首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SignificanceThe multifaceted functions of reduced glutathione (gamma-glutamyl–cysteinyl–glycine; GSH) continue to fascinate plants and animal scientists, not least because of the dynamic relationships between GSH and reactive oxygen species (ROS) that underpin reduction/oxidation (redox) regulation and signalling. Here we consider the respective roles of ROS and GSH in the regulation of plant growth, with a particular focus on regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low molecular weight redox buffer that shields nuclear processes against oxidative challenge but also a flexible regulator of genetic and epigenetic functions.Recent advancesThe intracellular compartmentalization of GSH during the cell cycle is remarkably consistent in plants and animals. Moreover, measurements of in vivo glutathione redox potentials reveal that the cellular environment is much more reducing than predicted from GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and nuclei of non-dividing plant cells is about −300 mV. This relatively low redox potential maintained even in cells experiencing oxidative stress by a number of mechanisms including vacuolar sequestration of GSSG. We propose that regulated ROS production linked to glutathione-mediated signalling events are the hallmark of viable cells within a changing and challenging environment.Critical issuesThe concept that the cell cycle in animals is subject to redox controls is well established but little is known about how ROS and GSH regulate this process in plants. However, it is increasingly likely that redox controls exist in plants, although possibly through different pathways. Moreover, redox-regulated proteins that function in cell cycle checkpoints remain to be identified in plants. While GSH-responsive genes have now been identified, the mechanisms that mediate and regulate protein glutathionylation in plants remain poorly defined.Future directionsThe nuclear GSH pool provides an appropriate redox environment for essential nuclear functions. Future work will focus on how this essential thiol interacts with the nuclear thioredoxin system and nitric oxide to regulate genetic and epigenetic mechanisms. The characterization of redox-regulated cell cycle proteins in plants, and the elucidation of mechanisms that facilitate GSH accumulation in the nucleus are keep steps to unravelling the complexities of nuclear redox controls.  相似文献   

2.
3.
Glutathione in plants: an integrated overview   总被引:3,自引:0,他引:3  
Plants cannot survive without glutathione (γ-glutamylcysteinylglycine) or γ-glutamylcysteine-containing homologues. The reasons why this small molecule is indispensable are not fully understood, but it can be inferred that glutathione has functions in plant development that cannot be performed by other thiols or antioxidants. The known functions of glutathione include roles in biosynthetic pathways, detoxification, antioxidant biochemistry and redox homeostasis. Glutathione can interact in multiple ways with proteins through thiol-disulphide exchange and related processes. Its strategic position between oxidants such as reactive oxygen species and cellular reductants makes the glutathione system perfectly configured for signalling functions. Recent years have witnessed considerable progress in understanding glutathione synthesis, degradation and transport, particularly in relation to cellular redox homeostasis and related signalling under optimal and stress conditions. Here we outline the key recent advances and discuss how alterations in glutathione status, such as those observed during stress, may participate in signal transduction cascades. The discussion highlights some of the issues surrounding the regulation of glutathione contents, the control of glutathione redox potential, and how the functions of glutathione and other thiols are integrated to fine-tune photorespiratory and respiratory metabolism and to modulate phytohormone signalling pathways through appropriate modification of sensitive protein cysteine residues.  相似文献   

4.
5.
Reduced glutathione (GSH) is the most abundant low-molecular weight thiol in plant cells. It accumulates to high concentrations, particularly in stress situations. Because the pathway of GSH synthesis consists of only two enzymes, manipulation of cellular glutathione contents by genetic intervention has proved to be relatively straightforward. The discovery of a new bacterial bifunctional enzyme catalysing GSH synthesis but lacking feedback inhibition characteristics offers new prospects of enhancing GSH production and accumulation by plant cells, while the identification of γ-glutamyl cysteine and glutathione transporters provides additional possibilities for selective compartment-specific targeting. Such manipulations might also be used to affect plant biology in disparate ways, because GSH and glutathione disulphide (GSSG) have crucial roles in processes as diverse as the regulation of the cell cycle, systemic acquired resistance and xenobiotic detoxification. For example, depletion of the total glutathione pool can be used to manipulate the shoot : root ratio, because GSH is required specifically for the growth of the root meristem. Similarly, chloroplast γ-glutamyl cysteine synthetase overexpression could be used to increase the abundance of specific amino acids such as leucine, lysine and tyrosine that are synthesized in the chloroplasts. Here we review the aspects of glutathione biology related to synthesis, compartmentation and transport and related signalling functions that modulate plant growth and development and underpin any assessment of manipulation of GSH homeostasis from the viewpoint of nutritional genomics.  相似文献   

6.
The glutathione (GSH)/glutathione disulfide (GSSG) redox couple is involved in several physiologic processes in plants under both optimal and stress conditions. It participates in the maintenance of redox homeostasis in the cells. The redox state of the GSH/GSSG couple is defined by its reducing capacity and the half-cell reduction potential, and differs in the various organs, tissues, cells, and compartments, changing during the growth and development of the plants. When characterizing this redox couple, the synthesis, degradation, oxidation, and transport of GSH and its conjugation with the sulfhydryl groups of other compounds should be considered. Under optimal growth conditions, the high GSH/GSSG ratio results in a reducing environment in the cells which maintains the appropriate structure and activity of protein molecules because of the inhibition of the formation of intermolecular disulfide bridges. In response to abiotic stresses, the GSH/GSSG ratio decreases due to the oxidation of GSH during the detoxification of reactive oxygen species (ROS) and changes in its metabolism. The lower GSH/GSSG ratio activates various defense mechanisms through a redox signalling pathway, which includes several oxidants, antioxidants, and stress hormones. In addition, GSH may control gene expression and the activity of proteins through glutathionylation and thiol-disulfide conversion. This review discusses the size and redox state of the GSH pool, including their regulation, their role in redox signalling and defense processes, and the changes caused by abiotic stress.  相似文献   

7.
Intracellular redox homeostasis is crucial for many cellular functions but accurate measurements of cellular compartment-specific redox states remain technically challenging. To better characterize redox control in the nucleus, we targeted a yellow fluorescent protein-based redox sensor (rxYFP) to the nucleus of the yeast Saccharomyces cerevisiae. Parallel analyses of the redox state of nucleus-rxYFP and cytosol-rxYFP allowed us to monitor distinctively dynamic glutathione (GSH) redox changes within these two compartments under a given condition. We observed that the nuclear GSH redox environment is highly reducing and similar to the cytosol under steady-state conditions. Furthermore, these sensors are able to detect redox variations specific for their respective compartments in glutathione reductase (Glr1) and thioredoxin pathway (Trr1, Trx1, Trx2) mutants that have altered subcellular redox environments. Our mutant redox data provide in vivo evidence that glutathione and the thioredoxin redox systems have distinct but overlapping functions in controlling subcellular redox environments. We also monitored the dynamic response of nucleus-rxYFP and cytosol-rxYFP to GSH depletion and to exogenous low and high doses of H2O2 bursts. These observations indicate a rapid and almost simultaneous oxidation of both nucleus-rxYFP and cytosol-rxYFP, highlighting the robustness of the rxYFP sensors in measuring real-time compartmental redox changes. Taken together, our data suggest that the highly reduced yeast nuclear and cytosolic redox states are maintained independently to some extent and under distinct but subtle redox regulation. Nucleus- and cytosol-rxYFP register compartment-specific localized redox fluctuations that may involve exchange of reduced and/or oxidized glutathione between these two compartments. Finally, we confirmed that GSH depletion has profound effects on mitochondrial genome stability but little effect on nuclear genome stability, thereby emphasizing that the critical requirement for GSH during growth is linked to a mitochondria-dependent process.  相似文献   

8.
9.
《Free radical research》2013,47(11-12):1245-1266
Abstract

The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.  相似文献   

10.
11.
12.
Circu ML  Aw TY 《Free radical research》2011,45(11-12):1245-1266
The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.  相似文献   

13.
Watson WH  Jones DP 《FEBS letters》2003,543(1-3):144-147
Thioredoxin 1 (Trx1) is a key redox control system within the nucleus, yet little is known about the sensitivity of nuclear Trx1 to oxidative stress. The present study compared oxidant-induced changes in the redox states of nuclear Trx1, cytoplasmic Trx1, and cellular glutathione (GSH). Nuclear Trx1 was more reducing than cytoplasmic Trx1 and cellular GSH in proliferating cells. tert-Butylhydroperoxide caused an increase in the total amount of nuclear Trx1, but this was accompanied by a 60 mV oxidation. Thus, the increase in nuclear Trx1 levels did not correspond to an increase in the overall reducing capacity of Trx1 in the nucleus.  相似文献   

14.
Glutathione has numerous roles in cellular defence and in sulphur metabolism. These functions depend or impact on the concentration and/or redox state of leaf glutathione pools. Effective function requires homeostatic control of concentration and redox state, with departures from homeostasis acting as signals that trigger adaptive responses. Intercellular and intracellular glutathione pools are linked by transport across membranes. It is shown that glutathione can cross the chloroplast envelope at rates similar to the speed of biosynthesis. Control of glutathione concentration and redox state is therefore due to a complex interplay between biosynthesis, utilization, degradation, oxidation/reduction, and transport. All these factors must be considered in order to evaluate the significance of glutathione as a signalling component during development, abiotic stress, or pathogen attack.  相似文献   

15.
Chloroplasts are important sensors of environment change, fulfilling key roles in the regulation of plant growth and development in relation to environmental cues. Photosynthesis produces a repertoire of reductive and oxidative (redox) signals that provide information to the nucleus facilitating appropriate acclimation to a changing light environment. Redox signals are also recognized by the cellular innate immune system allowing activation of non-specific, stress-responsive pathways that underpin cross tolerance to biotic–abiotic stresses. While these pathways have been intensively studied in recent years, little is known about the different components that mediate chloroplast-to-nucleus signalling and facilitate cross tolerance phenomena. Here, we consider the properties of the WHIRLY family of proteins and the REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) in relation to chloroplast redox signals that facilitate the synergistic co-activation of gene expression pathways and confer cross tolerance to abiotic and biotic stresses. We propose a new hypothesis for the role of WHIRLY1 as a redox sensor in chloroplast-to-nucleus retrograde signalling leading to cross tolerance, including acclimation and immunity responses. By virtue of its association with chloroplast nucleoids and with nuclear DNA, WHIRLY1 is an attractive candidate coordinator of the expression of photosynthetic genes in the nucleus and chloroplasts. We propose that the redox state of the photosynthetic electron transport chain triggers the movement of WHIRLY1 from the chloroplasts to the nucleus, and draw parallels with the regulation of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1).  相似文献   

16.
Previously, we showed that cellular glutathione/glutathione disulfide (GSH/GSSG) play an important role in apoptotic signaling, and early studies linked mitochondrial GSH (mtGSH) loss to enhanced cytotoxicity. The current study focuses on the contribution of mitochondrial GSH transport and mitochondrial GSH/GSSG status to apoptosis initiation in a nontransformed colonic epithelial cell line, NCM460, using menadione (MQ), a quinone with redox cycling bioreactivity, as a model of oxidative challenge. Our results implicate the semiquinone radical in MQ-mediated apoptosis, which was associated with marked oxidation of the mitochondrial soluble GSH and protein-bound thiol pools, mitochondria-to-cytosol translocation of cytochrome c, and activation of caspase-9. MQ-induced apoptosis was potentiated by inhibition of mtGSH uptake in accordance with exacerbated mitochondrial GSSG (mtGSSG) and protein-SSG and compromised mitochondrial respiratory activity. Moreover, cell apoptosis was prevented by N-acetyl-L-cysteine (NAC) pretreatment, which restored cellular redox homeostasis. Importantly, mtGSH transport inhibition effectively blocked NAC-mediated protection in accordance with its failure to attenuate mtGSSG. These results support the importance of mitochondrial GSH transport and the mtGSH status in oxidative cell killing.  相似文献   

17.
Kojer K  Bien M  Gangel H  Morgan B  Dick TP  Riemer J 《The EMBO journal》2012,31(14):3169-3182
Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (E(GSH)) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with E(GSH)-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of E(GSH) in the IMS, thus explaining a steady-state E(GSH) in the IMS which is similar to the cytosol. Moreover, we show that the local E(GSH) contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells.  相似文献   

18.
Dynamic analysis of redox-based processes in living cells is now restricted by the lack of appropriate redox biosensors. Conventional redox-sensitive GFPs (roGFPs) are limited by undefined specificity and slow response to changes in redox potential. In this study we demonstrate that the fusion of human glutaredoxin-1 (Grx1) to roGFP2 facilitates specific real-time equilibration between the sensor protein and the glutathione redox couple. The Grx1-roGFP2 fusion protein allowed dynamic live imaging of the glutathione redox potential (E(GSH)) in different cellular compartments with high sensitivity and temporal resolution. The biosensor detected nanomolar changes in oxidized glutathione (GSSG) against a backdrop of millimolar reduced glutathione (GSH) on a scale of seconds to minutes. It facilitated the observation of redox changes associated with growth factor availability, cell density, mitochondrial depolarization, respiratory burst activity and immune receptor stimulation.  相似文献   

19.
Summary

Glutathione (GSH) is an abundant and ubiquitous low-molecular-mass thiol with proposed roles in many cellular processes including amino acid transport, synthesis of proteins and nucleic acids, modulation of enzyme activity and metabolism of xenobiotics, carcinogens and reactive oxygen species. This review describes recent findings in the lower eukaryote Saccharomyces cerevisiae that are leading to a better understanding of the role of this peptide in eukaryotic cell metabolism. In particular, two gene products involved in maintaining the levels of reduced GSH have been studied; namely, GSH1 encoding γ-glutamylcysteine synthetase, the first step in the biosynthesis of GSH, and glutathione reductase, which recycles glutathione to its reduced form. These studies indicate that GSH is an essential metabolite in yeast, and that it is required for protection against oxidative stress produced by mitochondrial metabolism and exogenous reactive oxygen species. These findings are discussed in the light of analogous observations made in higher eukaryotes.  相似文献   

20.
In mammalian cells, a growing body of evidence indicates a relationship between cellular redox balance and tyrosine kinase-mediated cell signalling. The phosphorylative cascade activated by extracellular signals is inhibited by reducing conditions and stimulated by oxidative stress, in particular at the level of mitogen activated protein kinase (MAPK) activation. The mussel Mytilus typically shows variations in antioxidant defence systems and decreases in glutathione content in response to both natural and contaminant environmental stressors. In isolated mussel digestive gland cells, both epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) have been recently demonstrated to activate tyrosine kinase receptors leading to multiple responses; among these, stimulation of the key glycolytic enzymes phosphofructokinase (PFK) and pyruvate kinase (PK). The present study investigates the possible relationship between the tyrosine kinase-mediated metabolic effects of growth factors and cellular redox balance in mussel cells. The results demonstrate that the effects of growth factors on glycolytic enzymes were abolished by cell pretreatment with the antioxidant N-acetyl-cysteine (NAC). On the other hand, in cells where the glutathione content and synthesis were lowered either in vitro (by cell pretreatment with buthionine sulfoximine (BSO)), or in vivo (by mussel exposure to Cu2+) the metabolic effects of growth factors were unaffected. Moreover, the results show that, in both control and glutathione-depleted cells, growth factors can also regulate the level of glutathione apparently by modulating, via phosphorylative mechanisms involving MAPK activation, the activity of γ-glutamylcysteine synthetase (GCS), the rate limiting enzyme in GSH biosynthesis. Overall, this study extends the hypothesis that cell signalling is intimately related to redox balance in marine invertebrate cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号