulting from both genetic and environmental factors in its pathogenesis. A case − control study was designed with subjects recruited from a general population to investigate whether the association between T2D and the common T > A polymorphism (rs9939609) in fat mass and obesity associated (FTO) gene is mediated by obesity-related measurements, considering the contribution of socio-economic status and lifestyle factors. The significant association between the FTO rs9939609 polymorphism and T2D was first observed in the model unadjusted (OR per A allele = 1.61, 95% CI = 1.06–2.44, P = 0.024). It remained consistently replicated in the final model after adjustments for sex, age, systolic blood pressure, socio-economic status, lifestyle factors, and obesity-related measurements (body mass index, waist–hip ratio, body fat percentage, and body adiposity index), showing an increased T2D risk with an additive effect of the alleles (ORs per A allele = 1.80–1.92, 95% CI = 1.09–3.19, P < 0.05). The FTO-rs9939609 polymorphism, systolic blood pressure, and waist–hip ratio were the most significant independent predictors for T2D, in which the power of the adjusted prediction model was 0.769. In conclusion, the study suggested that the FTO-rs9939609 polymorphism was significantly associated with the increased risk of T2D, independent of obesity-related measurements in a Vietnamese population.  相似文献   

11.

Background

Diethylnitrosamine (DEN) and carbon tetrachloride (CCl4) have been used as initiator and promoter respectively to establish an animal model for investigating molecular events appear to be involved in development of liver cancer. Use of herbal medicine in therapeutics to avoid the recurrence of hepatocarcinoma has already generated considerable interest among oncologists. In this context studies involving S-allyl-cysteine (SAC) and berberine have come up with promising results. Here we have determined the individual effect of SAC and berberine on the biomolecules associated with DEN + CCl4 induced hepatocarcinoma. Effective therapeutic value of combined treatment has also been estimated.

Methods

ROS accumulation was analyzed by FACS following DCFDA incubation. Bcl2-Bax and HDAC1‐pMdm2 interaction were demonstrated by co-immunoprecipitation. Immunosorbent assay was performed to analyze PP2A and caspase3 activities. MMP was determined cytofluorimetrically by investigating JC-1 fluorescence. AnnexinV binding was demonstrated by labeling the cells with AnV-FITC followed by flow cytometry.

Results

CytochromeP4502E1 mediated bioactivation of DEN + CCl4 induced Akt dependent pMdm2‐HDAC1 interaction that led to p53 deacetylation, probable cause of its degradation. In parallel, oxidative stress dependent Nrf2‐HO1 activation increased Bcl2 expression which in turn stimulated cell proliferation. SAC in combination with berberine inhibited Akt mediated cell proliferation. Activation of PP2A as well as inhibition of JNK resulted in induction of apoptosis after 30 days of treatment. Extension of combined treatment reverted tissue physiology towards control. Co-treated group displayed normal tissue structure.

Conclusion and general significance

SAC and berberine mediated HDAC1/Akt inhibition implicates the efficacy of combined treatment in the amelioration of DEN + CCl4 induced hepatocarcinoma.  相似文献   

12.

Aims

L-selectin belongs to selectin family of adhesion molecule and participates in the generation and development of type 2 diabetes (T2D). In this study, we evaluated the relationship between the P213S polymorphism of L-selectin gene and T2D and insulin resistance in the Chinese population.

Methods

We genotyped P213S polymorphism in 801 patients with T2D and 834 healthy controls in the Chinese population using polymerase chain reaction–ligase detection reaction (PCR–LDR) technique. Plasma glucose, insulin, lipid, blood urea nitrogen, creatinine and uric acid levels were measured by biochemical technique.

Results

The frequency of 213PP genotype and P allele of the L-selectin gene in patients with T2D was significantly higher than that in controls (P = 0.007; P = 0.019, respectively). The relative risk of allele P suffered from T2D was 1.191 times higher than that of allele S. Moreover, the levels of FPG and HOMA-IR of PP and PS genotype carriers were significantly higher than those of SS genotype carriers in the T2D group (P < 0.05).

Conclusion

These findings indicated that the P213S polymorphism of L‐selectin gene may contribute to susceptibility to T2D and insulin resistance in the Chinese population, and P allele appears to be a risk factor for T2D.  相似文献   

13.
Brain ischemic tolerance is a protective mechanism induced by a preconditioning stimulus, which prepare the tissue against harmful insults. Preconditioning with N-methyl-d-aspartate (NMDA) agonists induces brain tolerance and protects it against glutamate excitotoxicity. Recently, the glycine transporters type 1 (GlyT-1) have been shown to potentiate glutamate neurotransmission through NMDA receptors suggesting an alternative strategy to protect against glutamate excitotoxicity. Here, we evaluated the preconditioning effect of sarcosine pre-treatment, a GlyT-1 inhibitor, in rat hippocampal slices exposed to ischemic insult. Sarcosine (300mg/kg per day, i.p.) was administered during seven consecutive days before induction of ischemia in hippocampus by oxygen/glucose deprivation (OGD). To access the damage caused by an ischemic insult, we evaluated cells viability, glutamate release, nitric oxide (NO) production, lactate dehydrogenase (LDH) levels, production of reactive oxygen species (ROS), and antioxidant enzymes as well as the impact of oxidative stress in the tissue. We observed that sarcosine reduced cell death in hippocampus submitted to OGD, which was confirmed by reduction on LDH levels in the supernatant. Cell death, glutamate release, LDH levels and NO production were reduced in sarcosine hippocampal slices submitted to OGD when compared to OGD controls (without sarcosine). ROS production was reduced in sarcosine hippocampal slices exposed to OGD, although no changes were found in antioxidant enzymes activities. This study demonstrates that preconditioning with sarcosine induces ischemic tolerance in rat hippocampal slices submitted to OGD.  相似文献   

14.
Salinity inhibits plant growth due to ionic and osmotic effects on metabolic processes and nutritional balance, leading to impaired physiological functions. Selenium (Se) and silicon (Si) can be partially alleviated by the effects wrought by NaCl on the plant metabolism. Iodine (I), applied as iodate (IO3) in biofortification programmes, has been confirmed to improve the antioxidant response in lettuce plants. Thus, the aim of this study was to determine whether the application of IO3 can improve the response to severe salinity stress in lettuce (Lactuca sativa cv. Philipus). In this work, the application of IO3 (20-80 μM) in lettuce plants under salinity stress (100 mM of NaCl) exerted a significantly positive effect on biomass and raised the levels of soluble sugars while lowering the Na+ and Cl concentrations as well as boosting the activity of antioxidant enzymes such as SOD, APX, DHAR and GR. Therefore, IO3 could be considered a possibly beneficial element to counteract the harmful effects of salinity stress.  相似文献   

15.
Apoptosis in neuronal tissue is an efficient mechanism which contributes to both normal cell development and pathological cell death. The present study explores the effects of extracellular ADP on low [K+]-induced apoptosis in rat cerebellar granule cells. ADP, released into the extracellular space in brain by multiple mechanisms, can interact with its receptor or be converted, through the actions of ectoenzymes, to adenosine. The findings reported in this paper demonstrate that ADP inhibits the proapoptotic stimulus supposedly via: i) inhibition of ROS production during early stages of apoptosis, an effect mediated by its interaction with cell receptor/s. This conclusion is validated by the increase in SOD and catalase activities as well as by the GSSG/GSH ratio value decrease, in conjunction with the drop of ROS level and the prevention of the ADP protective effect by pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), a novel functionally selective antagonist of purine receptor; ii) safeguard of the functionality of the mitochondrial adenine nucleotide-1 translocator (ANT-1), which is early impaired during apoptosis. This effect is mediated by its plausible internalization into cell occurring as such or after its hydrolysis, by means of plasma membrane nucleotide metabolizing enzymes, and resynthesis into the cell. Moreover, the findings that ADP also protects ANT-1 from the toxic action of the two Alzheimer's disease peptides, i.e. Aβ1–42 and NH2htau, which are known to be produced in apoptotic cerebellar neurons, further corroborate the molecular mechanism of neuroprotection by ADP, herein proposed.  相似文献   

16.
Mitochondria consume nitric oxide (NO) mainly through reaction with superoxide anion (). Here, we analyzed the sources for NO degradation by isolated rat liver mitochondria. Electron leakage from complex III and reverse electron transport to complex I accounted for -dependent NO degradation by mitochondria in the presence of a protonmotive force. Mitochondria incubated with NAD(P)H also presented intense generation and NO degradation rates that were insensitive to respiratory inhibitors and abolished after proteinase treatment. These results suggest that an outer membrane-localized NAD(P)H oxidase activity, in addition to the electron leakage from the respiratory chain, promotes -dependent NO degradation in rat liver mitochondria.  相似文献   

17.
Amelioration of cadmium-induced cardiac impairment by taurine   总被引:1,自引:0,他引:1  
The present study has been designed to investigate the protective role of taurine (2-aminoethanesulfonic acid), a sulfur containing conditionally essential amino acid, against cadmium-induced cardiac dysfunction in mice. Cadmium chloride (CdCl(2)) was used as the source of cadmium and it was administered orally at a dose of 4mg/kg body weight for 6 days. Cadmium exposure caused significant accumulation of the cadmium and iron in mice hearts tissue. Levels of serum specific markers related to cardiac impairments, e.g. total cholesterol, HDL cholesterol and triglyceride were altered due to cadmium toxicity. Reduction in the activities of antioxidant enzymes, namely, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PD) have been observed in cadmium exposed mice. Cadmium intoxication also decreased the cardiac glutathione (GSH) and total thiols contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products, protein carbonyl content and the extent of DNA fragmentation. Oral administration of taurine at a dose of 100mg/kg body weight for 5 days, however, prevented all the toxin-induced oxidative impairments mentioned above. "Ferric Reducing/Antioxidant Power (FRAP) assay" showed that taurine could protect the cardiac tissue by preventing cadmium-induced reduction of the intracellular antioxidant power. Histological examination of cardiac segments also supported the beneficial role of taurine against cadmium-induced damages in the murine hearts. Effect of a well established antioxidant, vitamin C has been included in the study as a positive control. Combining all, results suggest that taurine attenuates cadmium-induced impairment in mice hearts.  相似文献   

18.
Cardiac oxidative stress has been implicated in the pathogenesis of hypertrophy, cardiomyopathy and heart failure. Systemic deletion of the gene encoding adipose triglyceride lipase (ATGL), the enzyme that catalyzes the rate-limiting step of triglyceride lipolysis, results in a phenotype characterized by severe steatotic cardiac dysfunction. The objective of the present study was to investigate a potential role of oxidative stress in cardiac ATGL deficiency. Hearts of mice with global ATGL knockout were compared to those of mice with cardiomyocyte-restricted overexpression of ATGL and to those of wildtype littermates. Our results demonstrate that oxidative stress, measured as lucigenin chemiluminescence, was increased ~ 6-fold in ATGL-deficient hearts. In parallel, cytosolic NADPH oxidase subunits p67phox and p47phox were upregulated 4–5-fold at the protein level. Moreover, a prominent upregulation of different inflammatory markers (tumor necrosis factor α, monocyte chemotactant protein-1, interleukin 6, and galectin-3) was observed in those hearts. Both the oxidative and inflammatory responses were abolished upon cardiomyocyte-restricted overexpression of ATGL. Investigating the effect of oxidative and inflammatory stress on nitric oxide/cGMP signal transduction we observed a ~ 2.5-fold upregulation of soluble guanylate cyclase activity and a ~ 2-fold increase in cardiac tetrahydrobiopterin levels. Systemic treatment of ATGL-deficient mice with the superoxide dismutase mimetic Mn(III)tetrakis (4-benzoic acid) porphyrin did not ameliorate but rather aggravated cardiac oxidative stress. Our data suggest that oxidative and inflammatory stress seems involved in lipotoxic heart disease. Upregulation of soluble guanylate cyclase and cardiac tetrahydrobiopterin might be regarded as counterregulatory mechanisms in cardiac ATGL deficiency.  相似文献   

19.
n-3 polyunsaturated fatty acids (n-3 PUFA) might regulate metabolism by lowering endocannabinoid levels. We examined time-dependent changes in adipose tissue levels of endocannabinoids as well as in parameters of glucose homeostasis induced by n-3 PUFA in dietary-obese mice, and compared these results with the effect of n-3 PUFA intervention in type 2 diabetic (T2DM) subjects. Male C57BL/6J mice were fed for 8, 16 or 24?weeks a high-fat diet alone (cHF) or supplemented with n-3 PUFA (cHF?+?F). Overweight/obese, T2DM patients on metformin therapy were given for 24?weeks corn oil (Placebo; 5?g/day) or n-3 PUFA concentrate as above (Omega-3; 5?g/day). Endocannabinoids were measured by liquid chromatography-tandem mass-spectrometry. Compared to cHF-fed controls, the cHF?+?F mice consistently reduced 2-arachidonoylglycerol (up to ~2-fold at week 24) and anandamide (~2-fold) in adipose tissue, while the levels of endocannabinoid-related anti-inflammatory molecules N-eicosapentaenoyl ethanolamine (EPEA) and N-docosahexaenoyl ethanolamine (DHEA) increased more than ~10-fold and ~8-fold, respectively. At week 24, the cHF?+?F mice improved glucose tolerance and fasting blood glucose, the latter being positively correlated with adipose 2-arachidonoylglycerol levels only in obese cHF-fed controls, like fasting insulin and HOMA-IR. In the patients, n-3 PUFA failed to reduce 2-arachidonoylglycerol and anandamide levels in adipose tissue and serum, but they increased both adipose tissue and serum levels of EPEA and DHEA. In conclusion, the inability of n-3 PUFA to reduce adipose tissue and serum levels of classical endocannabinoids might contribute to a lack of beneficial effects of these lipids on glucose homeostasis in T2DM patients.  相似文献   

20.
Background: CO-releasing molecules (CO-RMs) are potential therapeutic agents, able to deliver CO – a critical gasotransmitter – in biological environments. CO-RMs are also effective antimicrobial agents; although the mechanisms of action are poorly defined, haem-containing terminal oxidases are primary targets. Nevertheless, it is clear from several studies that the effects of CO-RMs on biological systems are frequently not adequately explained by the release of CO: CO-RMs are generally more potent inhibitors than is CO gas and other effects of the molecules are evident. Methods: Because sensitivity to CO-RMs cannot be predicted by sensitivity to CO gas, we assess the differential susceptibilities of strains, each expressing only one of the three terminal oxidases of E. coli — cytochrome bd-I, cytochrome bd-II and cytochrome bo′, to inhibition by CORM-3. We present the first sensitive measurement of the oxygen affinity of cytochrome bd-II (Km 0.24 μM) employing globin deoxygenation. Finally, we investigate the way(s) in which thiol compounds abolish the inhibitory effects of CORM-2 and CORM-3 on respiration, growth and viability, a phenomenon that is well documented, but poorly understood. Results: We show that a strain expressing cytochrome bd-I as the sole oxidase is least susceptible to inhibition by CORM-3 in its growth and respiration of both intact cells and membranes. Growth studies show that cytochrome bd-II has similar CORM-3 sensitivity to cytochrome bo′. Cytochromes bo′ and bd-II also have considerably lower affinities for oxygen than bd-I. We show that the ability of N-acetylcysteine to abrogate the toxic effects of CO-RMs is not attributable to its antioxidant effects, or prevention of CO targeting to the oxidases, but may be largely due to the inhibition of CO-RM uptake by bacterial cells. Conclusions: A strain expressing cytochrome bd-I as the sole terminal oxidase is least susceptible to inhibition by CORM-3. N-acetylcysteine is a potent inhibitor of CO-RM uptake by E. coli. General significance: Rational design and exploitation of CO-RMs require a fundamental understanding of their activity. CO and CO-RMs have multifaceted effects on mammalian and microbial cells; here we show that the quinol oxidases of E. coli are differentially sensitive to CORM-3. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号